Zbornik radova Prirodno-matematičkog fakulteta-Univerzitet u Novom Sadu knjiga 13 (1983)

Review of Research Faculty of Science-University of Novi Sad, Volume 13(1983)

PARASTROPHY INVARIANT n-QUASIGROUPS

Dj. Paunić and Z. Stojaković

Prirodno-matematički fakultet. Institut sa matematiku 21000 Novi Sad, ul. dr Ilije Djuričića br. 4. Jugoslavija

ABSTRACT

An n-quasigroup (Q,A) is called a G-n-quasigroup iff A=A $^{\sigma}$ for all σ \in G, where G is a subgroup of the symmetric group of degree n+1 and A $^{\sigma}$ is defined by:

$$A^{\sigma}(x_{\sigma 1}, \dots, x_{\sigma n}) = x_{\sigma(n+1)}$$
 iff $A(x_1, \dots, x_n) = x_{n+1}$.

In the paper G-n-quasigroups are considered, and some of their properties described.

 1° First we shall give some basic definitions and notations. Other notions from the theory of n-quasigroups can be found in [1].

The sequence $x_m, x_{m+1}, \ldots, x_n$ will be denoted by $\{x_i\}_{i=m}^n$ or by x_m^n . If m > n, then x_m^n will be considered empty.

An n-ary groupoid (n-groupoid) (Q,A) is called an n-quasi-group iff the equation $A(a_1^{i-1},x,a_{i+1}^n)=b$ has a unique solution x for every a_1^n , beQ, and every $i \in \mathbb{N}_n = \{1,\ldots,n\}$.

An n-quasigroup (Q,A) is isotopic to an n-quasigroup (Q,B) iff there exists a sequence $T=(\alpha_1^{n+1})$ of permutations of Q such that the following identity

AMS Mathematics subject classification (1980): Primary 20N15; Secondary 20N05 Key words and phrases: n-quasigroup, isotopism, parastrophism.

$$B(x_1^n) = \alpha_{n+1}^{-1} A(\{\alpha_i x_i\}_{i=1}^n)$$

holds. T is called an isotopism, B is an isotope of A, and by $A^T = B$ we denote that A is isotopic to B by T. T^{-1} is defined by $T^{-1} = (\{\alpha_i^{-1}\}_{i=1}^{n+1})$.

If (Q,A) is an n-quasigroup and $\sigma \in S_{n+1}$, where S_{n+1} is the symmetric group of degree n+1, then the n-quasigroup A^σ defined by

$$\mathbf{A}^{\sigma}(\{\mathbf{x}_{\sigma_{\mathbf{i}}}\}_{\mathbf{i}=1}^{n}) = \mathbf{x}_{\sigma(\mathbf{n}+1)} \Longleftrightarrow \mathbf{A}(\mathbf{x}_{1}^{n}) = \mathbf{x}_{\mathbf{n}+1}$$

is called a σ -parastrophe (or simply parastrophe) of A. If $\sigma, \tau \in S_{n+1}$, then $(A^{\sigma})^{\tau} = A^{\sigma\tau}$ and

$$A(\{x_{\sigma i}\}_{i=1}^{n}) = x_{\sigma(n+1)} \Leftrightarrow A^{T}(\{x_{\sigma \tau i}\}_{i=1}^{n}) = x_{\sigma \tau(n+1)}.$$

If $T = (\alpha_1^{n+1})$ is an isotopism of A, then $(A^T)^{\sigma} = (A^{\sigma})^{T\sigma}$,

where $T^0 = (\{\alpha_{\sigma i}\}_{i=1}^{n+1})$.

If (Q,A) is an n-quasigroup and $\sigma \in S_{n+1}$ such that $A = A^{\sigma}$, then σ is called an autoparastrophism of A. The set of all autoparastrophisms of A is a subgroup of S_{n+1} which will be denoted by $\Pi(A)$.

An n-quasigroup (Q,A) is called cyclic [3] iff for every i \in N and all $x_1^{n+1} \in Q$

$$A(x_1^n) = x_{n+1} \iff A(x_{i+1}^{n+1}, x_1^{i-1}) = x_i$$

2° DEFINITION 1. If (Q,A) is an n-quasigroup and G is a subgroup of S_{n+1} such that $A=A^{\circ}$ for every $\sigma \in G$, then A is called a G-n-quasigroup.

