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ABSTRACT

t
tet £(t) =[g(t,u)dn(u) be the proper canonical representation of

o
the Gaussian process {£(t), t >0} and let Hn be the linear closure of po-

Tynomials Pn(E(t1)""’E(tn))' The conditional expectation Et(’) =

= E("|g(u), u<t), t30, is a resolution of the identity in the separa-
ble Hilbert space Hn.

It is proved that the measure Hdn(u)||2 is the uniform maxima)
spectral type of the infinitemultiplicity in Hn.

Let {£(t), t >0} be a Gaussian process with the pro-
per canonical representation ([2]).

t
(1) E(t) = [ g(t,u)dn(uw), £>0
3 e

The process {n(u), u>0} is a martingal with

2__ 2, _ _t
[In(e) || “ =En“(t) =F(t) =/ £(u)du, £(u) >0 a.e.
0
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H)

Let (£) (H(t) (£)) be the linear closure of {E(u), u>0 1}

({£(w, 0 <u<t)). It follows fram (1) that H'D () =#{P (m),

t >0. The linear time-domain analysis consists in the deter-
mination of the measure dF(t). More precisely, the determi-
nation of the class of all measures equivalent (by absolute
continuity) to dF(t), ([1]).

The conditional expectation E () =E(- [E(u), u<t)
as the operator in AL (£) is the projection onto H(tl:) (€).
So {Et’ t >0} is a resolution of the identity in the separa-

ble Hilbert space H(l)'(E) . The proper canonical representa-
tion (1) means that the space H(l) (£) is cyclic with the spe-
ctral type dr(t), ([5]).

Now we shall consider the Hilbert space Hn’ (Hn(t))

as the linear closure of all the polynomials (the degree not
exceeding n) of the random variables {£(u), u >0}, ({f(u),
u<t}). The space H reduces {E(t), t >0}, [6]. so {E_, t >0}

is a resolution of the identity in Hn' The non-linear time-
domain analysis consists in the determination of the spec-
tral type of {Et’ t >0} in Ho-

THEQREM. The spectral type of {Et’ t_iO} in Hn is

dF >dF > ..,

In the terms of the spectral analysis of selfadjoint
operators in the separable Hilbert space, ([5]), the t}(ulac)arem
states that the spectral type of the cyclic subspace H is
the uniform maximal spectral type in Hn. The multiplicity of
dF in H_ 1s infinite. It is proved in [3] that the spectral
type of {E_, t>0} in space H. of the polynomials of the Wi-
ener process {W(t), t>0} is dt>dt>... . The present theo-
tem is a generalization of this result. The idea of the pro-
of is the same as in [:3], but the technique is more complica--
ted.
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Prooft£. The first step in the proof is the de-
composition of Hn in the orthogonal sum of the subspaces

H(p), p=l,...,n. H(p) (Hi(:p))_ is the linear closure of the

Hermite polynamials Hp(tl"”'tp) =Hp(£(tl) ,....E(tp)), 0 itp<_

&++< t; of the degree p. We conclude by the relation ([i])

EH(E(t)) ,een E(E))) = Ho(ELE(E)) e BLE(E)),

that H(p) reduces’ {Et’ t >0}. So it will be sufficient to

prove that the spectral type of {Et, t:O} in H(p), p>2, is
dF(t) >dF(t) >... .

In this way the theorem will be proved when we find
the mutually orthogonal martingals {nn(t) , £>0}, n=1,2,...
in H (P such that .

(2) I oen{V ) = wP e,
n=l
and
2 ¢ §
(3) lng(®1 1% = [ fmar@), £, >0 a.e. ar .

We recall the fact, [6], that # P concides with the
set {Ip} ‘of Ito-Rozanov integrals

t
7 71 !p-1¢(t £ )dn(t,)...dn(t )
I = v e 2000, \ ve s r .
P oo th 1 P 1 P
2_ 7.1 -1 5
llelJ‘ —ofg g $7(t se e 8 )AF () L L LAF (L) .

Denote by S(t) the section of 4, ={(u;, ...,up) :0 fuy <
Sreequy } SR, at u) =t i.e. 8, (t) ='{(t,u2,...,up)e A;}. The

measure of §,(t) in R _,1s 'm 5, (¢)) = {t) dF (u,) .. .dF (ug) .

