Review of Research Faculty of Science-University of Novi Sad, Volume 13 (1983)

NUCLEARITY OF THE SPACE of (M (x, q))

Stevan Pilipović

Prirodno-matematički fakultet. Institut za matematiku 21000 Novi Sal, ul. dr Ilije Djuričića 4, Jugoslavija

ABSTRACT

The aim of this paper is to prove the nuclearity of the space $\sigma \{M_p(x,q)\}$ under suitable conditions on the matrix $\{M_p(x,q)\}$, pe N, qe N_o. This space is investigated in paper [5] (in this journal), so for notations and notions see [5].

1. In the proof of the nuclearity of the space $K\{M_p\}$ in [2] some conditions were supposed. In this part of the paper we are going to discuss some of them. First, we shall repeat some facts from [1].

Let $\{M_p(x)\}$ be a sequence of continuous functions on R such that:

(1)
$$0 < \delta \le M_1(x) \le M_2(x) \le \ldots, x \in \mathbb{R}$$
.

The space $K\{M_{\mbox{\scriptsize p}}\}$ is defined as the space of smooth functions $\mbox{\scriptsize ϕ}$ such that

$$\|\phi\|_{D}$$
: = sup{ $M_{D}(x) |\phi^{(i)}(x)|$; $i \le p$, $x \in R$ } < ∞ , $p \in N$;

the topology in $K\{M_n\}$ is given by the sequence of norms $\{||\ ||_p\}$. Moreover, let us suppose that M_p , $p \in \mathbb{N}$, monotonically increase as $|\mathbf{x}| \to \infty$ (this means if $|\mathbf{x}_1| > |\mathbf{x}_2|$, $\mathbf{x}_1 \cdot \mathbf{x}_2 > 0$, then $M_p(\mathbf{x}_1) > M_p(\mathbf{x}_2)$) and:

(N) For every p \in N there exists p' \in N such that $r_{p,p}(x) := M_p(x) M_p^{-1}(x) \in L^1(R)$ and $r_{p,p}(x) \to 0$ monotonically as $|x| \to \infty$

AMS Mathematics subject classification (1980): 46F05 Key words and phrases: Ultradistributions, nuclearity.

(I) For every p 6 N and every k 6 N_O, there exist p e N and $B_{D,k} > 0$ such that

$$|M_{p}^{(k)}(x)| \leq B_{p,k}M_{p}(x), x \in \mathbb{R}.$$

Under these conditions, it is proved in [2] that $K\{M_p\}$ is nuclear.

The supposition that $M_p(x)$, $p \in N$, are smooth functions and that (I) holds, can be changed in some sense with more general conditions. Namely, the following theorem holds.

THEOREM 1. Let $\mathbf{M}_p(\mathbf{x})$, $p \in \mathbf{N}$, be a continuous functions on R such that $\mathbf{M}_p(\mathbf{x})$ monotonically increase when $|\mathbf{x}| \to \infty$. If this sequence satisfies condition (1) and

(T) There exists $\varepsilon > 0$ such that for every $p \in N$ there exist $p' \in N$ and $K_{D,D}$, > 0 such that

$$\begin{split} & \underset{p}{\text{M}}_{p}(x) \leq K_{p,p} \underset{p}{\text{M}}_{p}(x-\epsilon) & \text{for} & x > K_{p,p}, \\ & \underset{p}{\text{M}}_{p}(x) \leq K_{p,p} \underset{p}{\text{M}}_{p}(x+\epsilon) & \text{for} & x < -K_{p,p}, \end{split}$$

then the space $K\{M_p\}$ is equal to the space $K\{N_p\}$ for a suitable sequence of smooth functions $\{N_p(x)\}$ for which (1) and (I) hold.

If the sequence $\{M_p^{}\}$ satisfies condition (N), the sequence $\{N_p^{}\}$ satisfies this condition as well.

Proof. For the proof we shall use the following construction ([4]).

