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ABSTRACT

In this paper we consider some [terative methods for a linear sys-
tem of equations Ax=b and their connection with the generallzed 1inear method
of the Newton-SOR and SOR-Newton type, [12:]. Some sufficient conditi-
ons for the convergence of the linear method and for the local convergence
of the generalized linear method are given.

INTRODUCTION

We shall consider a system of n linear equations with
n unknowns, written in a matrix form

Ax = b,

where A is a nonsingular matrix with nonvanishing diagonal ele-
ments. One of the basic principles used in the generation and
analysis of the iterative method for linear equations is split-
ting. That is, for the linear system Ax=b the matrix A is de-
composed, or split, into the sum

A =B-C
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of two matrices, where B is nonsingular and the linear system
Bx=d is easy to solve. Then an iterative method is defined by

m+1 1

1y ™ - 5 lex™4p, meo,1,... .

If we set H= B-IC then (1) can be written as

() =y @+, @A),

where E is the unit matrix. Iteration (2) is convergent for
all x° if and only if the spectral radius p(H) of matrix H
is less than 1.

We shall now give some splittings of A and associated
iterations of form (2). Let

A=D-T-8§

be the decomposition of A into diagonal, strictly lower trian-
gular, and strictly upper triangular parts. Let F= diag(fl,...
. ..,fn) be a nonsingular matrix. Let for w,0 ¢ IR, w#0,

B = m-l(F-UT), C=m_1(F—mD+(m—a)T+mS) .

Matrix B is nonsingular, A= B-C and

1

(3) B lo=(F-om) " (F-uD+ W-0)T+uS) .

Wwe denote by H(F,w, o) the matrix 2 lc ana by VAOR the associ-.
ated iteration (2), If F=D the VAOR reduces to AOR, [6] . Fur-
ther, the AOR method for specific values of the parameters wa
reduces to well-known methods: for oc=0, w=1 the AOR method
is the Jacobi method, for o= w=1 the AOR method is the Gauss-Sei-
del method, for o=0 the AOR method is th&¢ JOR method, for o = w
the AOR method is the .SOR method.

] The sufficient conditions for the convergence of the
AOR methods are considered by many authors including [17, [2],
(6 .[7.[9.,M0 ,[1]. In this paper we shall give some suffi-
cient conditions for the convergence of the VAOR method. Using
these results we can also give some sufficient conditions for
the local convergence of some generalized linear methods for
the numerical solution of the system of nonlinear equations.
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Our results include some results from [5] and [12].

“ON CONVERGENCE OF THE VAOR METHOD

We shall begin with some notations:

For A= [aij] ec?'® (= set of complex nxn matrices) we define

for i=1,2,...,n

p.(AY= 7 la; |, Q@)= § la,,|, T,=max la,. | ,

i jen(y) 13 i jeN(1) 17 1 gen(e) I
where N = {1,2,...,n}, N(i) = N\{i} .

THEOREM 1.  Let A=[a,]€C™'™ be such that
(4) Iaiillajj|>Pi(A)Pj(A), ieN, JjeN(i) ,
or
1-

(5) ae [0,1], |a; | >Pf(AQ;7%(A), ieN,
or
(6) ae [0,1], fa; ;| >aPy(A) + (1-a)Q (A), dieN .

n
Let F=diag(f,,...,£) e C®' P and let £,/a,, 6 R, £,/a,,>0,

ieN, q=mina—i . Then, for we (0,9], oe [0,q] , we have
jeN 2ii

p(H(F,w,0)) < 1.

Proof£. The iteration matrix H(F,w,0) of the VAOR
method is defined by (3). We assume that for some eigenvalue i
of H(F,w,0) |A]>1 holds. For this eigenvalue we have the fol-
lowing relation

det(H(F,w,G) - AE) = 0.
Since det (F-oT) = det(F) # 0, this is equivalent to det(Q) =0,
where Q= [qij:l is defined by

Q= (F-0T) (H(F,w,0)~AE) = (1-1)F-wD+(w+o (A=1))T + wS .
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In [6] it is proved that for |A|>1, 0<x<1, 0<y<1 we have

[A-14x| > |y (A-1)+x[, |A-l4x|>x .

Now it follows that

lqiil [ (A-1)£ +maii|={k 1+‘“ £ Hf |>‘“{aiil
and
9334
lagyl > 1 x-1) , +uw —f-— ||fi|‘ FG=-Dotw|lay]

since 0<“’a11/f1§ 1, °i°aj_1/f1i1‘ It is easy to show that

P (Q)<| [P a) , Qi(Q)<| IQi(A), ieN ,
211

and .
Py (@)P(Q) < Iqiillqjjl, ieN, jeN(i) ,

if (4) is true,
l=a
p"i‘(o)oi (@ < |a;4l » Lew,

if (5) is true,

aPi(Q) + (l—a)Qi(Q) < lqiil r 1eN

if (6) is true.

