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ABSTRACT

This paper presents a generalization of a mesh const~-
ruction from [1] for a finlte-dlfference discretization of a
singularly perturbed problem {1). We give a class of functions
that generate mesh polints, enablln§ a quadratic convergence
uniform in small perturbation parameter €,

The possibilities of linear interpolation of numerical
results is investigated as well, and the method is shown to be
uni form in € and to retain the accuracy order of numerical

results.

1. INTRODUCTION

We consider the problem

(la) Tu := —ezu + b(x,u) =0, XxeI-= [0,1],

(1b) Bu := (u(0),u(l)) = (Uo'Ul) ’
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under the basic assumptions:

b(x,u) € cK(I x m), kem ;
bu(x,u) > 82 >0, (x,u) €I xR ; 0 <e < €_ ;

B E s U

o U1 erR ,

o’
where € 1is a small perturbation parameter.

A problem of this type was considered, ambng the ot-
hers, in [2] and the linear case of it in [1], [4], [5], [8].
It is well known that (T,B) is an inverse monotone operator
and that there exists a unique solutions u_ € Ck+2(I) to

problem (1), see [2], [3]. The corresponding reduced problem
b(x,u) =0, x€I,

also has a unique solution in Ck(I), which, in general,
does not satisfy the boundary conditions (1b). Therefore u,
shows two boundary layers at the endpoints of the interval I.

We use a classical finite-difference scheme on a
non-uniform mesh to solve (1) numerically. The discretization
mesh is constructed in a special way, which generalizes the
idea from [ 1], see [4] as well. This enables the second order
convergence, uniform in €, the result of which we shall
state in section 4 and prove in section 5. To obtaih this we
have to know the estimates of u, and its derivatives and
that is the subject of section 2.

In section 3, we shall give a general mesh construction,
where the mesh points are obtained via X = A(i/n) ,
i=90,1,...,n, n €N, with some suitable function .

In section 6 we shall show that our discretization
mesh is suitable to get the approximation of u. at any point
Xx € I by interpolating numerical results. The linear interpo-

lation retains the second order accuracy and informity in €.
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Section 7 contains some numerical results. They agree
fully with the theoretical ones.

Throughout the paper M will denote each positive
constant independent of ¢ and of the discretization mesh,

2. ESTIMATES OF ug AND ITS DERIVATIVES

Define the linear operator as:

Loz 1= -ezz" + ge(x)z, xe I, =z ¢€ CZ(I),

where

1
g (x) = b(x,u_(x)) - b(x,0) = g b, (x,8u_(x))ds > 82 > 0.

Obviously (LO,B) is inverse monotone and we have
+ =3

(2) L,(Zu)) + b(x,0).

Now we can easily get:

LEMMA 1, PFor the solution u_. to problem (1)

(1) -1 €
we have Iu€ (x)|] <Me ~, 1 =0,1,..,,k+2, x € I,

Proof. For i =0 the proof follows immediately
from (2). For {1 = 2 we get the desired inequality directly
from (la) and for i = 1 we can use Lemma 1 from [ 1], Furt-
her inequalities can be proved by dlfferentiating (la). We
just have to use the formula for differentiating b(x,u(x))
from [2], page 35. O

LEMMA 2. For the solution u, to problem (1)
the following estimates hold:

3 [uP ] cma e, =1,k xeT,
where V_(x) = v_(x) +w_(x) ,

ve(x) = exp(-8x/€) , "’e(") = exp(-8(1-x)/¢) .
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Proof. For z € C2(I) we take

Lz = -ezz“ + bu(x,ue(x))-z .

Then:
L(iué) = 1bx(x,ue) .

Because of the inverse monotonicity of (L,B) we can get (3)
for- 1 = 1. Here we use Iué(s)l < M/e, s = 0,1, from Lemma 1.
Now suppose that (3) holds for i = 1,2,...,j-1,

2 < j < k. We shall prove (3) for i = j. Consider

@ i) = 3(mexu N - b (xu)-0))

and use the already mentioned formula from [2].
We get

L(iuéj)) < M(1 + eﬁjve) .

We could use the inductive hypothesis since on the right hand
side of (4) we have derivatives of u. up to the order j-1.
The proof now follows from the inverse monotonicity of (L,B).O

The following theorem is proved in [4] .in the linear
case,

THEOREM 1, The solution u, to problem (1) can be

represented in the following way:

u, =m+y

€ e’

where for 1 =0,1,...,k and x € I we have
(5) Im Y x)] <M,
(6) lyV o] < et .