1

We partition Al into two subset A, and A, such that

2 3
the measures of the corresponding section Sz(t) and 83(1:) are

equal: m(S,(t)) =m(S4(t)) =% m(S, (t)) for each t. Then parti-

tion A, into A, and A_. such that m(S,(t)) =m(S_(t)) =1 (s,(t)),
2 4 5 4 s 7215,
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t >0, partition A, into L and A7- such that m(SG(t))=m(S7(t))=
= %m(s:;(t)) and so on.Let I(t) be the support of the measure
dF(uz) ...dF(up) on Sl(t) . We suppose that the diameter of

Sn(t) NI(t) tends to zero as n-+«, uniformly in t in each £i-
nite interval. One construction of An’ n=1,2,... is done after
the proof.

Let the partition of 1.9 be Anl and Anz.Wedefine the processes

{nn(t)' tzO}' nglpz'tot by

t
ny () = [ dn(uy)...an(ug)dan(uy)

Sl(ul)

t
n(t)y=f{/ dn(u,)...dn(u ) }dn(u,) -
n o Sp, (u;) 2 P 1 .

t
- dn(u,)...dn(u )}dn(u,), n=2,3,....
o Sn2(u1) p

It is easy verify that {n_(t)}, n=1,2,... are mutually ort-
_ n y

hogonal martingals. Also

t
o (&) ]]2 = [1 dF (u.) ...dF (u_J} dF(u,) =
n oS!{(u) 2 |2 1

1
t
= <fjn}(sn(ul))dF(ul) where m(s_(u)) >0 a.s.

with respect to dF(u). Condition .(3) is satisfied.
Consider the martingals {CS (t), £t>0}, n=1,2,...

t n
zg (8) = [{ | an(u,)...dn(u )}dn(u,). It is easy to
P 1 .
n o S_(u))
n 1
see that, for each t, £ >0, and n, n=1,2,..., g (t) is the finite
n

linear combination of T (t), k=1,2,...:
iy _ _1
Csl(t) =n, (t), Csz(t) =5(n; () +n,(t)),

o _ 1
CS3 (t) = 7 (nl(t) "le(t)): ese o



Spectral type of polynomials ... 215

L
If S*(t)= J s4 (t), t >0, where S4 (t), k=1,...,% are dis-
k=1 kl k :

\ t
joint, then £, (t) = o, (B) or 2, (8) =f { dn(u,)...dntu ) ¥dh(u,),
S* kzl sJk S* "{ - SI* (ul) 2 P 1

Let S(t) be a measurable subset of Sl(t)' We apply

the standard limit procedure: if S;l(t) +5(t) as m+=, then

. t
Toalt) v+ (t) or g (t) = f{ | dn(u,)...dnfu_)ldn(u,) , t2>0.
Sm s s o S(u)) 2 P 1

1
We conclude that
T,
Zg(t) ¢n£1 He ' (ng), t20.

Let D be a bounded measurable subget of 4 1 and let
5= :Lnf{u1 :(u,... ,up) eD}, t= sup{u1 t(ug,... ,up) e D}. Consider

a partition s=s <s <... s =t of [s.t] . Denote by {C.(t),

t? 0} the martingal {C's (t), t> 0} where S( )(u ) for u, =8y
. (3)
is the section of D at u, =sj. Let

£ zdcj(u) }[c (8541) = &5(s9)]

o j=o0 3

It follows that £_~+ [ dn(u,)...dn(u ), when max (s,  -s.)+0.
LS 1 p’ 0<3<m-1 L R |

So we have proved that

dn(u))...dnfu) e Te HY () or
P n=1

f
D
t Y p-1
£ é weof $(u ;... u )dn(u)...dn(u) e

This complets the proof.
Congtruction of the sets An' n=2,3... First we consi-

der the case p=2, Let d:o(u) =0, d){u) =u, uf_o and ¢ (u) =

-11

1 GG+, (w)) =F (3F), u20. Remark that
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¢2(u) . u>0 is continuous and nondecreasing. Also 0< ¢2(u) <u,
u>0. (0Of course, we suppose that t=0 is the increasing point of
P(t). We may put S, (t) = [0,t], S,(t) = [D,¢,(t]], S5(t) = [,(t),
d] . Indeed, m(S (t)) =F(t), m(S,(t)) =Sf(t)dr(u) =F(¢2“_:” =

