ON FUZZY QUOTIENT ALGEBRAS

Gradimir Vojvodić and Branimir Šešelja Prirodno-matematički fakultet. Institut za matematiku 21000 Novi Sad, ul.dr Ilije Djuričića br. 4, Jugoslavija

ABSTRACT

For an algebra A and a complete lattice L, one can consider a fuzzy congruence relation $\overline{\rho}$ (defined in $[\overline{1}]$). Here we define a quotient algebra $A/\overline{\rho}$. Since every fuzzy congruence relation is a special union of a family of ordinary congruences on the same algebra, it is interesting to consider the relationship between $A/\overline{\rho}$ and the quotient algebra $A/\overline{\rho}$ by any of the congruences of the family. We prove that there is always a homomorphism from $A/\overline{\rho}$ to A/ρ , and we give the necessary and sufficent conditions for it to be an isomorphism. We also consider the fuzzy subalgebras (defined as in [2]) of A, and A/ρ , and assuming that these mappings preserve the homomorphism, we prove that a fuzzy subalgebra \overline{A} of A induces $\overline{A/\rho}$ (of A/ρ) and vice versa. Using the homomorphism from $A/\overline{\rho}$ onto A/ρ , we finally determine the connection between the corresponding fuzzy subalgebras.

1. Let S be an unempty set, and $L=(L,\Lambda,V,0,1)$ a complete lattice. A <u>fuzzy set \overline{S} </u> on S (or, a fuzzy subset \overline{S} of S) is any mapping $\overline{S}: \overline{S} \to L$ ($[\overline{3}]$).

If \bar{S}_1 and \bar{S}_2 are two fuzzy sets on S, then the relation \subseteq and the operations \cap and \cup are defined as follows ([3]):

AMS Mathematics subject classification (1980): 03E72 Key words and phrases: Fuzzy sets.

and

$$\begin{split} &\bar{s}_1 \subseteq \bar{s}_2 \quad \text{iff for all } \mathbf{x} \in \mathbf{S} \quad \bar{s}_1 \left(\mathbf{x} \right) \leq \bar{s}_2 \left(\mathbf{x} \right) \; ; \\ &\bar{s}_1 \cap \bar{s}_2 : \mathbf{S} + \mathbf{L}, \quad \text{and} \quad (\bar{s}_1 \cap \bar{s}_2) \left(\mathbf{x} \right) = \bar{s}_1 \left(\mathbf{x} \right) \wedge \bar{s}_2 \left(\mathbf{x} \right) \; ; \\ &\bar{s}_1 \cup \bar{s}_2 : \mathbf{S} + \mathbf{L}, \quad \text{and} \quad (\bar{s}_1 \cup \bar{s}_2) (\mathbf{x}) = \bar{s}_1 \left(\mathbf{x} \right) \vee \bar{s}_2 \left(\mathbf{x} \right) \; ; \end{split}$$

(The operations on the right are those from L).

It is well known ([3]) that for any fuzzy set \bar{S} on S the following equality holds:

1.1.
$$\overline{S} = \bigcup_{p \in L} p \cdot (S_p)$$
, where $S_p \subseteq S$, $x \in S_p$ iff $\overline{S}(x) \ge p$,
 $(S_p) : S + L$, $(S_p)(x) = \begin{cases} 1, & \text{if } x \in S_p \\ 0, & \text{if } x \notin S_p \end{cases}$

(the characteristic function of S_p). Here also

$$(p \cdot (S_p))(x) = p \wedge (S_p)(x)$$
.

(From now on, we shall identify S_p with its characteristic function (S_p)). Clearly, if $x \in S$,

$$\tilde{S}(x) = \bigvee_{p \in L} p \Lambda \mathcal{S}_{p}(x).$$

It is also known that from 1.1. it follows that for p,qeL, $p \le q$ implies $S_q \subseteq S_p$.