It follows now from (8], 2.4.1, 2.5.1, 2.5.2, that
detQ# 0. This contradicts the singularity of H(F,w,c)-AE. The-
refore, p(H(F,w,0) <1.

COROLLARY. Let A= [a ]ec“ '® be either strictly or

irreductibly diagonally dominant. Let F=diag(f, ,...,f ) ec® ™ pe

nonaingular and let
£
— i
fi/aiiem, fi/aii>0' ieN, q—[ﬂi: —aii .

Then p(H(F,w,0)) <1 for we(0,q], oe[0,q]
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Proof. We see that the eigenvalues of H(F,w,0)
are the roots of detQ=0, with Q given in Theorem 1. With
[x] >1, we know that Q is irreducible when A is irreducible.
If A is (strictly) diagonally dominant, then Q is>also a (stri-
ctly) diagonally dominant matrix. With these conditions, the
value of A such that lxl_zl can- not be the eigenvalue of H(F,

w,0) because Q is nonsingular.

_ — 34 n,n
THEOREM 2. Let A= [:aij], F—%l:!.ag(fl,...,fn) eC

with a;,,£, >0, 1eN, and let g= min 53— - Then p(H(F,w,0))< 1
ieN “44

for we (O,q], oe [0,9] if
a;y >min(Pi(A),Ti(A)), ieN ,
aii+ajj>Pi(A)+Pj(A) , 1eN, jeN(i) .

Proof, As 1n the proof of Theorem 1 the eigen-~
values of the matrix H(F,w,o0) are the roots of detQ=0. With
{A| > 1 we have

[qy 4] o lagyl
T Q) «—~2 T (a) , P (@) <—2i P (a), 1eN,
i - . i i - a,, i
ii ii
and
lay4l »
(7) min (P, (Q),T,; (Q)) < 3, min(P, (A),Q (A)) < |q 4] .-
Further,
]qii|+|qjjl2_lqii+qjj!=[(A—l)(fi+fj)+m(aii+ajj)l .
Since,
£, + f. f f.
i >smin(—%L, —d-) >q, 1eN, jeN() ,
a.,ta..=— a, . a,. -—
ii "33 ii 733

we have, as in the proof of Theorem 1,

lqii+qjjl Zm(aii+ajj) *

lagqtagsl > 1 O-Do+aullag+asl) .
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Now it holds for i €N, j eN(i)

P, (A)+P. (A)
N R R
(8) Pi(Q)"'Pj(Q)inii"'q" | < lqii|+lqjjl .

J3 aii+ajj
From (7) and (8) it follows by Theorem 5 from [13] that detQ =0,
which contradicts the singularity of H(F,w,0)-)AE.

ON SOME GENERALIZED LINEAR METHODS

In this section we shall consider the sysi:em of nonli-
near equations Gx =0, where G:Dcmn->IRn, and suppose that G
is F-differentiable and G” is continuous on an open neighbour-
hood Soc D of a point x* for which Gx*=0.

One way to utilize the VAOR iteration in connection
with nonlinear equationé is to get épproximate solutions of the
linear systems which must be solved to carry out Newton s method.
Tn this case, we would have a composite Newton-VAQR itera-
tion, with Newton“s method as the primary iteration and VAOR
as the secondary iteration. In ]_32] it is shown that such a
combination can be written in the form

(9) ok Eme L meH™ Y Be®) Ttex®, k=0,1,..., m>1 ,
where B and H are defined by
B(x) = u T(F(x) - oT(x)) ,

cx) =™ (F(x) - wD(x) + (w=0) T(x) +wS(x))

1

H(x) = B(x) C(x), w,0eM , w#0 .

In this case F(x) is any nonsingular matrix and

G (x) = D(x) - T(x) - S(x)
ig the decomposition of G“(x) into its diagonal, strictly lo-
wer, and strictly upper triangular parts, and it is assumed
that D(x) is nonsingular.
Under the above assumptions, x* is a point of attrac-
tion of the iteration defined by (9) if B:So->]:Rn'n is continuous
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at x*, B(x*) nonsingular and if p(H(x*)) <1, 10.3.1 from [12].

We can now use the results of the previous sections to
obtain some sufficient conditions for a local convergence of
the Newton-VAOR method, if we apply Theorem 1 and 2 to H(x¥*).

We have considered linear iterative methods in their
traditional role of solving linear systems. However, it is also
possible to give a direct extension of these methods to nonli-
near equatiomns, [___12] . So, we have the one step SOR-Newton process
and some of its modifications and generalizations [3],[4],[5],
[12]. The one-step vSOR-Newton method, [5], ié given by
k,i)

g, (x
xl;+1 = xljc.—w l—m—)— ’ i=1,...,n ’

fi(x
where, as usual, gyre--19, are the components of G:Dc " ~>IRn,

k+1 k+1 k

, - .
we IR\{0}, xk':"=[:x1 peee s Xy xi-,...,xl:l:[ , i=1,...,n ,

-and functions f,:D+ IR, i=l,...,n are continuous on D with

i

fi(x)>0, xeDb, i=1,...,n .

