ON A NUMERICAL SOLUTION OF A TYPE OF SINGULARLY PERTURBED BOUNDARY VALUE PROBLEM BY USING A SPECIAL DISCRETIZATION MESH

Relja Vulanović

Prirodno-matematički fakultet. Institut za matematiku 21000 Novi Sad, ul.dr Ilije Djuričića br.4, Jugoslavija

ABSTRACT

This paper presents a generalization of a mesh construction from $\begin{bmatrix} 1 \end{bmatrix}$ for a finite-difference discretization of a singularly perturbed problem (1). We give a class of functions that generate mesh points, enabling a quadratic convergence uniform in small perturbation parameter ϵ .

The possibilities of linear interpolation of numerical results is investigated as well, and the method is shown to be uniform in ϵ and to retain the accuracy order of numerical results.

1. INTRODUCTION

We consider the problem

(1a)
$$Tu := -\epsilon^2 u'' + b(x,u) = 0, \quad x \in I = [0,1],$$

(1b) Bu :=
$$(u(0), u(1)) = (U_0, U_1)$$
,

AMS Mathematics subject classification (1980): 65L10 Key words and phrases: Singular perturbations, inverse monotonicity, consistency, stability and convergence uniform in ε .

under the basic assumptions:

where ϵ is a small perturbation parameter.

A problem of this type was considered, among the others, in [2] and the linear case of it in [1], [4], [5], [8]. It is well known that (T,B) is an inverse monotone operator and that there exists a unique solutions $u_{\varepsilon} \in C^{k+2}(I)$ to problem (1), see [2], [3]. The corresponding reduced problem

$$b(x,u) = 0$$
, $x \in I$,

also has a unique solution in $C^k(I)$, which, in general, does not satisfy the boundary conditions (lb). Therefore u_{ϵ} shows two boundary layers at the endpoints of the interval I.

We use a classical finite-difference scheme on a non-uniform mesh to solve (1) numerically. The discretization mesh is constructed in a special way, which generalizes the idea from [1], see [4] as well. This enables the second order convergence, uniform in ε , the result of which we shall state in section 4 and prove in section 5. To obtain this we have to know the estimates of u_{ε} and its derivatives and that is the subject of section 2.

In section 3, we shall give a general mesh construction, where the mesh points are obtained via $x_1 = \lambda(i/n)$, i = 0,1,...,n, $n \in \mathbb{N}$, with some suitable function λ .

In section 6 we shall show that our discretization mesh is suitable to get the approximation of u_ϵ at any point x ϵ I by interpolating numerical results. The linear interpolation retains the second order accuracy and informity in ϵ .

Section 7 contains some numerical results. They agree fully with the theoretical ones.

Throughout the paper M will denote each positive constant independent of ϵ and of the discretization mesh.

2. ESTIMATES OF \mathbf{u}_{ϵ} AND ITS DERIVATIVES

Define the linear operator as:

$$L_0 z := -\epsilon^2 z^* + g_{\epsilon}(x)z$$
, $x \in I$, $z \in C^2(I)$, where

$$g_{\varepsilon}(x) = b(x, u_{\varepsilon}(x)) - b(x, 0) = \int_{0}^{1} b_{u}(x, su_{\varepsilon}(x)) ds > \beta^{2} > 0.$$

Obviously (LO,B) is inverse monotone and we have

(2)
$$L_{o}(\pm u_{\varepsilon}) = \mp b(x,0).$$

Now we can easily get:

LEMMA 1. For the solution
$$u_{\epsilon}$$
 to problem (1) we have $\left|u_{\epsilon}^{(1)}\left(x\right)\right| \leq M\epsilon^{-1}$, $i=0,1,\ldots,k+2$, $x\in I$.