Let $\omega_1(x) \in C_0^{\infty}(R)$, supp $\omega_1 \subset [0, \varepsilon]$, $\omega_1(x) \ge 0$ and $\int_R \omega_1(x) dx$ = 1.

We define the sequence of smooth functions on the interval $\lceil \epsilon \, , \infty
angle$ by

$$N_p(x) := M_p(x) * \omega_1(x) = \int_0^\varepsilon M_p(x-t) \omega_1(t) dt, \quad x \in [\varepsilon, \infty), p \in N.$$

So we have

(2)
$$M_{p}(x-\varepsilon) \leq \overline{N}_{p}(x) \leq M_{p}(x), \quad x \in [\varepsilon,\infty), p \in N$$

(3)
$$\bar{N}_{p}(x) \leq \bar{N}_{p+1}(x)$$
, $x \in [\varepsilon, \infty)$, $p \in N$.

Similarly, let $\omega_2(x) \in C_0^{\infty}(\mathbb{R})$, supp $\omega_2 \subset [-\epsilon, 0]$, $\omega_2(x) \ge 0$, $\begin{cases} \omega_2(x) & dx = 1, \text{ and let} \end{cases}$

 $\overline{\overline{N}}_p(x) := M_p(x) * \omega_2(x) = \int_{-\varepsilon}^{0} M_p(x-t) \omega_2(t) dt, \quad x \in (-\infty, -\varepsilon], \text{ pen.}$ This sequence satisfies the following inequalities.

(2°)
$$\mathbb{M}_{p}(x+\varepsilon) \leq \overline{\mathbb{N}}_{p}(x) \leq \mathbb{M}_{p}(x), x \in (-\infty, -\varepsilon], p \in \mathbb{N}$$

(3°)
$$\overline{\overline{N}}_{p}(x) \leq \overline{\overline{N}}_{p+1}(x)$$
, $x \in (-\infty, -\varepsilon]$, $p \in \mathbb{N}$.

There exists a sequence of smooth functions $\{N_p(x)\}$ on R such that: $N_p(x)$ is equal to $\bar{N}_p(x)$ on the interval $[\epsilon,\infty)$; $N_p(x)$ is equal to $\bar{\bar{N}}_p(x)$ on the interval $(-\infty, -\epsilon]$; $0 < \theta \le N_p(x) \le N_{p+1}(x)$ on the interval $(-\epsilon,\epsilon)$, $p \in N$.

Thus we construct the sequence of smooth monotonically increasing functions (as $|x| + \infty$) $\{N_p\}$, which satisfies (1). From (2),(2) and (T) it follows that for any $p \in N$ there exists $p' \in N$ such that

(2^{oo})
$$M_p(x)/K_{p,p} \le M_p(x-\varepsilon) \le N_p(x) \le M_p(x)$$
 for $x > K_{p,p}$,

(300) $M_p(x)/K_{p,p} \leq M_p(x+\epsilon) \leq N_p(x) \leq M_p(x)$ for $x < -K_{p,p}$, Thus the spaces $K\{M_p\}$ and $K\{N_p\}$ are the same in the topological sense.

Condition (I) for the sequence $\{N_p(x)\}$ follows from

$$|\mathbf{N}_{\mathbf{p}}^{(\mathbf{k})}(\mathbf{x})| \leq \int_{0}^{\varepsilon} \mathbf{M}_{\mathbf{p}}(\mathbf{x}-\mathbf{t}) |\omega_{1}^{(\mathbf{k})}(\mathbf{t})| d\mathbf{t} \leq \mathbf{M}_{\mathbf{p}}(\mathbf{x}) \int_{0}^{\varepsilon} |\omega_{1}^{(\mathbf{k})}(\mathbf{t})| d\mathbf{t} \leq$$

$$\leq CM_{p}(x) \leq CM_{p}(x-\epsilon) \leq CN_{p}(x)$$
, $x \geq K_{pp}$,

since similar inequalities hold for $x < -K_{p,p}$.