It is obvious that an n-quasigroup (Q,A) is a G-n-quasigroup iff $A=A^\sigma$ for all $\sigma\in\Gamma$, where Γ is a set of generators of the group G.

Some examples of G-n-quasigroups are:

- 1. Totally symmetric n-quasigroups are G-n-quasigroups with $\mathbf{G}=\mathbf{S}_{n+1}$.
- 2. Cyclic n-quasigroups, investigated in [3], are G-n-quasigroups, where G is the cyclic group generated by the cycle (12...n+1).
- 3. In [2] D.G.Hoffman has given a construction of a G-n-quasigroup (Q,A) of order mp, for every m>n, $p_{\geq}2$, and every subgroup $G \subseteq S_{n+1}$, such that $\Pi(A) = G$.
- 4. Let (Q,+) be an Abelian group such that $x+x\neq 0$ for every $x\neq 0$. If a ternary operation A is defined by

$$A(x_1, x_2, x_3) = x_1 + x_2 - x_3$$

then (Q,A) is a G-3-quasigroup, where G is Klein's four-group $\{(1),(12)(34),(13)(24),(14)(23)\}$. It is easy to see that A is neither totally symmetric nor cyclic, and that there exist such G-3-quasigroups of every order > 2.

From the definition of a parastrophe, we get the following proposition.

Let (Q,A) be an n-quasigroup and $\sigma \in S_{n+1}$, $\sigma i = n+1$. $A = A^{\sigma}$ iff for all $x_1^n \in Q$

$$\mathbf{A}(\mathbf{x}_{\sigma_1}, \dots, \mathbf{x}_{\sigma(i-1)}, \mathbf{A}(\mathbf{x}_1^n), \mathbf{x}_{\sigma(i+1)}, \dots, \mathbf{x}_{\sigma n}) = \mathbf{x}_{\sigma(n+1)}.$$

Consequently, every G-n-quasigroup can be defined as an n-quasigroup satisfying a system of identities.

PROPOSITION 1. Let (Q,A) be an n-quasigroup and G a subgroup of S $_{n+1}$. A is a G-n-quasigroup iff for all $_{\sigma}\varepsilon_{\Gamma}$ and all $x_1^n\varepsilon_{Q}$

$$A(x_{\sigma_1}, \dots, x_{\sigma(i-1)}, A(x_1^n), x_{\sigma(i+1)}, \dots, x_{\sigma n}) = x_{\sigma(n+1)},$$

where Γ is a set of generators of G and $i=\sigma^{-1}(n+1)$.

In the preceding proposition, of course, Γ can be replaced by G.

From Proposition 1 it follows that the direct product of G-n-quasigroups is a G-n-quasigroup, which gives the possibility of constructing new G-n-quasigroups from the given ones.

PROPOSITION 2. If (Q,A) is a G-n-quasigroup and $\tau \in S_{n+1}$ is such that the group G is invariant under the inner automorphism induced by τ , then A^{τ} is a G-n-quasigroup.

Proof. Since G is invariant under the automorphism $\sigma \mapsto \tau \sigma \tau^{-1}$, it follows that for every $\sigma_i \in G$ there exists $\sigma_j \in G$ such that $\tau \sigma_i \tau^{-1} = \sigma_j$. Hence $A = A^{\sigma j} = A$, and $(A^{\tau})^{\sigma i} = A^{\tau}$ for all $\sigma_i \in G$, which means that A^{τ} is a G-n-quasigroup.

COROLLARY. If A is a G-n-quasigroup and G a normal subgroup of a group $G_1 \subseteq S_{n+1}$, then every parastrophe A^T , $\tau \in G_1$, is also a G-n-quasigroup.

PROPOSITION 3. Let (Q,A) be a G-n-quasigroup, where $G=\Pi(A)$. A parastrophe A^T is a G-n-quasigroup iff G is invariant under the inner automorphism induced by τ .

Proof. If $\tau \circ \tau^{-1} = G$, then from Proposition 2 it follows that A^{τ} is a G-n-quasigroup.

Conversely, let A^T be a G-n-quasigroup. Then for all $\sigma_{\bf i} \in G$ $(A^T)^{\sigma_{\bf i}} = A^T$, that is, $A^T = A$. Since $G = \Pi(A)$, the only parastrophes which are equal to A are parastrophes induced by permutations from G. Hence $\tau \sigma_{\bf i} \tau^{-1} \varepsilon G$ for all $\sigma_{\bf i} \varepsilon G$.