Proof. For i=0 the proof follows immediately from (2). For i=2 we get the desired inequality directly from (1a) and for i=1 we can use Lemma 1 from [1]. Further inequalities can be proved by differentiating (1a). We just have to use the formula for differentiating b(x,u(x)) from [2], page 35. \Box

LEMMA 2. For the solution u_{ϵ} to problem (1) the following estimates hold:

(3)
$$|u_{\varepsilon}^{(1)}(x)| \leq M(1 + \varepsilon^{-1}V_{\varepsilon}(x)), i = 1,...,k, x \in I$$
,

where
$$V_{\varepsilon}(x) = V_{\varepsilon}(x) + W_{\varepsilon}(x)$$
,

$$v_{\varepsilon}(x) = \exp(-\beta x/\epsilon)$$
, $w_{\varepsilon}(x) = \exp(-\beta(1-x)/\epsilon)$.

Proof. For $z \in C^2(I)$ we take

$$Lz = -\epsilon^2 z^n + b_n(x, u_\epsilon(x)) \cdot z .$$

Then:

$$L(\pm u'_{\varepsilon}) = \mp b_{x}(x, u_{\varepsilon})$$
.

Because of the inverse monotonicity of (L,B) we can get (3) for i=1. Here we use $|u'_{\epsilon}(s)| \leq M/\epsilon$, s=0,1, from Lemma 1. Now suppose that (3) holds for $i=1,2,\ldots,j-1$, $2 < j \leq k$. We shall prove (3) for i=j. Consider

(4)
$$L(\pm u_{\varepsilon}^{(j)}) = \mp ((b(x,u_{\varepsilon}))^{(j)} - b_{u}(x,u_{\varepsilon}) \cdot u_{\varepsilon}^{(j)})$$

and use the already mentioned formula from [2]. We get

$$L(\dot{\mathbb{I}}u_{\varepsilon}^{(j)}) \leq M(1 + \varepsilon^{-j}V_{\varepsilon})$$
.

We could use the inductive hypothesis since on the right hand side of (4) we have derivatives of \mathbf{u}_{ε} up to the order j-1. The proof now follows from the inverse monotonicity of (L,B). \Box The following theorem is proved in [4] in the linear case.

THEOREM 1. The solution $\,u_{\varepsilon}\,\,$ to problem (1) can be represented in the following way:

$$u_{\varepsilon} = m + y_{\varepsilon}$$
,

where for i = 0, 1, ..., k and $x \in I$ we have

$$|\mathbf{m^{(1)}}(\mathbf{x})| \leq \mathbf{M} ,$$

$$|y_{\varepsilon}^{(1)}(x)| \leq M\varepsilon^{-1}V_{\varepsilon}(x).$$

Proof. Consider the operator L_o . We can extend $g_{\epsilon}(x)$ to the interval [-1,2] in such a way that the smoothness and the property $g_{\epsilon}(x) > \beta^2$ still hold. Denote this extension by $\overline{g}_{\epsilon}(x)$. In the same way we make the extension $\overline{b}(x,0)$ of b(x,0).

Let m(x) be the unique solution to the problem

$$-\varepsilon^2 m'' + \overline{g}_{\varepsilon}(x)m = -\overline{b}(x,0), \quad x \in [-1,2],$$

$$m(-1) = m(2) = 0.$$

Then (5) is obvious.

Now $y_e = u_e - m$ and we have

$$L_{O}y_{\varepsilon} = 0$$
, $x \in I$, $y_{\varepsilon}(s) = U_{s} - m(s)$, $s = 0,1$.

From the inverse monotonicity of (L_0,B) we get (6) for i=0. Suppose that (6) holds for all $i=0,1,\ldots,j-1,\ i\leq j\leq k$. We have

$$L_{o}^{(\pm y_{\varepsilon}^{(j)})} = \mp ((g_{\varepsilon}^{(x)}y_{\varepsilon}^{(j)}) - g_{\varepsilon}^{(x)}y_{\varepsilon}^{(j)}) .$$

Because of Lemma 2 it follows

$$|g_{\varepsilon}^{(1)}(x)| \le M(1 + \varepsilon^{-1}V_{\varepsilon}(x)), \quad i = 0,1,...,j, \quad x \in I$$

and

$$L_o(\pm y_{\varepsilon}^{(j)}) \leq M \varepsilon^{-j} v_{\varepsilon}$$
,

so, we can prove (6) for i = j in the same way as we have proved (3) in Lemma 2. \square

3. MESH CONSTRUCTION

From now on we shall take k = 4.

