THE SPECTRAL TYPE OF POLYNOMIALS OF THE GAUSSIAN PROCESS

Zoran A. Ivković

Prirodno-matematički fakultet. Institut za matematiku 21000 Novi Sad,ul. dr Ilije Djuričića br.4, Jugoslavija

ABSTRACT

Let $\xi(t) = \int_{0}^{t} g(t,u) d\eta(u)$ be the proper canonical representation of the Gaussian process $\{\xi(t), t>0\}$ and let H_n be the linear closure of polynomials $P_n(\xi(t_1),\ldots,\xi(t_n))$. The conditional expectation $E_t(\cdot) = E(\cdot|\xi(u),u\leq t),\ t\geq 0$, is a resolution of the identity in the separable Hilbert space H_n .

It is proved that the measure $||d\eta(u)||^2$ is the uniform maximal spectral type of the infinite multiplicity in H_n .

Let $\{\xi(t), t \ge 0\}$ be a Gaussian process with the proper canonical representation ([2]).

(I)
$$\xi(t) = \int_{0}^{t} g(t,u) d\eta(u), t \ge 0$$

The process $\{\eta\left(u\right),\ u\geq0\}$ is a martingal with

$$||\eta(t)||^2 = E\eta^2(t) = F(t) = \int_0^t f(u) du, \quad f(u) \ge 0$$
 a.e.

AMS Mathematics subject classification (1980): 60G15, 60G12. Key words and phrases: Proper canonical representation, spectral type of stochastic process, Hermite polynomials of Gaussian process.

Let $H^{(1)}(\xi)$ ($H^{(1)}_{t}(\xi)$) be the linear closure of $\{\xi(u), u \geq 0\}$ ($\{\xi(u), 0 \leq u \leq t\}$). It follows from (1) that $H^{(1)}_{t}(\xi) = H^{(1)}_{t}(\eta)$, $t \geq 0$. The linear time-domain analysis consists in the determination of the measure dF(t). More precisely, the determination of the class of all measures equivalent (by absolute continuity) to dF(t), ([1]).

The conditional expectation $E_{\mathbf{t}}(\cdot) = E(\cdot \mid \xi(\mathbf{u}), \mathbf{u} \leq \mathbf{t})$ as the operator in $H^{(1)}(\xi)$ is the projection onto $H^{(1)}_{\mathbf{t}}(\xi)$. So $\{E_{\mathbf{t}}, \ \mathbf{t} \geq 0\}$ is a resolution of the identity in the separable Hilbert space $H^{(1)}(\xi)$. The proper canonical representation (1) means that the space $H^{(1)}(\xi)$ is cyclic with the spectral type $\mathrm{d}F(\mathbf{t})$, ([5]).

Now we shall consider the Hilbert space H_n , $(H_n(t))$ as the linear closure of all the polynomials (the degree not exceeding n) of the random variables $\{\xi(u), u \geq 0\}$, $(\{\xi(u), u \leq t\})$. The space H_n reduces $\{E(t), t \geq 0\}$, [6]. So $\{E_t, t \geq 0\}$ is a resolution of the identity in H_n . The non-linear time-domain analysis consists in the determination of the spectral type of $\{E_t, t \geq 0\}$ in H_n .

THEOREM. The spectral type of $\{E_t, t \ge 0\}$ in H_n is $dF > dF \ge \dots,$

In the terms of the spectral analysis of selfadjoint operators in the separable Hilbert space, ([5]), the theorem states that the spectral type of the cyclic subspace $\mathcal{H}^{(1)}$ is the uniform maximal spectral type in \mathcal{H}_n . The multiplicity of dF in \mathcal{H}_n is infinite. It is proved in [3] that the spectral type of $\{E_t, t \geq 0\}$ in space \mathcal{H}_n of the polynomials of the Wiener process $\{W(t), t \geq 0\}$ is $dt \geq dt \geq \ldots$. The present theorem is a generalization of this result. The idea of the proof is the same as in [3], but the technique is more complicated.