Let A = (S,F) be an algebra. A fuzzy congruence relation $\bar{\rho}$ on A is a fuzzy relation on S, i.e. ([1])

$$\bar{\rho}:S^2 \to L$$
, such that

(1)
$$(\forall x \in S) (\bar{\rho}(x,x) = 1) ;$$

(2)
$$(\forall x, y \in S) (\overline{\rho}(x,y) = \overline{\rho}(y,x))$$
;

(3)
$$(\forall x,y,z \in S) (\bar{\rho}(x,y) \geq \bigvee_{z \in S} (\bar{\rho}(x,z) \wedge \bar{\rho}(z,y)));$$

(4) If
$$\overline{\rho}(\mathbf{x}_1, \mathbf{y}_1) = \mathbf{p}_1, \dots, \overline{\rho}(\mathbf{x}_n, \mathbf{y}_n) = \mathbf{p}_n, \text{ for } \mathbf{f}(\mathbf{x}_1, \dots, \mathbf{x}_n)$$
, $\mathbf{f}(\mathbf{y}_1, \dots, \mathbf{y}_n) \geq \Lambda$ \mathbf{p}_1 .

1.2. If $\bar{\rho}$ is a fuzzy congruence relation on A, then $\bar{\rho} = \bigcup_{p \in L} p \cdot \bar{\rho}_p$,

¹⁾ F(n) is a set of n-ary operations from F.

where ρ_p are congruences on A, and $p \le q$ implies $\rho_q \subseteq \rho_p$. Here, as in 1.1.,

$$\bar{\rho}(\mathbf{x},\mathbf{y}) = \bigvee_{\mathbf{p} \in \mathbf{L}} \mathbf{p} \wedge \rho_{\mathbf{p}}(\mathbf{x},\mathbf{y}), \rho_{\mathbf{p}}(\mathbf{x},\mathbf{y}) = \begin{cases} 1 & \text{if } \bar{\rho}(\mathbf{x},\mathbf{y}) \geq \mathbf{p} \\ 0 & \text{otherwise.} \end{cases}$$

The following definitions are similar to those in [2]: A mapping $\bar{A}:S\to L$ is a fuzzy subalgebra of A=(S,F), iff for every $f\in F(n)$, and for $x_1,\ldots,x_n\in S$

$$\bar{A}(f(x_1,\ldots,x_n)) \geq \bar{A}(x_1) \wedge \ldots \wedge \bar{A}(x_n)$$
.

Let A=(S,F) and B=(T,F) be two algebras from the same similarity class. If fisahomomorphism from A to B, then f is said to be a <u>fuzzy homomorphism</u> from a fuzzy subalgebra \overline{A} of A to the fuzzy subalgebra \overline{B} of B iff

$$\bar{A} \subseteq B \circ f$$
, i.e. iff for every $x \in S$, $\bar{A}(x) < \bar{B}(f(x))$.

2. Let A=(S,F) be an algebra, $L=(L,\Lambda,V,0,1)$ a complete lattice, and $\bar{\rho}$ a fuzzy congruence relation on A. For an $x \in S$, let

$$[x]_{\overline{\rho}}: S + L$$
, $[x]_{\overline{\rho}}(a) = \overline{\rho}(x,a)$, for all $a \in S$.

Let us make the following definition:

$$S/\bar{\rho} = \{[x]_{\bar{\rho}} ; x \in S\}$$
.

If ρ_p , $p \in L$, is one of the congruences from the family determined by $\bar{\rho}$ in 1.2., then let $[x]_{\rho_p}$ be a characteristic function for $|x|_{\rho_p} \in S/\rho_p$, i.e.

$$\left[x\right]_{\rho_{\mathbf{p}}}(\mathbf{a}) \ \stackrel{\text{def}}{=} \left\{ \begin{matrix} 1 \ , \ \text{if} \quad \mathbf{a} \in \left|x\right|_{\rho_{\mathbf{p}}} \\ 0 \ , \ \text{if} \quad \mathbf{a} \notin \left|x\right|_{\rho_{\mathbf{p}}} \end{matrix} \right. .$$

Then, $[x]_{\rho_D}(a) = \rho_D(x,a)$. Now we have:

2.1.
$$[x]_{\rho} = \bigcup_{p \in L} (p \cdot [x]_{\rho p}), x \in S$$
.