Let $q \in (0,1/2)$. Consider the function $\phi \in C^3$ [0,q) with the properties

$$\phi^{(1)}(t) > 0$$
, $i = 0,1,2,3$, $t \in (0,q)$
 $\phi(0) = 0$, $\phi(q) = +\infty$,

and

$$u(t) := \phi'(t) \exp(-\phi(t)) \in C^2 [0,q].$$

Let
$$A(t) = \int_{t}^{q} \mu(s)ds$$
, $t \in [0,q]$. We have $\phi(t) = -\ln A(t)$, $t \in [0,q]$

and

(7)
$$\phi^{(1)}(t) \leq MA(t)^{-1}, \quad 1 = 1,2,3, \quad t \in [0,q).$$

The examples for such a function are:

$$\phi_0(t) = -\ln(1 - (t/q)^p), \text{ for } p = 1,2,$$
or $p \in [3,\infty)$;

and

$$\phi_1(t) = (q/(q-t))^p - 1$$
, for $p > 0$.

Let $\psi(t) = a\varepsilon\phi(t)$, $t \in [0,q)$, where $a\beta \ge 2$ and suppose $a\varepsilon_0\phi'(0) < 1$. Then $\psi'(0) < 1$ and there exists a unique point $\alpha \in (0,q)$ at which $\psi(t)$ contacts its tangent line from (1/2,1/2).

Let

$$\psi'(\alpha_1) = 1/(1-2q), \quad \psi'(\alpha_2) = 1.$$

The points α_1 and α_2 exist uniquely and we have $0 < \alpha_2 < \alpha < \alpha_1 < q$.

Take

$$\lambda(t) = \begin{cases} \psi(t), & t \in [0, \alpha] \\ \psi(\alpha) + \psi'(\alpha)(t-\alpha), & t \in [\alpha, 1/2] \\ 1 - \lambda(1-t), & t \in [1/2, 1] \end{cases}$$

We construct the mesh points x_i by

(8)
$$x_i = \lambda(t), \quad t_i = i/n, \quad i = 0,1,...,n,$$

 $n = 2n_0, \quad n_0 \in \mathbb{N}$.

To use $\,\lambda(t)\,$ we have to know $\,\alpha.$ It is the solution to the equation

(9)
$$\psi(\alpha) + \psi'(\alpha)(1/2 - \alpha) = 1/2$$

which can be solved by successive approximations as in [1]. Note that for ϕ_1 with p=1 (9) reduces to a quadratic equation and α can be easily evaluated.

For p = 1 ϕ_0 is the function from [1]. The function ϕ_1 for $p \in \mathbb{N}$ is more convenient for practical use because it is a simple rational function.

4. DISCRETIZATION OF (1) AND THE CONVERGENCE THEOREM

Let $h_i = x_i - x_{i-1}$, i = 1, 2, ..., n. We form the discretization of problem (1):

$$u_o = v_o$$

(10)
$$T_h u_i := -\epsilon^2 D_h u_i + b(x_i, u_i) = 0, i = 1, 2, ..., n-1,$$

where $u_n = U_1$,

$$\mathbf{p}_{\mathbf{h}}\mathbf{u}_{\mathbf{i}} = \frac{2}{(\mathbf{h}_{\mathbf{i}} + \mathbf{h}_{\mathbf{i}+1})\mathbf{h}_{\mathbf{i}}\mathbf{h}_{\mathbf{i}+1}}(\mathbf{h}_{\mathbf{i}+1}\mathbf{u}_{\mathbf{i}-1} - (\mathbf{h}_{\mathbf{i}} + \mathbf{h}_{\mathbf{i}+1})\mathbf{u}_{\mathbf{i}} + \mathbf{h}_{\mathbf{i}}\mathbf{u}_{\mathbf{i}+1}).$$

The solution $u_h = [u_0, u_1, \dots, u_n]^T \in \mathbb{R}^{n+1}$ to the non-linear system (10) exists uniquely and it can be evaluated by the Newton method, see [7] for instance. Note that the perturbation parameter causes no truoble in the convergence of this method.