Now we shall consider isotopes of G-n-quasigroups.

THEOREM 1. Let an n-quasigroup A be isotopic to a G-n-quasigroup B. Then A is isotopic to the parastrophe A^{σ} for every $\sigma \in G$, and every parastrophe A^{τ} , where τ is a permutation such that G is invariant under the inner automorphism induced by τ , is an isotope of a G-n-quasigroup.

Proof. B is a G-n-quasigroup, hence $B=B^{\sigma}$ for all $\sigma \in G$. Since the corresponding parastrophes of isotopic n-quasigroups are isotopic, it follows that A^{σ} is isotopic to $B=B^{\sigma}$ for all $\sigma \in G$.

If τ is such that G is invariant under the inner automorphism induced by τ , then Proposition 2 implies that B^{τ} is a G-n-quasigroup. Hence the corresponding parastrophe A^{τ} of A is an isotope of the G-n-quasigroup B^{τ} .

THEOREM 2. Let (Q,A) be an n-quasigroup isotopic to its parastrophe A^σ by an isotopism $T=(\alpha_1^{n+1})$, $A^T=A^\sigma$, where $\sigma \in S_{n+1}$, and let $(i_1 \dots i_r) (j_1 \dots j_s) \dots (k_1 \dots k_t)$ be the decomposition of σ into v disjoint cycles (where the cycles of length 1 are included). Then there exist permutations $\theta_1, \dots \theta_v$ of the set Q and an n-quasigroup (Q,B) which is isotopic to A, such that B is isotopic to B^\sigma by the isotopism

$$(1, \dots, 1, \theta_1^{-1} \alpha_{i_1}^{\alpha_{\sigma}} \alpha_{(i_1)} \dots \alpha_{\sigma^{r-1}}^{\alpha_{r-1}} \alpha_{(i_1)}^{\theta_1, 1} \dots \dots \alpha_{\sigma^{r-1}}^{(i_1)} \alpha_{\sigma^{r-1}}^{\theta_1, 1} \dots \dots \alpha_{\sigma^{r-1}}^{(i_1)} \alpha_{\sigma^{r-1}}^{\theta_2, 1} \dots \dots \alpha_{\sigma^{r-1}}^{(i_1)} \alpha_{\sigma^{r-1}}^{\theta_2, 1} \dots \dots \alpha_{\sigma^{r-1}}^{(i_1)} \alpha_{\sigma^{r-1}}^{\theta_2, 1} \dots \alpha_{\sigma^{r-1}}^{(i_1)} \alpha_{\sigma^{r-1}}^{(i_1)} \dots \alpha_{\sigma^{r-1}}^{(i_1)} \alpha_{\sigma^{r-1}}^{(i_1)} \dots \alpha_{\sigma^{r-1}}^{(i_1)} \alpha_{\sigma^{r-1}}^{(i_1)} \dots \alpha_{\sigma^{r-1}}^{(i_1)} \alpha_{\sigma^{r-1}}^{(i_1)} \dots \alpha_{\sigma^{r-1}}^{(i_1)} \dots \alpha_{\sigma^{r-1}}^{(i_1)} \alpha_{\sigma^{r-1}}^{(i_1)} \dots \alpha_{\sigma^{$$

where there are at least n+1-v identity components, and at most one nonidentity component for every cycle of σ . The nonidentity component which corresponds to the cycle $(1_1,\ldots,1_r)$ can be at any of the places $1_1,\ldots,1_r$ and analogously for other cycles. If (i_1) is a cycle of length 1, then the corresponding nonidentity component is $\theta_1^{-1}\alpha_{i_1}^{-1}\theta_1$.