= 3 F(t). Now let §,(u) =F 1 (B(F(s_(a)) + F(¢,(u)))). Partiti-
on S,(t) in §,(t) = [0,4,(£)] and Sg(t) = [p,(t),¢,(t)]. Gene-
rally, for Sn(t) = Dn](t) ’¢’n2 (t)] let

_o-l 1
¢n*(u)—F (}-(F(cpnl(u))+F(¢n2(u)))), u>0 .

The function ¢n*(u) ¢ u>0 is continuous and nondecreasing.

Also, ¢nl (u) < ¢n,(u) < ¢n2(u) (u> 0, The partitions of Sn(t)

are Sn,(t) = D’n (t), ¢,n,(t)j and Sn,,(t) = |:¢n*(t) ) nz(1:)] , be~

¢ nr(t)
cause m{S_.(t)) = [ QF(u) =F(¢ ,(t))-F(¢

n
¢n1 (t)

1
(t)) =3(F(¢_ (v)-
1 2 nj

-F(¢nl(t)) =% m(S, (t)). Let p=3 and §, (£) = {(t,,t, ty) 64, }.

“(t) = : i
Consider the subsetsSy(t) = {(t. .t ,t;):0<t <t <3 t} and

" (t) = : 1 -
sl(t) [(t ,t 83010 <ty <ty Ft<t,<t}. Partition S7(t)

2! 2

in $5(8) ={(t ,t,,t5):0 5t <9 (t,),0<t< 3t jand 55() = { (¢,

tarty)idy(t)) <tyct,, O<t,<3t}. We have m(S5(t)) =m(S3(t))

2
49 $4 (1)
t/272'"1
(=3 F2Gt)), t20 because m(s;5(t)) = / j o dF(u)ar(uy)
t/2 u o °
and m(s3(t)) = [ dF(u,)dF(u,) . Similarly, we partition

o 45(111)

ST(t) in 8§ ={(t ,t,,t3):0<ty <o, (t), Te<t

Py 5 2_<_1:} and S-;(t)w=

= [(t ,tyt3)6,(t,) <ty<t,, St<t,<t} . Define
£ t t t t

ny =S Semg=f [T . ng=f [-[]

c>~S1 082 oS3 osz os;
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In the next step we partition Si(t) ((S:;(t)) by :11-1: and ¢3(u)
(¢4(u)). We partition the set Sz(t) (S;(t)) by %t and ¢3(u)
(¢4(u)) and so on. Define n4(n5), Ne (n7), and so on.

Passing to the case p=4 we use the sets S(t) ={(t.,

tz,t3,t4) es(‘qtz)} where s3) (tz) belongs to the sets invo-
lving the partitions in the case p=3. At the same time we par-

_ . _ 1
tition s, () = {(¢ Eartaity) eAll in S;(¢) = lo<t,<5t} and
SI (t) = {' lit Etzi t} and so on.The procedure for arbitrary p,
p>5 follows by induction,

A consequence. Consider the Hilbert space H (Ht) of all ran-

dam varjables n, En= O,En2_< +» measurable with respect to g-

field generated by {g(u), u>0} ({g£(u), 0O<u<t}), Noting the

relatfon gy, = | @ H(’g) » £>0, ([6]), we have: the spectral
p=o

type of {Et, tzo} in fl is dF >dF> ... .
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REZIME

SPEKTRALNI TIP POLINOMA GAUSOVOG PROCESA

t
Neka je E(t) =j g(t,u)dn(u) &isto kanonidka reprezen-
o

tacija Gausovog procesa {E(t), t>0} i neka je Hn linearna
zatvorenost polinama P {elt)), ..., g(t )). Uslovno oéekivanje
Et(.) =Et(' g (w), u<t) je razlaganje jedinice u separabil-
nom Hilbertovom prostoru Hn.

Dokazuje se da je mera || dn(u) | 2 uniformni maksimal-
ni spektralni tip beskona&nog multipliciteta u Hn'