The system (10) can be written in the form:

$$A_h u_h + B_h u_h = f_h$$

where $f_h = [U_0, 0, ..., 0, U_n]^T \in \mathbb{R}^{n+1}$; $A_h = [a_{ij}] \in \mathbb{R}^{n+1, n+1}$ is a tridiagonal matrix with elements:

$$a_{00} = a_{nn} = 1$$

and for i = 1, 2, ..., n-1

$$a_{i,i-1} = -2\epsilon^2/((h_i + h_{i+1})h_i)$$
;

$$a_{ii} = 2\epsilon^2/(h_i h_{i+1})$$
,
 $a_{i,i+1} = -2\epsilon^2/((h_i + h_{i+1})h_{i+1})$;

and $B_h u_h = diag(0,b(x_1,u_1),...,b(x_{n-1},u_{n-1}),0) \in \mathbb{R}^{n+1,n+1}$. Putting $u_{\epsilon}^h = [u_{\epsilon}(x_0),u_{\epsilon}(x_1),...,u_{\epsilon}(x_n)]^T \in \mathbb{R}^{n+1}$ and $r_h = [0,r_1,r_2,...,r_{n-1},0]^T \in \mathbb{R}^{n+1}$, where

$$r_{i} = r_{i}(u_{\epsilon}) = (Tu_{\epsilon})(x_{i}) - T_{h}u_{\epsilon}(x_{i}) =$$

$$= \epsilon^{2}(D_{h}u_{\epsilon}(x_{i}) - u_{\epsilon}^{*}(x_{i})), \quad i = 1, 2, ..., n-1,$$

we can easily get, see [6]:

(11)
$$\|\mathbf{u}^{h} - \mathbf{u}_{h}\| \leq \frac{1}{\beta} \|\mathbf{r}_{h}\|$$
.

Here $\|\cdot\|$ denotes the maximum norm: $\|z_h\| = \max_{0 \le i \le n} |z_i|$ for $z_h = [z_0, z_1, \dots, z_n]^T \in \mathbb{R}^{n+1}$.

Thus, for our discretization (10) we have a stability uniform in ϵ , (11).

In the next section we shall prove the following theorem (a second order consistency, uniform in ϵ):

THEOREM 2. Let the mesh points be given by (8) and let $a\beta \ge 2$, $a\epsilon_0 \phi'(0) < 1$, n > 3/q and k = 4.

Then we have

$$\|\mathbf{r}_{\mathbf{h}}\| \leq \mathbf{M/n}^2$$
.

From this and (11) we get immediately

THEOREM 3. Under the assumption of the previous theorem we have

$$\|\mathbf{u}_{\varepsilon}^{h} - \mathbf{u}_{h}\| \leq M/n^{2}$$
.

5. PROOF OF THE CONSISTENCY THEOREM

To prove Theorem 2 we use the same technique as in Theorem 3 from $\begin{bmatrix} 1 \end{bmatrix}$.

First we have $r_i(u_{\epsilon}) = r_i(m) + r_i(y_{\epsilon})$, i = 1, 2, ..., n-1, and since $|r_i(m)| \le M/n^2$, we only have to prove

(12)
$$|r_i(v_i)| \le M/n^2$$
, $i = 1, 2, ..., n_0-1$,

because for $i = n_0, n_0+1, \dots, n-1$ and w_{ϵ} the proof of (12) is analogous.