Proof.
$$[x]_{\overline{\rho}}(a) = \overline{\rho}(x,y) = (\bigcup_{p \in L} p \cdot \rho_p)(x,a) =$$

$$= \bigvee_{p \in L} (p \cdot \rho_p)(x,a) = \bigvee_{p \in L} (p \cdot \rho_p(x,a)) =$$

$$= \bigvee_{p \in L} (p \cdot [x]_{\rho_p}(a)) = \bigvee_{p \in L} (p \cdot [x]_{\rho_p})(a) =$$

$$= (\bigcup_{p \in L} (p \cdot [x]_{\rho_p}))(a) .$$

For every $f \in F(n)$, define an operation \overline{f} on $S/\overline{\rho}$: If $x_1, \dots, x_n \in S$

$$\bar{\mathbf{f}}([\mathbf{x}_1]_{\bar{\rho}_1}, \dots, [\mathbf{x}_n]_{\bar{\rho}}) \stackrel{\mathrm{def}}{=} \underset{\mathbf{pel}}{\mathbb{U}} (\mathbf{p} \cdot \mathbf{f}([\mathbf{x}_1]_{\rho_p}, \dots, [\mathbf{x}_n]_{\rho_p}) ,$$

where, as we noted, we use the characteristic function $[x]_{\rho_D}$ instead of a class $|x|_{\rho_D}$, and thus

$$f([x_1]_{\rho_p}, \dots, [x_n]_{\rho_p}) = [f(x_1, \dots, x_n)]_{\rho_p}$$
.

Now we can prove the following statement:

2.2. For all
$$x_1, \dots, x_n \in S$$
.
$$\bar{f}([x_1]_{\bar{0}}, \dots, [x_n]_{\bar{0}}) = [f(x_1, \dots, x_n)]_{\pi}.$$

Proof.

$$\bar{f}([x_1]_{\rho}, \dots, [x_n]_{\rho}) = \bigcup_{p \in L} (p \cdot f([x_1]_{\rho_p}, \dots, [x_n]_{\rho_p})) =$$

$$= \underset{p \in L}{\text{U}} (p \cdot [f(x_1, \dots, x_n)]_{\rho}) = [f(x_1, \dots, x_n)]_{\bar{\rho}} .$$

We can thus define a new algebra:

$$A/\bar{\rho} = (S/\bar{\rho}, \bar{F})$$
, where $F = \{\bar{f}; f \in F\}$.

The following two propositions deal with some properties of fuzzy equivalence relations, and they will be used in considering the connection between $A/\bar{\rho}$ and the usual factor algebra A/ρ_D .

2.3. Let $\bar{\rho}$ be a fuzzy equivalence relation on S. Let a,b \in S, a \neq b. Then for every x \in S,

$$\bar{\rho}(a,x) = \bar{\rho}(b,x)$$
 iff $\bar{\rho}(a,b) = 1$.

Proof. Let $\bar{\rho}(a,b) = 1$, $a \neq b$. Then, because of (3),

$$\bar{\rho}(a,x) > \bar{\rho}(a,b) \wedge \bar{\rho}(b,x)$$
, and thus

(5)
$$\overline{\rho}(\mathbf{a},\mathbf{x}) > \overline{\rho}(\mathbf{b},\mathbf{x})$$
.

Exactly in the same way, using (2) and (3), we get

(6)
$$\bar{\rho}(b,x) > \bar{\rho}(a,x)$$
.

From (5) and (6), it follows that $\overline{\rho}(a,x) = \overline{\rho}(b,x)$. Let now $\overline{\rho}(a,x) = \overline{\rho}(b,x)$, $a \neq b$. Then for x = a $1 = \overline{\rho}(a,a) = \overline{\rho}(b,a)$, i.e. $\overline{\rho}(a,b) = 1$.

2.4. Let $\bar{\rho}$ be a fuzzy equivalence relation on S, and a,b ϵ S. Then

$$[a]_{\overline{\rho}} = [b]_{\overline{\rho}}$$
 iff $[a]_{\rho_1} = [b]_{\rho_1}$.