Let condition (N) holds for the sequence $\{M_p(x)\}$. If $p' \in N$ corresponds to $p \in N$ in (N) let p'' and $K_{p'',p''}$ correspond to p' in condition (T). For $x > K_{p'',p''}$ we have

$$\frac{N_{\mathbf{p}}(\mathbf{x})}{N_{\mathbf{p}''}(\mathbf{x})} \leq \frac{M_{\mathbf{p}}(\mathbf{x})}{M_{\mathbf{p}''}(\mathbf{x}-\epsilon)} \leq K_{\mathbf{p}'',\mathbf{p}''} \frac{M_{\mathbf{p}}(\mathbf{x})}{M_{\mathbf{p}''}(\mathbf{x})}.$$

Since a similar inequality holds for $x < -K_{p^*,p^*}$, it follows that (N) holds for the sequence $\{N_n(x)\}$.

2. In paper [5] we defind the space $\sigma\{M_{p}(x,q)\}$ by a suitable matrix $\{c_{p,q}\}$ and a suitable sequence of functions $\{\exp(m_{D}(x))\}\$ where we have constructed the sequence $\{m_{D}(x)\}\$ such that this space may be investigated by a Fourier transformation. Since in this paper a Fourier transformation is not needed, we generalize the conditions for the matrix $\{M_{p}(x,q)\}$. Namely, we suppose that

$$M_p(x,q) = M_p(x)c_{p,q}$$
, $p \in N$, $q \in N_0$,

where $\{c_{p,q}\}$ is a matrix which satisfies some of conditions (C.1), (C.2), (C.3), (C.4) from [5] (see remark about (C.1) in [5]):

- (C,1) $c_{p,q} \leq c_{p+1,q}$ for every $(p,q) \in N \times N_0$;
- (C.2) For every $p \in N$ the sequence $\{c_{p,q}; q \in N_0\}$ monotonically tends to zero when q → ∞ ;
- (C.3) For every peN there exists p'eN,p' > p, such that for every $\varepsilon > 0$ there exists $q_{0}(\varepsilon) \in N$ with the property $c_{p,q} \leq \epsilon c_{p,q}$ for $q \geq q_0$;
- (C.4) For every peN there exists p'eN, such that $\sup \left\{ \frac{c_{p,q}}{c_{p',q+1}} ; q \in N_{o} \right\} < \infty ;$

and (C.5) (see below), and $\{M_{D}(x)\}$ is a sequence of functions which satisfies the conditions of Theorem 1. It is clear that the sequence $\{\exp(m_p(x))\}$ from [5] satisfies these conditions. Let us denote by $E_I^{(c_p,q)}$, where I is a closed finite

interval in R, the space of smooth functions on I such that

$$\|\phi\|_{p,I} := \sup\{c_{p,q}|\phi^{(q)}(x)| ; x \in I, q \in N_0\} < \infty, p \in N,$$

in which the sequence of norms $\{\| \|_{p.I} \}$ defines a topology.

If
$$\{c_{p,q}\}$$
, peN, $q \in N_Q$, are of the form

$$c_{p,q} = p^{q}/N_{q}$$
, pen, qeN_o,

where $\{N_{\bf q}^{}\}$ is a suitable sequence of positive numbers, then this space becomes the space E $^{(Np)}_{\bf T}$ from [3].

The nuclearity of this space follows from the appropriate condition on $\{N_q\}$ ((M.2), see [3]). So if we give an appropriate condition on $\{C_{p,q}\}$ we shall obtain the nuclearity of $E_{\mathbf{I}}(C_{p,q})$.

LEMMA 1. Let for the matrix $\{c_{p,q}\}$, (C.1) and (C.5) hold, where:

(C.5) For every $p \in N$ there exists $p' \in N$, such that $\sum_{q \in N_O} c q^{q} e^{-1} e^{-1}$

The proof of this Lemma is similar to the proof of Proposition 2.4. from [3], so we have omitted it. Let us only remark that (C.3) follows from (C.5).