Now let $r_i = r_i(v_c)$. We have

(13)
$$|\mathbf{r_i}| \leq \varepsilon^2 \frac{1}{3} (\mathbf{h_{i+1}} - \mathbf{h_i}) |\mathbf{v_{\varepsilon}^{m}}(\mathbf{x_i})| + \varepsilon^2 \frac{1}{6} \mathbf{h_{i+1}^2} |\mathbf{v_{\varepsilon}^{iv}}(\theta_i)|$$

and

$$|\mathbf{r_i}| \leq \varepsilon^2 \cdot 2 |\mathbf{v_{\epsilon}^*}(\mathbf{y_i})|,$$

with $\theta_i, \eta_i \in (x_{i-1}, x_{i+1})$. Using the definition of mesh points and the estimates from Theorem 1 we get from (13)

(15a)
$$|r_i| \leq M(P_i + Q_i)/n^2$$
,

(15b)
$$P_{i} = \lambda^{n}(t_{i+1}) \frac{1}{\varepsilon} v_{\varepsilon}(x_{i}) ,$$

(15c)
$$Q_{i} = (\lambda'(t_{i+1}))^{2} \varepsilon^{-2} v_{\varepsilon}(x_{i-1})$$
;

and from (14)

$$|\mathbf{r_i}| \leq \mathsf{Mv}_{\varepsilon}(\mathbf{x_{i-1}}).$$

For the function $\lambda(t)$, $t \in [0,1]$, we have

(17)
$$\lambda'(t) \leq 1/(1-2q) ,$$

$$|\lambda''(t)| \leq a\epsilon \phi''(\alpha_1)$$

and because of (7)

(18)
$$|\lambda^{*}(t)| \leq M \epsilon A(\alpha_1)^{-2} = M \epsilon (\phi'(\alpha_1)/\mu(\alpha_1))^2 \leq M/\epsilon$$
.

Let
$$t_{i-1} \ge \alpha_2$$
. Then
$$v_{\varepsilon}(x_{i-1}) \le v(\lambda(\alpha_2)) = \exp(-a\beta\phi(\alpha_2)) \le \exp(-2\phi(\alpha_2)) = (\mu(\alpha_2)/\phi'(\alpha_2))^2 \le M\epsilon^2.$$

Using this inequality and (18) from (15b) we get $P_i \leq M$. From (15c) and (17) we get $Q_i \leq M$ in this case. Thus (15) gives us (12).

2° Now let $t_{i-1} < \alpha_2$ and $t_{i-1} \le q - 3/n$. Then $t_{i+1} \le q - 1/n < q$ and

(19)
$$q - t_{i+1} \ge \frac{1}{3}(q - t_{i-1})$$
.

Because of

$$\lambda^*(t_{i+1}) \leq \psi^*(t_{i+1})$$
,

from (15b) we get

$$P_i \le M\phi^*(t_{i+1}) \exp(-2\phi(t_{i-1})) \le M(A(t_{i-1})/A(t_{i+1}))^2$$

and because of (19) $P_i \leq M$.

In the same way we use $\lambda'(t_{i+1}) \leq \psi'(t_{i+1})$ to get $Q_i \leq M$ from (15c). Then from (15) we have (12) in this case.

 3° The last case is $q - 3/n < t_{i-1} < \alpha_2$. Note that q - 3/n > 0. Now it follows

$$\exp(-2\phi(t_{i-1})) < \exp(-2\phi(q - \frac{3}{n})) =$$

= $A(q - \frac{3}{n})^2 \le M/n^2$

and from (16) we conclude (12) in this case and the theorem is proved.

6. LINEAR INTERPOLATION

For any $[z_0, z_1, \dots, z_n]^T \in \mathbb{R}^{n+1}$ and $x \in [x_i, x_{i+1}]$, $i = 0, 1, \dots, n-1$, let

$$\ell(z_i, x) = z_i + \frac{1}{h_{i+1}}(z_{i+1} - z_i)(x - x_i)$$
.

We approximate $u_{\epsilon}(x)$, $x \in [x_{i}, x_{i+1}]$, by $\ell(u_{i}, x)$, where, as before, u_{i} denotes the solution to the discrete problem (10) on the mesh (8).