Proof. The first step in the proof is the decomposition of H_n in the orthogonal sum of the subspaces $H^{(p)}$, $p=1,\ldots,n$. $H^{(p)}$ ($H_t^{(p)}$) is the linear closure of the Hermite polynomials $H_p(t_1,\ldots,t_p)=H_p(\xi(t_1),\ldots,\xi(t_p))$, $0\leq t_p\leq \leq \cdots \leq t_1$ of the degree p. We conclude by the relation (H_1)

$$EH_{p}(\xi(t_{1}),...,\xi(t_{p})) = H_{p}(E_{t}\xi(t_{1}),...,E_{t}\xi(t_{p})),$$

that $\text{H}^{(p)}$ reduces $\{E_t, t \ge 0\}$. So it will be sufficient to prove that the spectral type of $\{E_t, t \ge 0\}$ in $\text{H}^{(p)}$, $p \ge 2$, is $dF(t) \ge dF(t) \ge \dots$.

In this way the theorem will be proved when we find the mutually orthogonal martingals $\{\eta_n(t), t \ge 0\}$, n=1,2,... in $\mathcal{H}^{(p)}$ such that

and

(3)
$$||\eta_n(t)||^2 = \int_0^t f_n(u) dF(u), f_n(u) > 0$$
 a.e. dF.

We recall the fact, [6], that $H^{(p)}$ concides with the set $\{I_p\}$ of Ito-Rozanov integrals

$$I_{p} = \int_{0}^{\infty} \int_{0}^{t_{1}} \dots \int_{0}^{t_{p-1}} \phi(t_{1}, \dots, t_{p}) d\eta(t_{1}) \dots d\eta(t_{p}),$$

$$||I_{p}||^{2} = \int_{0}^{\infty} \int_{0}^{t_{1}} \dots \int_{0}^{t_{p-1}} \phi^{2}(t_{1}, \dots, t_{p}) dF(t_{1}) \dots dF(t_{p}).$$

Denote by $S_1(t)$ the section of $\Delta_1 = \{(u_1, \dots, u_p) : 0 \le u_p \le x \le x \le u_1\} = \mathbb{R}_p$ at $u_1 = t$ i.e. $S_1(t) = \{(t, u_2, \dots, u_p) \in \Delta_1\}$. The measure of $S_1(t)$ in \mathbb{R}_{p-1} is $\mathsf{m}(S_1(t)) = x \le x \le x \le x \le x \le x \le x$.

We partition Δ_1 into two subset Δ_2 and Δ_3 such that the measures of the corresponding section $S_2(t)$ and $S_3(t)$ are equal: $m(S_2(t)) = m(S_3(t)) = \frac{1}{2} m(S_1(t))$ for each t. Then partition Δ_2 into Δ_4 and Δ_5 such that $m(S_4(t)) = m(S_5(t)) = \frac{1}{2} m(S_2(t))$,

t ≥ 0 , partition Λ_3 into Λ_6 and Λ_7 such that $m(S_6(t))=m(S_7(t))=\frac{1}{2}m(S_3(t))$ and so on.Let I(t) be the support of the measure $dF(u_2)\dots dF(u_p)$ on $S_1(t)$. We suppose that the diameter of $S_n(t) \cap I(t)$ tends to zero as $n+\infty$, uniformly in t in each finite interval. One construction of Λ_n , $n=1,2,\ldots$ is done after the proof.

Let the partition of Δ_n be Δ_{n_1} and $\Delta_{n_2}.$ We define the processes $\{n_n(t)\,,\,\,t\ge 0\}\,,\,\,n=1,2,\dots$ by

$$\eta_1(t) = \int_0^t \{ \int_{S_1(u_1)} d\eta(u_2) ... d\eta(u_p) \} d\eta(u_1) ,$$

$$\begin{split} \eta_{n}(t) &= \int\limits_{0}^{t} \{ \int\limits_{S_{n_{1}}(u_{1})} d\eta(u_{2}) \dots d\eta(u_{p}) \} d\eta(u_{1}) - \\ &- \int\limits_{0}^{t} \{ \int\limits_{S_{n_{2}}(u_{1})} d\eta(u_{2}) \dots d\eta(u_{p}) \} d\eta(u_{1}) , \quad n=2,3,\dots \,. \end{split}$$