P r oo f. Consider the operator L . We can extend
ge(x) to the interval [-1,2] in such a way that the smooth-
ness and the property ge(x) > 82 still hold. Denote this
extension by Es(x). In the same way we make the extension
b(x,0) of b(x,0).
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let m(x) be the unique solution to the problem

-e2pn 4+ 3. (xm = -B(x,0), xel-1,2] ,

m(-1) = m(2) =0 .
Then (5) 1s obvious.

Now Yo =u -m and we have

Loye =0, x€1I, ye(s) = U8 - m(s), 8 =0,1,
From the inverse monotonicity of (LO,B) we get (6) for 1 = 0.
Suppose that (6) holds for all i =0,1,...,j-1, 1 < 3j <k.
We have

+,(3)y _ = (i) _ (3)
Lo(_ye ) = +((ge(x)ye) ge(x)ye )

Because of lLemma 2 it follows

g x| cma+ v x, 1=0,1,...,3, xerx

+,(3) =3
1.0(-37e ) < Me Ve

so, we can prove (6) for 1 = j in the same way as we have
proved (3) in Lemma 2. O

3. MESH CONSTRUCTION

From now on we shall take k = 4,
Let q € (0,1/2). Consider the function ¢ € C
with the properties

3 1o0,q

¢ ey 50, 1=0,1,2,3, te (0,q)
$(0)

o, d(g) = + =,

u(t) := ¢ (t) exp(-d(t)) e c? [0,q].
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Let A(t) = ? u(s)ds , t € [0,q]. We have

t

¢(t) = - lnA(t), t e [0,q)
and
(7 oMty < mae)™d, t=1,2,3, t e[o,q).

The examples for such a function are:

6o(t) = -1n(1 - (¢/@)F), for p = 1,2,

or p€[3,=) ;
and

¢,(t) = (@/(q-£))P - 1, for p > 0.

Let ¥(t) = ae¢(t), t € [0,9), where af > 2 and
suppose ae°¢'(0) < 1, Then V¥’(0) < 1 and there exists a
unique point a € (0,q) at which ¢(t) contacts its tangent
line from (1/2,1/2).

Let

¥ (a,) = 1/(1-2q), w'(az) =1,

The points a, and « exist uniquely and we have
0 < a, <a <a; <q.

Take

2

¥(t), tefo,a]
A(t) = y(a) + V' (a)(t-a), t € [a,1/2]
1 - A(1-t), te[1/2,1]

We construct the mesh points xy by

(8) x, = A(t), L = i/n, i=0,1,...,n,

n = 2n

To use A(t) we have to know a. It is the solution
to the equation
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(9) Pla) + ¢’ (a)(1/2 = @) = 1/2

which can be solved by successive approximations as in [1].
Note that for ¢1 with p =1 (9) reduces to a quadratic
equation and a can be easlly evaluated.

For p=1 ¢° is the function from {1} . The function
¢1 for p €N 1is more convenient for practical use because
it is a simple rational function.

4, DISCRETIZATiON OF (1) AND THE CONVERGENCE THEOREM

Let hi =X T Ry i=1,2,...,n, We form the
discretization of problem (1):

(10) Tu, &= —eznhui +Dblx,u) =0, 1=1,2,...,n-1,
where ' u = Ul'

2
i+1

) I (hyyy¥yy = (hy + hypduy +hyu, ).

Ph' T TR R
The solution w = [uo,ul,...,un]T e an+1 to the
non-linear system (10) exists uniquely and it can be evaluated
by the Newton method, see [7] for instance. Note that the
perturbation parameter causes no truoble in the convergence
of this method.