Proof. Let $[a]_{\overline{\rho}} \neq [b]_{\overline{\rho}}$. Suppose that there is an $x \in S$, such that $\overline{\rho}(a,x) = \overline{\rho}(b,x) = 1$. Using (3), we get that $\overline{\rho}(a,b) = 1$. But then for every $x \in S$, by 2.3., $\overline{\rho}(a,x) = \overline{\rho}(b,x)$, i.e. $[a]_{\overline{\rho}} = [b]_{\overline{\rho}}$, which is a contradiction.

If $[a]_{\rho} = [b]_{\rho}$, then for every peL, $[a]_{\rho p} = [b]_{\rho}$, and hence $[a]_{\rho} = [b]_{\rho}$.

Consider now the above defined factor algebra $A/\overline{\rho}$ = = $(S/\overline{\rho},F)$, for a given algebra A, by a fuzzy congruence relation $\overline{\rho}$, and a factor algebra $A/\rho_p = (S/\rho_p,F)$, where ρ_p , peL, is any of the congruences from the collection defined in 1.2.

2.5. The mapping $h: S/\bar{\rho} \to S/\rho_p$, defined with $h([a]_{\bar{\rho}}) = [a]_{\rho_p}, a \in S,$

is a homomorphism from $A/\bar{\rho}$ onto A/ρ_D .

Proof. Since for every aeS, and $[a]_{\rho p}$ eS/ ρ_p there is an original in S/ $\bar{\rho}$, namely $[a]_{\bar{\rho}}$, h is onto. We also have

$$\begin{split} & h\left(\overline{f}\left(\left[x_{1}\right]_{\rho}^{-}, \ldots, \left[x_{n}\right]_{\rho}^{-}\right)\right) = h\left(\left[f\left(x_{1}, \ldots, x_{n}\right)\right]_{\rho}^{-}\right) = \\ & = f\left(\left[x_{1}\right]_{\rho_{D}}, \ldots, \left[x_{n}\right]_{\rho_{D}}\right) = f\left(h\left(\left[x_{1}\right]_{\rho}^{-}\right), \ldots, h\left(\left[x_{n}\right]_{\rho}^{-}\right)\right) , \end{split}$$

proving that h is a homomorphism.

2.6.
$$A/\bar{\rho} \cong A/\rho_1$$
, $1 \in L$.

Proof. We have to prove that h (defined in 2.5.) is 1-1. By 2.4. we have

$$[a]_0 \neq [b]_0 \quad \text{iff} \quad [a]_{\rho_1} \neq [b]_{\rho_1}$$

proving that h satisfies this property.

A fuzzy relation $\bar{\rho}: S + L$ is strongly reflexive, if the following is satisfied:

$$\bar{\rho}(x,y) = 1$$
 iff $x = y$.

2.7. $A/\bar{\rho} \cong A$ iff $\bar{\rho}$ is a strongly reflexive fuzzy congruence relation on A.

Proof. If $A/\bar{\rho} \cong A$, then by 2.6. $A/\rho_1 = A$, i.e. ρ_1 is a diagonal.

On the other hand, if $\bar{\rho}$ is strongly reflexive, then ρ_1 is a daigonal, and thus $|a|_{\rho_1} = a$. Now, by 2.4., $a \neq b$ implies $[a]_{\bar{\rho}} \neq [b]_{\bar{\rho}}$ i.e. the mapping h $(h([a]_{\bar{\rho}}) = a)$ is an isomorphism.

3. Consider now the algebras A = (S,F), $A/\bar{\rho} = (S/\bar{\rho},\bar{F})$, and for every $p \in L$, $A/\rho_p = (S/\rho_p,F)$, where $\bar{\rho} = U p \cdot \rho_p$ is a fuzzy congruence relation on A, ρ_p ($p \in L$) is an ordinary congruence relation (as in 1.2.), and $L = (L,\Lambda,V,0,1)$ is a complete lattice. For each of these algebras one can define the corresponding fuzzy subalgebras, as in 1.3. Here we shall discuss the relationship between these fuzzy structures.

- 3.1. Let $\bar{A}:S+L$ be a fuzzy subalgebra of A. Let also ρ be an ordinary congruence relation on A. Define the mapping $\bar{A}/\rho:S/\rho+L$, so that $\bar{A}/\rho([x]_\rho)$ def V $\bar{A}(y)$. Now, if L is distributive, then $y \in [x]_\rho$
 - a) \bar{A}/ρ is a fuzzy subalgebra of A/ρ , and
 - b) $f_{\rho} = \ker \rho$ is a fuzzy homomorphism from A/ρ onto \bar{A}/ρ .