P r o o f. As in Theorem 5 from [3] , let B be an arbitrary isotope of A, B=A^S, S=(β_1^{n+1}), and since A^T=A^O we have

$$(((B^{S^{-1}})^T)^{\sigma^{-1}})^S = B$$

which implies $B^{S^{-1}TS^{\sigma}} = B^{\sigma}$, where $S^{-1}TS^{\sigma} = (\{\beta_i^{\sigma} \alpha_i \beta_{\sigma i}\}_{i=1}^n)$. If we put

$$\beta_{i_{2}}^{-1} \alpha_{i_{2}} \beta_{\sigma(i_{2})}^{=1}, \dots, \beta_{i_{r}}^{-1} \alpha_{i_{r}} \beta_{\sigma(i_{r})}^{=1},$$

$$(1_2)$$
 $\beta_{j_2}^{-1} \alpha_{j_2} \beta_{\sigma(j_2)}^{=1}, \dots, \beta_{j_s}^{-1} \alpha_{j_s} \beta_{\sigma(j_s)}^{=1},$

$$(1_v)$$
 $\beta_{k_2}^{-1} \alpha_{k_2}^{\beta_{\sigma}(k_2)} = 1, \dots, \beta_{k_t}^{-1} \alpha_{k_t}^{\beta_{\sigma}(k_t)} = 1,$

and take $\beta_{i_1}, \beta_{j_1}, \dots, \beta_{k_1}$ to be arbitrary permutations of Q, then solving the systems $(1_1), (1_2), \dots, (1_v)$ as it is done in [3], Theorem 5, the theorem follows.

THEOREM 3. If an n-quasigroup (Q,A) is isotopic to an n-quasigroup B which coincides with one of its parastpophes, $B=B^{\sigma}, then \ A \ is \ isotopic \ to \ A^{\sigma} \ by \ an \ isotopism \ T=(\alpha {n+1 \atop 1}) \ such that$

$$\alpha_{i_1}^{\alpha}\sigma(i_1)\dots^{\alpha}\sigma^{r-1}(i_1)=1$$

for every cycle $(i_1...i_r)$ in the decomposition of σ into disjoint cycles including cycles of length 1 (where, if (j) is a cycle of length 1, then $\alpha_i=1$).

Proof. Let A be isotopic to n-quasigroup B, such that B=B $^{\sigma}$, by an isotopism S=(β_1^{n+1}), A^S =B. Then A^S = B = B $^{\sigma}$ = =(A^S) $^{\sigma}$ =(A^{σ}) S , so A^S (S^{σ}) $^{-1}$ = A^{σ} . As in [3], Theorem 6, denote T=S(S^{σ}) $^{-1}$ =(α_1^{n+1}) which implies

$$S^{-1}TS^{0} = I = (1, ..., 1)$$

that is

(2)
$$\beta_{k}^{-1} \alpha_{k} \beta_{\sigma k} = 1, k = 1, ..., n+1.$$

If we solve the subsystems of (2) which correspond to the disjoint cycle decomposition of σ separately, as it is done in the preceding theorem, we shall have for the cycle $(i_1, \ldots i_n)$

$$\beta_{\mathbf{i}_1}^{-1}\alpha_{\mathbf{i}_1}\alpha_{\sigma(\mathbf{i}_1)}\cdots\alpha_{\sigma^{r-1}(\mathbf{i}_1)}\beta_{\mathbf{i}_1}^{=1}$$

or $\alpha_{i_1}^{\alpha_{\sigma(i_1)}} \cdots \alpha_{\sigma^{r-1}(i_1)}^{\alpha_{r-1}} = 1$, which completes the proof.

REMARK. Theorems 2 and 3 generalize some results on cyclic n-quasigroups from [3].

REFERENCES

- [1] Белоусов В.Д., n-арные квазигруппы, "Штиинца", Нишинев, 1972.
- [2] Hoffman D.G., On the spectrum of n-quasigroups with given conjugate invariant subgroup, J. Comb. Theory,
 Ser A, 35 (1983), 98-99.
- [3] Stojaković Z., Cyclic n-quasigroups, Univ. u Novom Sadu,

 Zbornik radova Prir.-mat. fak., Ser. mat.,

 12 (1982), 399-405.

Received by the editors April 30, 1984.

REZIME

PARASTROFNO INVARIJANTNE n-KVAZIGRUPE

n-kvazigrupa (Q,A) se naziva G-n-kvazigrupa ako i samo ako je A = A^{σ} za svako $\sigma \in G$, gde je G podgrupa simetrične grupe stepena n+1, a A^{σ} je definisana sa: $A^{\sigma}(x_{\sigma 1}, \dots, x_{\sigma n}) = x_{\sigma(n+1)} \quad \text{ako i samo ako je} \quad A(x_{1}, \dots, x_{n}) = x_{n+1}.$ U ovom radu razmatrane su G-n-kvazigrupe i odredjena neka njihova svojstva.