The system (10) can be written in the form:

B * Bty = f
T +1 +
where £, = [0_,0,...,0,0 1" e ; & = [2,)e & 1,n+1

is a tridiagonal matrix with elements:

= =
aOO ann 1

and for 1 = 1,2,...,n-1

- - 2e2/((hi +h

ay i-1 1+41'04) »
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a,, = 252/(h1h

ii 1+1) ’

= - 222/((hi +h,, )h

a4,i+1 1+17B441)

+1,n+
and %‘Jh. = diag(OIb(xlyul),-..,b(xn_l,un_l)lo) ear l,n 1 .

h

T +
Putting ue=[ue(xo),ue(xl),...,ue(xn)] em“l and

: +
r, = [°'r1'r2""’rn—1'°]T e 1, whexfe
ry = ryluy) =(Ta ) (x) - Tyu (x,) =
2
= e"(Dyu (x;) - ul(x;)), i=1,2,...,n"1,

we can easily get, see [6]:

h 1
(11) I wll <z lirh .
Here |-l denotes the maximum norm: fz f = max [z, | for
h i
_ T +1 0<i<n
z, = [zo,zl,.,..,zn] e I® .

Thus, for our discretization (10) we have a stability
uniform in €, (1l1). )

In the next section we shall prove the following
theorem (a second order consistency, uniform in ¢):

THEQOREM 2. Let the mesh points be given by (8) and
let aB > 2, aeo¢’(0) <1, n>3/q and k = 4.
Then we have

2
lrl < M/m® .
From this and (11) we get immediately

THEOREM 3. Under the assumption of the previous
. theorem we have

h 2
fug = wit < M1n™ .
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5. PROOF OF THE CONSISTENCY THEOREM

To prove Theorem 2 we use the same technique as in
Theorem 3 from [1].

First we have r (ue) = ri(m) + ri(ye), i=1,2,...,n-1,
and since lri(m)| < M/n“, we only have to prove

| 2
(12) ]ri(v€)| < M/n°, i =\1,2,...,n°-1 .

because for 1 = no,n°+1,...,n-1 and L the proof of (12) is

analogous.
Now let r, = ri(ve). We have

(13) x| <€ Fhyyy = b V20| + e ghyy, viVie) |
and
2 "
(14) Iril <€ -2]v€(y1)|,
with ei,ni € (x1-1'x1+1)' Using the definition of mesh points
and the estimates from Theorem 1 we get from (13)
(15a) I, | < M@, +0)/m? ,
= 3" 1

(15b) Pyo= A"t )) Zv (%)
(15¢) Q, = (At N2 2w (x,_)

1 141 e 7i-1 ’

and from (14)

(16) lry | < Mv_(x,_,) .

1
For the function A(t), t € [0,1], we have

(17) ‘ AT(t) £ 1/(1 - 2q) ,

fA"(t)] < aed” (a))

and because of (7)

(18)  |A"(£)] < MeA(a,) ™2 = Me(4' (a))/u(a)? < M/e .
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(o]

1 ILet t Then

i-1 2 %2-

velx; ) < v(X(a,)) exp(-aBé(a,)) < exp(-2¢(a,)) =

(n(ay) /4% (@)% < me? |

Using this inequality and (18) from (15b) we get Pi <M

From (15c¢) and (17) we get Q:I. X M in this case. Thus (15)
gives us (12).

o —
2 Now let t; ;, <a, and t,_, <q - 3/n, Then
t:|.+1_<_q-1/n<q and
(19) - t,,, > wq-t,_,)
9 i+1 = 3 -1

Because of

A y) S ¥T(E )

from (15b) we get

P, < Me"(t, dexp(-24(t,_,)) <

2
< M(A(ty_,)/A(t, )
and because of (19) P, < M.
In the same way we use l'(t1+1) < 41'(1:1+1) to get
Q; <M from (15¢c). Then from (15) we have (12) in this case.

30 The last case is q - 3/n < t,_, < a,. Note that

i-1
q - 3/n > 0. Now it follows

exp(-26(t;_1)) < exp(-24(q - 2)) =

= A(q - %)2 < M/n2

and from (16) we conclude (12) in this case and the theorem
is proved.
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6. LINEAR INTERPOLATION

T n+l
For any lzo,zl,...,zn] € IR and x € [xi,xi+1],

i=0,1,...,n~1, let

1
2(z, ,x) =z, + (z.
i’ i hi+1 i+l

We aproximate u_(x), x e [xi,x

- zi)(x - xi) .

s+ r PY 2(u ,x), where, as

before, u; denotes the solution to the discrete problem (10)
on the mesh (8).

THEOREM 4. Under the assumptions of Theorem 2 we have
i+1] ¢

2
]ue(x) - l(ui,x)l < M/n“ , x A [xi,x

Proof. Let x € lxi,x.