Proof. a) Let
$$f \in F(n)$$
, $x_1, \dots, x_n \in S$. Then

$$\bar{A}/\rho(f([x_1]_\rho,\ldots,[x_n]_\rho)) = \bar{A}/\rho([f(x_1,\ldots,x_n)]_\rho) =$$

$$V(\bar{A}(y); y \in [f(x_1, ..., x_n)]_0) \ge$$

$$V(\tilde{A}(f(y_1,...,y_n); y_1 \in [x_1]_0,...,y_n \in [x_n]_0) \ge$$

$$V(\overline{A}(y_1) \land \dots \land \overline{A}(y_n); y_1 \in [x_1]_{\rho}, \dots, y_n \in [x_n]_{\rho}) =$$

where we use the definition of a fuzzy subalgebra, and the fact that l is distributive.

b) Let $x \in S$, and $f = \ker \rho$. Then

$$\begin{split} &\bar{A}/\rho(f_{\rho}(x)) = \bar{A}/\rho(\left[x\right]_{\rho}) = \bigvee_{y \in \left[x\right]_{\rho}} \bar{A}(x) \geq \bar{A}(x) \text{ i.e.} \\ &\bar{A} \subseteq \bar{A}/\rho\circ f_{\rho} \end{split}$$

The following corollary shows that, in the family of all fuzzy subalgebras of A/ρ , the one defined in 3.1. (and provided that L is distributive) is the smallest one – as a fuzzy set – satisfying 3.1. (b).

3.2. Let $\bar{\Lambda}/\rho$ be as in 3.1. If $\bar{\Lambda}_1/\rho:S/\rho+L$ is any fuzzy subalgebra of A/ρ satisfying 3.1. (b), then

$$\bar{A}/\rho \subseteq \bar{A}_1/\rho$$
 .

Proof. By the definition of fuzzy homomorphism, if $x \in S$, $\overline{A}_1/\rho([x]_\rho) \geq \overline{A}(x)$. But then for every $y \in [x]_\rho$, $\overline{A}_1/\rho([y]_\rho) \geq \overline{A}(y)$, and hence $\overline{A}_1/\rho([x]_\rho) \geq \frac{V}{Y} = \overline{A}/\rho([x]_\rho)$.

If we start with a fuzzy subalgebra of A/ρ , then it induces a fuzzy subalgebra of A in the following way.

- 3.3. Let ρ be a congruence relation on A, and \overline{A}/ρ : $S/\rho \to L$ an arbitrary fuzzy subalgeba of A/ρ . If \overline{A} is a mapping from S to L, such that for $x \in S$ $\overline{A}(x)$ $\overset{\text{def}}{=} \overline{A}/\rho([x]_{\rho})$, then:
- a) A is a fuzzy subalgebra of A,
 - b) $f_{\rho} = ker \, \rho \; is \; a \; fuzzy \; homomorphism \; from \; \overline{A} \; onto \; \overline{A}/\rho$.

Proof. a) For $x_1, ..., x_n \in S$, $f \in F(n)$,

$$\bar{A}(f(x_1,...,x_n)) = \bar{A}/\rho([f(x_1,...,x_n)]_0) =$$

$$\bar{A}/\rho(f([x_1]_0,\ldots,[x_n]_0)) \ge$$

$$\bar{A}/\rho([x_1]_0) \wedge \dots \wedge \bar{A}/\rho([x_n]_0) = \bar{A}(x_1) \wedge \dots \wedge \bar{A}(x_n)$$
,

since \bar{A}/ρ is a fuzzy subalgebra of A/ρ , by assumption.

b) For every x & S,

 $\overline{A}(x) \leq \overline{A}/\rho(f_{\rho}(x)),$ since the equality holds by definition.

3.4. Let \bar{A} be as in 3.3. If $\bar{A}_1:S\to L$ is any fuzzy subalgebra of A satisfying 3.3. (b), then $\bar{A}_1\subseteq A$.