It is easy verify that $\{\eta_n(t)\}$, n=1,2,... are mutually orthogonal martingals. Also

$$|| \eta_{n}(t) ||^{2} = \int_{0}^{t} \{ \int_{0}^{t} dF(u_{1}) dF(u_{2}) ... dF(u_{p}) \} dF(u_{1}) =$$

$$= \int_{0}^{t} m(S_{n}(u_{1})) dF(u_{1}) \text{ where } m(S_{n}(u)) > 0 \text{ a.s.}$$

with respect to dF(u). Condition (3) is satisfied.

Consider the martingals $\{\zeta_{S_n}(t), t \ge 0\}$, n=1,2,... $\zeta_{S_n}(t) = \int_0^{\infty} \int_{S_n(u_1)}^{\infty} d\eta(u_2) ... d\eta(u_p) d\eta(u_1)$. It is easy to

see that, for each t, $t \ge 0$, and n, $n=1,2,\ldots,\zeta_{6n}$ (t) is the finite linear combination of $\eta_k(t)$, $k=1,2,\ldots$:

$$\zeta_{S_1}(t) = \eta_1(t), \quad \zeta_{S_2}(t) = \frac{1}{2}(\eta_1(t) + \eta_2(t)),$$

$$\zeta_{S_3}(t) = \frac{1}{2}(\eta_1(t) - \eta_2(t)), \dots,$$

If $S^*(t) = \sum_{k=1}^{l} S_{j_k}(t)$, $t \ge 0$, where $S_{j_k}(t)$, $k=1,\ldots,l$ are disjoint, then $t_{S^*}(t) = \sum_{k=1}^{l} \zeta_{S_{j_k}}(t)$ or $\zeta_{S^*}(t) = \int_{0}^{l} \{\int_{0}^{l} d\eta(u_2) ... d\eta(u_p)\} d\eta(u_1)$. Let S(t) be a measurable subset of $S_1(t)$. We apply the standard limit procedure: if $S_m^*(t) + S(t)$ as $m + \infty$, then $\zeta_{S_m^*}(t) + \zeta_{S_m^*}(t)$ or $\zeta_{S_m^*}(t) = \int_{0}^{l} \{\int_{0}^{l} d\eta(u_2) ... d\eta(u_p)\} d\eta(u_1)$, $t \ge 0$. We conclude that

$$\zeta_{s}(t) = \sum_{n=1}^{\infty} H_{t}^{(1)}(\eta_{n}), \quad t \geq 0.$$

Let D be a bounded measurable subset of Δ_1 and let $s = \inf\{u_1 : (u_1, \dots, u_p) \in D\}$, $t = \sup\{u_1 : (u_1, \dots, u_p) \in D\}$. Consider a partition $s = s_0 < s_1 < \dots s_m = t$ of [s, t]. Denote by $\{\zeta_j(t), t \geq 0\}$ the martingal $\{\zeta_j(t), t \geq 0\}$ where $S_{(j)}(u_1)$ for $u_1 = s_j$ is the section of D at $u_1 = s_j$. Let

$$\xi_{m} = \sum_{j=0}^{m-1} \int_{s_{j}}^{s_{j+1}} d\zeta_{j}(u) = \sum_{j=0}^{m-1} \left[\zeta_{j}(s_{j+1}) - \zeta_{j}(s_{j})\right]$$

It follows that $\xi_m + \int\limits_D d\eta (u_1) \dots d\eta (u_p)$, when $\max_{0 \le j \le m-1} (s_{j+1} - s_j) + 0$. So we have proved that

$$\int_{D} d\eta (u_{1}) \dots d\eta (u_{p}) e \int_{n=1}^{\infty} e H_{t}^{(1)} (\eta_{n}) \text{ or }$$

$$\int_{0}^{t} \int_{0}^{u_{1}} \dots \int_{0}^{u_{p-1}} \phi (u_{1}, \dots, u_{p}) d\eta (u_{1}) \dots d\eta (u_{p}) e$$

$$\int_{n=1}^{\infty} e H_{t}^{(1)} (\eta_{n}), t \ge 0.$$

This complets the proof.