THEOREM 4. Under the assumptions of Theorem 2 we have

$$|u_{\varepsilon}(x) - \ell(u_{i}, x)| \leq M/n^{2}, \quad x \in [x_{i}, x_{i+1}].$$

Proof. Let $x \in [x_i, x_{i+1}]$. Because of Theorem 2 we have

$$|\ell(u_{\epsilon}(x_{i}),x) - \ell(u_{i},x)| \leq M/n^{2}$$
.

Now we shall prove

$$|u_{c}(x) - l(u_{c}(x_{i}), x)| \le M/n^{2}$$
.

Again, it is sufficient to show that

(20)
$$|R_i| \leq M/n^2$$
, $i = 0, 1, ..., n_0^{-1}$,

where $R_i = v_{\epsilon}(x) - \ell(v_{\epsilon}(x_i), x)$. For other i's the proof of (20) is analogous. We have

$$|R_i| \leq M(\lambda'(t_{i+1}))^2 \epsilon^{-2} v_{\epsilon}(x_i)/n^2$$

and we get (20) in both cases 1° and 2° of the proof of Theorem 2. In case 3° we use

$$|R_i| \leq Mv_{\epsilon}(x_i)$$

to get (20) again. \square

7. NUMERICAL RESULTS

We shall test our method on the following linear problem from [8]:

$$-\varepsilon^{2}u''(x) + u(x) = -(\cos^{2}\pi x + 2(\varepsilon\pi)^{2}\cos 2\pi x) ,$$
(21)
$$x \in I, \quad u(0) = u(1) = 0 ,$$

with the exact solution:

$$u_{\epsilon}(x) = (\exp(-x/\epsilon) + \exp(-(1-x)/\epsilon))/(1 + \exp(-1/\epsilon)) - \cos^2 \pi x$$
.

Since $u_{\varepsilon}(1/2 + x) = u_{\varepsilon}(1/2 - x)$, $x \in [0,1/2]$, it is sufficient to solve (21) on the interval [0,1/2].

We use the mesh given via ϕ_1 with p=1, because it is the simplest function and the results for ϕ_0 and ϕ_1 with $p\neq 1$ are very similar. Note that here $\alpha_2=q-\sqrt{aq\epsilon}$, and we do not need the condition $a\beta\geq 2$ in Theorem 2. So, a is such a constant that $0<a\epsilon_0/q<1$.

In our numerical experiments we shall vary $\,\epsilon$, a, q and $\,n_{_{\scriptsize O}}$. The width of the boundary layer is of order $\,\epsilon$. We shall be interested in a number $\,n_{_{\scriptsize O}}$ of mesh points in $\,(0\,,\epsilon]$. For a,q and $\,n_{_{\scriptsize O}}$ fixed, this number is invariable to the change of $\,\epsilon$. Let

$$E = \max_{n_1 < i < n_0} |u_{\epsilon}(x_i) - u_i|,$$

$$E_1 = \max_{0 < i \le n_1} |u_{\epsilon}(x_i) - u_i|$$

and let P and P_1 be the corresponding maximal percentage errors.

Tables 1-4 contain the results for $\, u_{\underline{i}} \, .$ In Table 5 we give the results of linear interpolation. We interpolate the numerical results of the first row of Table 4.

TABLE 1. a = 1, q = 0.4, $n_0 = 10 \Rightarrow n_1 = 4$

ε	E ₁	Е	P ₁	P
0.1	7.22.10-3	3.14.10-3	1.3	4.4
10 ⁻² -10 ⁻¹⁶ *)	1.35 • 10 - 2	1.72.10-2	2.2	2.1

^{*)} ε was changed as $\varepsilon = 10^{-2s}$, s = 1, 2, ..., 8.