1+1]. ﬁecause of Theorem 2

we have
|2 Cu, (%) ,%) - (o, x| < m/m? .

Now we shall prove
2
o (x) = 2(u (xy),x)]| < M/m° .
Again, it is sufficient to show that
(20) |R.| < M/n? i=0,1 n -1
i —_ r r l"'lo r

where Ri = ve(x) - l(ve(xi),x). For other i’s the proof of
(20) is analogous. We have

IR | < Mxr e, 11272y (x)) /n?

and we get (20) in both cases 1° and 2° of the proof of
Theorem 2. In case 3° we use ‘

'Ri | < Mve(xi)

to get (20) again. O
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7. NUMERICAL RESULTS

We shall test our method on the following linear
problem from [8]:

-ezu“(x)_+ u(x) = -(cosznx + 2(en)2c052nx) R
(21)
x€ I, wu(0) =u(l) =0 ,

with the exact solution:
u (%) = (exp(-x/e) + exp(-(1-x)/e))/(1 + exp(-1/e)) - cos’mx .

Since .u€(1/2 + x) = u€(1/2 - x), x€1([0,1/2]), it is sufficient
to solve (21) on the interval [0,1/2].

We use the mesh given via ¢l with p = 1, because it
is the simplest function and the results for ¢° and ¢1
with p # 1 are very similar. Note that here o, = q - vYage ,
and we do not need the condition af > 2 in Theorem 2. So, a
is such a constant that 0 < aeo/q < 1,

In our numerical experiments we shall vary ¢, a, q
and no. The width of the boundary layer is of order €. We
shall be interested in a number n1 of mesh points in (0,€].
For a,q and no fixed, this number is invariable to the
change of ¢e. let

E= mx |u(x)-yul,
€ i
n1<i<no
E, = max |u_(x;) - u,|
1 °<15P1 e 1 i

and let P and P, be the corresponding maximal percentage
errors,
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Tables 1-4 contain the results for

ui.

In Table 5

we give the results of linear interpolation. We interpolate

the numerical results of the first row of Table 4.

TABLE 1. a=1,qg=0.4, n 10 => n,
€ El E P1 P
0.1 7.22-10°3 3.14-10"3 1.3 4.4
107%-10716 ® 1.35-10"2 1.72+1072 2.2 2.1
*) -
€ was changed as & = 10 s =1,2,...,8.
TABLE 2. a =0.5,q=20.48, n_.= 10 => =6
€ El E Pl P
0.1 1.62-10"2 2.21-10"2 3.3 3.9
1072-10716 1.74-1072 3.31.1072 3.1 3.6
TABLE 3. a=0.5,q=10.48, n_= 20 => = 12
€ El E Pl P
-3 -3
0.1 4.15-10 5.70-10 0.83 3.7
1072-1071 4.20-1073 7.24-1073 0.74 0.87
TABLE & n, = 100 , = 1076
nl El E Pl P
a=1 -4 -
q=0.4 40 1.32-10 1.71-10"4 0.021 0.021
a=20.3 -4 . -4
q=0.49| 75 3.78-10 6.70-10 0.061  0.074
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TABLE 5. a =1, q=0.4, n_=100, € =10
x E,=]2(u, ,x)}u_(x)| (E,/|u, (x)])100

1077 5.62-107° 0.56
10”7 3.17-107° 0.0033
10”3 1.65-107° 0.0017
0.1 4.19-1074 0.046
0.2 1.36-10"4 0.021
0.3 6.96-10 0.020
0.4 1.05-10"4 0.11
0.45 6.38-10"° 0.26
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REZIME

O NUMERICKOM RESAVANJU JEDNOG TIPA SINGULARNO
PERTURBIRANOG PROBLEMA KORI3CENJEM
SPECIJALNE MREZE DISKRETIZ2ACIJE

U radu se daje uopsZtenie konstrukcije mreZe iz [il
za diskretizaciju singularno preturbiranog problema (1) meto—
dom kona&nih razlika. Nalazi se klasa funkcija koje generisu
ta¥ke mreZe, omoguéujuéi kvadratnu konvergenciju, uniformnu po
malom perturbacionom parametru €. Takodje su ispitane mogué-
nostli linearne interpolacije numeriZkih rezultata i za ovaj
metod je pokazana uniformnost po & 1 o&uvanje reda ta&nosti
numeri&kih rezultata.