P r o o f. By the definition of a fuzzy homomorphism, for any \overline{A}_1 and x ε S

$$\bar{\mathbf{A}}_{1}(\mathbf{x}) \leq \bar{\mathbf{A}}/\rho([\mathbf{x}]_{0}) = \bar{\mathbf{A}}(\mathbf{x}), \text{ i.e. } \bar{\mathbf{A}}_{1} \subseteq \bar{\mathbf{A}}.$$

As a direct consequence of the definition of fuzzy homomorphism, we have the following two lemmas.

3.5. If f is an isomorphism from algebra A to A_1 , and f and f^{-1} are both fuzzy homomorphism relative to the subalgebras \overline{A} and \overline{A}_1 of A and A_1 respectively, then for every $x \in S$ $\overline{A}(x) = \overline{A}_1(f(x))$.

3.6. If ρ and σ are two congruences on A = (S,F) and $\rho \subseteq \sigma$, and if the homomorphism $h: S/\rho + S/\sigma$ is also a fuzzy homomorphism from a fuzzy subalgebra \overline{A}/ρ of A/ρ to the fuzzy subalgebra \overline{B}/σ of A/σ , then for every $x \in S, \overline{A}/\rho([x]\rho) < \overline{B}/\rho([x]\sigma)$.

Consider now an arbitrary fuzzy congruence relation $\bar{\rho}=U$ p· ρ_p om A=(S,F). In part 2 we have proved that there pel is a homomorphism from $A/\bar{\rho}$ to A/ρ_p , for every pel, and that $A/\bar{\rho} = A/\rho_1$. If we considered the fuzzy subalgebras of these structures, we get the following consequences of the preceding propositions.

3.7. Let $\overline{A}/\overline{\rho}$ be a fuzzy subalgebra of $A/\overline{\rho}$, and for every pel, take a fuzzy subalgebra \overline{A}/ρ_p of A/ρ_p , such that the homomorphism $h:A/\overline{\rho}+A/\rho_p$ is preserved under the formation of fuzzy subalgebras (i.e. h is the corresponding fuzzy homomorphism), then for every $x \in S$, $\overline{A}/\overline{\rho}([x]_{\overline{\rho}}) \leq \overline{A}/\rho_p([x]_{\rho_p})$, and $\overline{A}/\overline{\rho}([x]_{\overline{\rho}}) = \overline{A}/\rho_1([x]_{\rho_1})$.

Proof. By 2.5., 2.6., 3.5., and 3.6..

REFERENCES

- [1] Vojvodić, G., Šešelja, B., O strukturi slabih relacija ekvivalencije i slabih relacija kongruencije, Matematički Vesnik, 1(14) (29) 1977, pp. 147-152.
- [2] Delorme, M., Sous-groupes flous, Seminaire: "Mathematique flous", 1978-79.
- [3] Kaufmann, A., Introduction à la theorie des sous-gnsembles flous, Paris, 1973.

Received by the editors May 15, 1984.

REZIME

O RASPLINUTIM FAKTOR ALGEBRAMA

U vezi sa algebrom A i kompletnom mrežom L, posmatraju se rasplinute kongruencije (definisane u [1]). Uvodi se pojam faktor algebre po rasplinutoj kongruenciji: $A/\bar{\rho}$. Kako je svaka rasplinuta kongruencija posebna unija familije običnih kongruencija na istoj algebri, od interesa je posmatrati odnos izmedju $A/\bar{\rho}$ i A/ρ , za proizvoljnu kongruenciju ρ familije. Dokazano je da uvek postoji homomorfizam izmedju $A/\bar{\rho}$ i A/ρ i dati su potrebni i dovoljni uslovi za koje je to izomorfizam. Razmatraju se i rasplinute podalgebre (definisane slično kao u [2]) algebri A i A/ρ i pretpostavljajući da ta preslikavanja očuvavaju homomorfizam, dati su uslovi pod kojima jedno od njih indukuje drugo i obrnuto. Takodje je opisana veza izmedju rasplinutih podalgebri od $A/\bar{\rho}$ i A/ρ .