Construction of the sets Δ_n , n=2,3... First we consider the case p=2. Let $\phi_O(u)=0$, $\phi_1(u)=u$, $u\geq 0$ and $\phi_2(u)=0$ = $F^{-1}(\frac{1}{2}(F(\phi_O(u))+F(\phi_1(u)))=F^{-1}(\frac{1}{2}F(u))$, $u\geq 0$. Remark that

 $\phi_2(u)$, $u \geq 0$ is continuous and nondecreasing. Also $0 < \phi_2(u) < u$, $u \geq 0$. (Of course, we suppose that t=0 is the increasing point of F(t)). We may put $S_1(t) = [0,t]$, $S_2(t) = [0,\phi_2(t)]$, $S_3(t) = [\phi_2(t),0]$. Indeed, $m(S_1(t)) = F(t)$, $m(S_2(t)) = \int\limits_{S_2(t)} dF(u) = F(\phi_2(t)) = \frac{1}{2} F(t)$. Now let $\phi_3(u) = F^{-1}(\frac{1}{2}(F(\phi_0(u)) + F(\phi_2(u))))$. Partition $S_2(t)$ in $S_4(t) = [0,\phi_3(t)]$ and $S_5(t) = [\phi_3(t),\phi_2(t)]$. Generally, for $S_n(t) = [\phi_n(t),\phi_n(t)]$ let

$$\phi_{n*}(u) = F^{-1} \left(\frac{1}{2} (F(\phi_{n_1}(u)) + F(\phi_{n_2}(u))) \right), \quad u \ge 0$$

The function $\phi_{n*}(u)$, $u \ge 0$ is continuous and nondecreasing. Also, $\phi_{n_1}(u) < \phi_{n^*}(u) < \phi_{n_2}(u), u \ge 0$. The partitions of $S_n(t)$ are S_{n} , $(t) = [\phi_{n_1}(t), \phi_{n_1}(t)]$ and $S_{n_1}(t) = [\phi_{n_1}(t), \phi_{n_2}(t)]$, because $m(S_{n}(t)) = \int_{\phi_{n_1}(t)}^{\phi_{n_1}(t)} dF(u) = F(\phi_{n_1}(t)) - F(\phi_{n_1}(t)) = \frac{1}{2}(F(\phi_{n_2}(t) - \phi_{n_1}(t)))$ $-F(\phi_{n_1}(t)) = \frac{1}{2} m(S_n(t)). \text{ Let } p=3 \text{ and } S_1(t) = \{(t_1, t_2, t_3) \in \Delta_1\}.$ Consider the subsets $S_1(t) = \{(t_1, t_2, t_3) : 0 \le t_3 \le t_2 \le \frac{1}{2} t\}$ and $S_1^{u}(t) = \{(t, t_2, t_3) : 0 \le t_3 \le t_2, \frac{1}{2}t \le t_2 \le t\}$. Partition $S_1(t)$ in $s_2(t) = \{(t, t_2, t_3) : 0 \le t_3 \le \phi_2(t_2), 0 \le t_2 \le \frac{1}{2}t \}$ and $s_3(t) = \{(t, t_2, t_3) : 0 \le t_3 \le \phi_2(t_2), 0 \le t_2 \le \frac{1}{2}t \}$ t_2, t_3 : $\phi_2(t_2) \le t_3 \le t_2$, $0 \le t_2 \le \frac{1}{2}t$. We have $m(S_2(t)) = m(S_3(t))$ $(=\frac{1}{4} \text{ F}^2(\frac{1}{2}\text{t})), \text{ t } \geq 0 \text{ because } \text{m}(\text{S}_2^{<}(\text{t})) = \begin{cases} \frac{t}{2} & \phi_2(u_1) \\ 0 & \text{of } (u_1) & \text{of } (u_2) \end{cases}$ and $\text{m}(\text{S}_3^{<}(\text{t})) = \begin{cases} \int_0^{t} d\text{F}(u_1) d\text{F}(u_2) \\ 0 & \text{of } (u_1) & \text{of } (u_2) \end{cases}$. Similarly, we partition $S_1''(t)$ in $S_4'' = \{(t_1, t_2, t_3) : 0 \le t_3 \le \phi_2(t), \frac{1}{2}t \le t_2 \le t\}$ and $S_5''(t) =$ = $\{(t_1, t_2, t_3) : \phi_2(t_2) \le t_3 \le t_2, \frac{1}{2}t \le t_2 \le t\}$. Define $\eta_1 = \int_{0}^{t} \int_{S_1}^{s} , \quad \eta_2 = \int_{0}^{t} \int_{S_2}^{s} - \int_{0}^{t} \int_{S_3}^{s} , \quad \eta_3 = \int_{0}^{t} \int_{S_4}^{s} - \int_{0}^{t} \int_{S_5}^{s} .$