LEMMA 2. The sequence of norms $\{\|\|p_{p,1}\}$ on $E_1^{p,q}$ is equivalent to the sequence of norms

$$\| \phi \|_{\mathbf{p}, \mathbf{I}} = \int_{\mathbf{q}=0}^{\infty} c_{\mathbf{p}, \mathbf{q}} \int_{\mathbf{I}} |\phi^{(\mathbf{q})}(\mathbf{x})|^2 d\mathbf{x})^{1/2}, \ \mathbf{p} \in \mathbb{N},$$
if (C.1), (C.4) and (C.5) hold.

Proof. If
$$\phi \in \overline{\ell_I}^{(C_{p,q})}$$
, (C.5) implies
$$\|\phi\|_{p,I} \leq C \|\phi\|_{p,I} \text{ where } C = \int_I dx \int_{q \in N_0}^{\infty} c_{p,q}^{(C_{p',q})^{-1}}$$
 From the Sobolev Lemma (see [6], Theorem 4.1) it follows:

$$\sup\{|\phi(x)|; x \in I\} \le \sup\{(\int_{I} |\phi^{(1)}(x)|^2 dx)^{1/2}; 1 = 0, 1, 2\}$$

So we have

$$\begin{split} &\sup\{c_{p,q}|_{\phi}^{(q)}(x)|; \ x \in I, \ q \in N_{o}\} \leq \sup\{c_{p'',q}^{(q)}(x)|_{\phi}^{2}(x)|_{$$

where p" corresponds to p' in (C.4) and p' corresponds to p also in (C.4). From this inequality it follows that

$$\|\phi\|_{p,I} \le (1+2A) \quad \|\phi\|_{p,I}^{c} , \text{ where}$$

$$A = \sup \left\{ \frac{c}{c}_{p,q} + \frac{c}{c}_{p,q+1} + \frac{c}{c}_{p,q+2} ; q \in N_{o} \right\} .$$

The constant A exists because (C.4) holds.

Let $\{M_p(x)\}$ satisfies the conditions of Theorem 1 and condition (N); $\{c_{p,q}\}$ satisfies the conditions (C.1), (C.2), (C.3) and (C.4). Let us denote by $\{\gamma_{p,M}\}$ the sequence of norms on $\sigma\{M_p(x,q)\}$ defined by $\gamma_{p,M}=\gamma_p$, peN, where $\{\gamma_p\}$ is the sequence of norms in $\sigma\{M_p(x)c_{p,q}\}$ defined by

$$\gamma_{p}(\phi) := \sup\{c_{p,q}^{M_{p}}(x) | \phi^{(q)}(x)|; q \in N_{0}, x \in R\}.$$

LEMMA 3. The sequence of norms $\{\gamma_{\textbf{p},\textbf{M}}\}$ is equivalent with the following two sequences of norms

(i)
$$\gamma_{p,M}^{2} = \sup\{c_{p,q} (\int_{\mathbb{R}} |M_{p}(x)\phi^{(q)}(x)|^{2} dx)^{1/2}; q \in M_{o}\}, p \in M$$

(ii)
$$\gamma_{p,N}^{"} := \sum_{n=-\infty}^{\infty} \mu_{n,p} \int_{n}^{n+1} |\phi^{(q)}(x)|^2 dx)^{1/2}, p \in N;$$

where

$$\mu_{n,p} = N_p(n+1), \quad n \in Z = -N U N_0.$$

Proof. (i) It is clear that every norm from the sequence $\{\gamma_{p,M}^{-}\}$ may be majorized by some norm from the sequence $\{\gamma_{p,M}^{-}\}$ (see [2] p. 82).

From (N) it follows that for any $q \in N_0$, $N_p(x) | \phi^{(q)}(x) | \to 0$ as $|x| \to \infty$.