For fi(x) = gg_(x) , i=l,...,n, this method reduces to the one-~-

step SOR-Newton method,
in [3] a generalization of the vSOR-Newton method is
given. This is the one-step VAOR-Newton method
k
kel _ k_ 9102

X', = X/~ w , i=1,...,n ,
i i fi(zE) v
1o k_ _k 91(xk) k_ .k gi(zk'l) .
Z) =X " T s zi=xi—c-—-—-k—{-,1=2,...,n,
£,(x7) £,(2777)
where
k,i k k k k4T .
w,0 € R\{0}, =z 1o [zl,...,zi_l,xi,...,xn:] , i=1,...,n ,

and fi:D~>]R are continuous on D and fi(x) >0 for xeD, i=

=1,...,Nn.
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This method reduces to the vSOR-Newton method if o= w.

k+l_ . ok

Clearly, (10) may be written in the form x .o
r

although now the mapping Gw o becomes rather complicated. 1In
r

[3] it is shown that
6. (%) = (F(x)=0T(x)) ™ (F(x)-uD(x) + (w-0)T(x) +wS(x)) .

Now it is easy to see that G& o(x)==H(x) with F(x)==diag(f1(x),
r

...,fn(x)) .

To prove the local convergence of the vAOR~-Newton method
it sufficies to show that Gw,o is F-differentiable at x*
and that p(Gé'éx*)) <1, see the Ostrowski theorem, [12Z] . so,
for the local convergence of the Newton-VAOR and VAOR~Newton
method we consider the same matrix H(x*). We may apply the
results of the previous section to H(x*) in order to obtain
some sufficient conditions for the local convergence of these
methods. In [3],[4] are given some sufficient conditions for
the local convergence of the vAOR-Newton method. As special
cases of this method we have the vSOR-Newton method from [5],
and the SOR-Newton method from [12]. The Newton-VAOR method
also contains, as a special case, the m-step Newton-SOR method
(m 2 1). Now, we can summarize our consideration of the sys-

tem of nonlinear equations in the next theorem.

THEOREM 3. Let G:D=IR™ » IR" be F-differentiable in
an open neighbourhood SOC:D of a point x*e€D at which G° <isg
continuous and Gx*=0. Let D(x), -T(x), -S5(x) be the diagonal
strictly lower, and strictly upper triangular parts of G (x).
Suppose that fi(x) >0, i=1,...,n, are continuous on D and F=
= diag(f; (x),...,f (x)) . If G"(x*) = [:gij] and

g,. >0, g..9

ii 11953 >Pi(G’(x*))Pj(G’(x*)), ieN, jeN(i) ,

or
(11) ae (0,17, g;; >PHE (x*))0; (G (x*), ieN ,
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or
aef0,1], g3 >0oP  (G7(x*)) + (1-0)Q, (G7(x*)), 4ieN,
or
gs4 >min(P, (67(x*)),T,(G"(x*)), ieN,
gii+gjj>Pi(G’(x*))+Pj(G'(x*)), ieN, jeN(i) ,
or

G (x*) <8 irreducibly diagonally dominant,

G {(x*) i8 an M-matrizx,

then X* 28 a point of attraction of the Newton-VAOR and vAOR-
Newton iteration for o,we (0,q), where q = m:é.g fi(x*)/gii .
i
\

The proof of this theorem in the case that G (x*) is an
M-matrix, 0 <o <w<gq is given in [3]. If G (x*) is strictly di-
agonally dominant, then (11) is true for a=1, and it follows
that the statement of Theorem 3 also holds in this case.
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REZIME

PRIMEDBE NA RAZLICITE DEKOMPOZICIJE I
PRIDRUZENE UOPSTENE LINEARNE METODE

U radu ge posmatraju neki iterativni postupci za resa-
vanje sistema linearnih jedna&ina Ax=b nastali dekomponovanjem
. matrice A u sumu A=B-C dve matrice, gde je B nesingularna mat-
rica i takva da se sistem Bx=d moZe "lako re3iti". Formiran je
VAOR iterativni postupak za iterativno refavanje sistema Ax=b,
koji kao specijalne sludajeve sadrZi AOR, SOR i JOR postupke.

Dati su neki dovoljni uslovi za2 konvergenciju VAOR postupka.
Takodje se posmatraju kombinacije nelinearno-linearnih i line-
arno-nelinearnih postupaka za iterativno refavanje sistema ne-
linearnih jedna&ina. Dati su neki dovoljni uslovi za lokalnu
konvergenciju ovih postupaka. Kao specijalni sluXajevi posmat-
ranih postupaka javljaju se postupci Newton-SOR, SOR-Newton ,
(22], i vSOR-Newton, [5].