In the next step we partition $S_2(t)$ $((S_3(t))$ by $\frac{1}{4}t$ and $\phi_3(u)$ $(\phi_4(u))$. We partition the set $S_4^u(t)$ $(S_5^u(t))$ by $\frac{3}{4}t$ and $\phi_3(u)$ $(\phi_4(u))$ and so on. Define $\eta_4(\eta_5)$, $\eta_6(\eta_7)$, and so on.

Passing to the case p=4 we use the sets $S(t) = \{(t, t_2, t_3, t_4) \in S^{\{3\}}(t_2)\}$ where $S^{\{3\}}(t_2)$ belongs to the sets involving the partitions in the case p=3. At the same time we partition $S_1(t) = \{(t, t_2, t_3, t_4) \in \Delta_1\}$ in $S_1(t) = \{0 \le t_2 \le \frac{1}{2}t\}$ and $S_1(t) = \{\frac{1}{2}t \le t_2 \le t\}$ and so on. The procedure for arbitrary p, p > 5 follows by induction.

A consequence. Consider the Hilbert space $H(H_t)$ of all random variables n, $E_n = 0$, $E_n^2 < +\infty$ measurable with respect to σ -field generated by $\{\xi(u), u \ge 0\}$ ($\{\xi(u), 0 \le u \le t\}$). Noting the relation $H_t = \sum_{p=0}^{\infty} \oplus H_t^{(p)}$, $t \ge 0$, ([6]), we have: the spectral type of $\{E_t, t \ge 0\}$ in H is $dF \ge dF \ge \dots$

REFERENCES

- [1] Cramer, H., Stochastic Processes as Curves in Hilbert Space, Teor. verov. i ee primen., tom 9 (1964), 195-204.
- [2] Hida, T., Canonical Representation of Gaussian Processes and their Applications, Mem. Coll. Sci., Univ. Kyoto, Ser. A, 33(1960)
- [3] Ivković, Z.A., Spectral type of Hermite polynomial of a Wiener process, to appear in Teor. verov. i ee primen.

- [4] Ivković, Z. and Lozanov, Z., On Hermite Polynomials of the Gaussian

 Random Process, Review of Research, Faculty of Science,

 12, Mathematics Series. University of Novi Sad (1982), 105-115.
- [5] Плеснер, А.И., Спетральная твория линвиных операторов, Наука, М., 1965.
- [6] Розанов, Ю.А., Марковские случайные поля, Наука,М., 1981.

Received by the editors March 5, 1984.

REZIME

SPEKTRALNI TIP POLINOMA GAUSOVOG PROCESA

Neka je $\xi(t) = \int_0^t g(t,u) d\eta(u)$ čisto kanonička reprezentacija Gausovog procesa $\{\xi(t), t \geq 0\}$ i neka je \mathcal{H}_n linearna zatvorenost polinoma $P_n(\xi(t_1), \ldots, \xi(t_n))$. Uslovno očekivanje $E_t(.) = E_t(.) \xi(u), u \leq t)$ je razlaganje jedinice u separabilanom Hilbertovom prostoru \mathcal{H}_n .

Dokazuje se da je mera $||dn(u)||^2$ uniformni maksimalni spektralni tip beskonačnog multipliciteta u H_n .