Using this fact and (I), for x eR we have

$$|N_{p}(x)\phi^{(q)}(x)| \leq |\int_{-\infty}^{x} (N_{p}(t)\phi^{(q)}(t))^{d}t| \leq$$

$$\leq \int_{-\infty}^{\infty} |(N_{p}(x)\phi^{(q)}(x))^{-1}dx \leq \int_{-\infty}^{\infty} |N_{p}(x)\phi^{(q)}(x)|dx + \int_{-\infty}^{\infty} |N_{p}(x)\phi^{(q+1)}(x)|dx \leq$$

$$\leq B_{p,1} \int_{-\infty}^{\infty} N_{p}(x)|\phi^{(q)}(x)|dx + \int_{-\infty}^{\infty} N_{p}(x)|\phi^{(q+1)}(x)|dx =$$

Multiplying this inequality by $c_{p,q}$, from (C.4) we obtain

$$(4) \qquad \qquad \gamma_{\mathbf{p},\mathbf{N}}(\phi) \leq B_{\mathbf{p},\mathbf{1}} \gamma_{\mathbf{p}',\mathbf{N}}(\phi) + A \gamma_{\mathbf{p}',\mathbf{N}}(\phi)$$

where p corresponds to p in (C.4) and $A = \sup\{c_{p,q}/c_{p',q+1}, q \in N_0\}$.

From Theorem 1, more precisely from (2^{00}) and (3^{00}) , it follows that the sequence $\{\gamma_{p,M}\}$ on $\sigma\{M_p(x)c_{p,q}\} \equiv \sigma\{N_p(x)c_{p,q}\}$ is equivalent to the sequence $\{\gamma_{p,N}\}$. Using this equivalence for the left hand side of (4), and (2^{00}) and (3^{00}) for the right hand side of (4) we obtain that every norm from $\{\gamma_{p,M}\}$ may be majorized by some norm from $\{\gamma_{p,M}\}$.

(ii) Since the sequences $\{\gamma_{p,M}\}$, $\{\gamma_{p,N}\}$ and $\{\gamma_{p,N}\}$ are mutually equivalent we ought to prove that $\{\gamma_{p,N}\}$ and $\{\gamma_{p,N}^{"}\}$ are equivalent. This follows from: condition (I) for $\{N_p(x)\}$; the monotonicity of $N_p(x)$ if $|x| \to \infty$, $p \in N$; condition (T) and

$$\int_{R} N_{p}^{2}(x) |\phi^{(q)}(x)|^{2} dx = \int_{R_{e}} \int_{Z} \int_{R}^{n+1} N_{p}^{2}(x) |\phi^{(q)}(x)|^{2} dx.$$

Let us prove this assertion.

If $n \in \mathbb{Z}$, $\phi \in \sigma \left\{ N_{p}(x,q) c_{p,q} \right\}$ we have $\int\limits_{n}^{n+1} N_{p}^{2}(x) \left| \phi^{(q)}(x) \right|^{2} dx \leq \mu_{n,p}^{2} \int\limits_{n}^{n+1} \left| \phi^{(q)}(x) \right|^{2} dx$,

so $\gamma_{p,N}^{\bullet}(\phi) \leq \gamma_{p,N}^{m}(\phi)$, pen. $N_{p}(x)$, pen monotonically increase when $|x| \to \infty$, thus for a large enough |n| we have

$$\int_{n}^{n+1} N_{p_{1}}^{2}(x) |\phi^{(q)}(x)|^{2} dx \ge \mu_{n-1}^{2}, p_{1} \int_{n}^{n+1} |\phi^{(q)}(x)|^{2} dx \ge \sum_{p_{1}, p_{1}}^{n} \mu_{n, p}^{2} \int_{n}^{n+1} |\phi^{(q)}(x)|^{2} dx$$

where we choose p_1 and $p_p, p_1 > 0$ such that

(5)
$$N_{p_1}(x-1) \ge D_{p_1p_1}N_{p_1}(x)$$
 for $x > D_{p_1p_1}$;
 $N_{p_1}(x+1) \ge D_{p_1p_1}N_{p_1}(x)$ for $x < -D_{p_1p_1}$.