TABLE 2. a = 0.5, q = 0.48, $n_0 = 10 \Rightarrow n_1 = 6$

ε	E ₁	Е	P ₁	P
0.1	1.62-10-2	2.21.10-2	3.3	3.9
$10^{-2} - 10^{-16}$	1.74.10-2	$3.31 \cdot 10^{-2}$	3.1	3.6

TABLE 3.
$$a = 0.5$$
, $q = 0.48$, $n_0 = 20 \Rightarrow n_1 = 12$

ε	E ₁	E	P ₁	P
0.1	4.15-10-3	5.70.10-3	0.83	3.7
10 ⁻² -10 ⁻¹⁶	4.20.10-3	7.24.10-3	0.74	0.87

TABLE 4.
$$n_0 = 100 , \epsilon = 10^{-6}$$

	n ₁	E ₁	E	P ₁	P
a = 1 $q = 0.4$	40	1.32-10-4	1.71-10-4	0.021	0.021
a = 0.3 q = 0.49	75	3.78-10-4	6.70 - 10 - 4	0.061	0.074

TABLE 5. $a = 1$, $q = 0.4$, $n_0 = 100$, $\epsilon = 10$				
х	$E_2 = l(u_i, x) - u_{\epsilon}(x) $	(E ₂ / u _e (x))·100		
10 ⁻⁹	5.62·10 ⁻⁶	0.56		
10-7	3.17·10 ⁻⁶	0.0033		
10-3	1.65·10 ⁻⁵	0.0017		
0.1	4.19.10-4	0.046		
0.2	$1.36 \cdot 10^{-4}$	0.021		
0.3	6.96.10 ⁻⁵	0.020		
0.4	1.05.10-4	0.11		
0.45	6.38·10 ⁻⁵	0.26		

TABLE 5. a = 1, q = 0.4, n = 100, $\epsilon = 10^{-6}$

REFERENCES

- [1] Bahvalov, A.S., K optimizacii metodov rešenia kraevyh
 zadač pri naličii pograničnogo sloja, Ž. vyčisl.
 mat. i mat. fiz., T9, No.4, 841-859, 1969.
- [2] Lorenz, J., Zur Theorie und Numerik von Differenzenverfahren für singuläre Störungen, Habilitationsschrift, Konstanz, 1980.
- [3] Bailey, P.B., L.F. Shampine, P.E. Waltman, Nonlinear two point boundary value problems, Academic Press,

 New York and London, 1968.
- [4] Šlškin, G.I., Raznostnaja shema na neravnomernoj setke dlja differencial nogo uravnenia s malym parametrom pri staršej proizvodnoj, Ž. vyčisl.mat. i mat. fiz., T23, No.3. 609-619, 1983.

- [5] Vulanović, R., An exponentially fitted scheme on a non--uniform mesh, Zb.rad. Prir.-mat.Fak.Univ. u Novom Sadu, Ser.Mat., 12(1982), 205-215.
- [6] Bohl, E., J. Lorenz, Inverse monotonicity and difference schemes for two-point boundary value problems,

 Aeq. Math., 19(1979), 1-36.
- [7] Henrici, P., Discrete variable methods in ordinary differential equations, Wiley, New York, 1962.
- [8] Doolan, E.P., J.J.H. Miller, W.H.A. Schilders, Uniform numerical methods for problems with initial and boundary layers, Boole Press, Dublin, 1980.

Received by the editors June 19, 1984.

REZIME

O NUMERIČKOM REŠAVANJU JEDNOG TIPA SINGULARNO PERTURBIRANOG PROBLEMA KORIŠĆENJEM SPECIJALNE MREŽE DISKRETIZACIJE

U radu se daje uopštenje konstrukcije mreže iz [1] za diskretizaciju singularno preturbiranog problema (1) metodom konačnih razlika. Nalazi se klasa funkcija koje generišu tačke mreže, omogućujući kvadratnu konvergenciju, uniformnu po malom perturbacionom parametru ε . Takodje su ispitane mogućnosti linearne interpolacije numeričkih rezultata i za ovaj metod je pokazana uniformnost po ε i očuvanje reda tačnosti numeričkih rezultata.