The existence of p_1 and p_p, p_1 follows from (T), if this condition is taken m-times where $m\epsilon \geq 1$. If the numbers p_1 diverge to infinity the corresponding p in (5) also diverge to infinity. So for a suitable C and any $\phi \in \sigma(M_p(x,q))$ we obtain

$$\gamma_{p_1,N}^{\prime\prime}(\phi) \geq c \gamma_{p,N}^{\prime\prime}(\phi)$$

Thus the sequences $\{\gamma_{p,N}^{\prime}\}$ and $\{\gamma_{p,N}^{\prime\prime}\}$ are equivalent.

3. Now we are ready to prove the following theorem.

THEOREM 2. Let $\{M_p(x)\}$ be the sequence of functions from Theorem 1 for which (N) holds, and let $\{c_{p,q}\}$ be a matrix of positive numbers for which (C.1) — (C.5) hold. The corresponding space of $\{M_p(x)c_{p,q}\}$ is nuclear.

Proof. For the proof we need to check that the conditions from the construction of a nuclear space by a known nuclear space, given in [2] p.p. 80, 81, are satisfied.

If we put $m_{n,p} = \mu_{n,p}$, $n \in \mathbb{Z}$, $p \in \mathbb{N}$, we have

$$\begin{array}{lll} & \underset{n+1,p}{\overset{m}{=}} n_{n,p} > 0 , \ n \in N_{o}, \ p \in N \\ & \underset{n-1,p}{\overset{m}{=}} m_{n,p} > 0 , \ n \in N, \ p \in N, \\ & \underset{n+1}{\overset{m}{=}} m_{n,p} > 0 , \ n \in N, \ p \in N, \\ & \underset{n+1}{\overset{m}{=}} m_{n,p+1} , \ because \ N_{p}(x) \leq N_{p+1}(x) , \ p \in N \end{array}$$

Let us prove that for any peN there exists p eN such that

(6)
$$\sum_{n \in \mathbb{Z}} \frac{m_{n,p}}{m_{n,p}} < \infty$$

For large enough n & N we have

$$\frac{m_{n,p}}{m_{n,p_2}} = \frac{N_p(n)}{N_{p_2}(n)} \le \frac{N_p(n)}{N_{p_2}(n+1)} \le D_{p,p_2} \frac{N_p(n)}{N_{p_1}(n)}$$

where p_1 corresponds to p in (N) and p_2 is chosen in order to make N_{p_1} (n) $\leq N_{p_2}$ (n-1) hold. The existence of p_2 and p_1 , p_2 follows from (T). Namely, if (T) holds for $\{M_p(x)\}$ it is easy to prove that this condition holds for $\{N_p(x)\}$ as well. The con-

vergence of the series follows from (N), By the same arguments we obtain that

$$\sum_{n=-1}^{\infty} \frac{n_{n,p}}{m_{n,p_2}} < \infty , \text{ so (6) holds.}$$

Let us denote by $\Phi(E_n)$ the space of sequences of the form $\phi:=\frac{(c_p,q)}{e^{(p)}}$, ϕ_{-1} , ϕ_{-2} , ϕ_{-2} , where ϕ_{-1} , ϕ_{-1} , ϕ_{-1} , ϕ_{-1} , ϕ_{-1} , such that

$$\|\phi\|_{p,\phi} := \sum_{n \in \mathbb{Z}} m_{n,p} \|\phi_n\|_{p,1}^2 < \infty , peN.$$

$$(I_n = [n,n+1], nez).$$

The proof that $\phi(E_n)$ is nuclear is the same as the proof of the nuclearity of the space $\phi(M)$ given in [2] p. 81. because the space $E_1^{(Cp,q)}$ is countable Hilbert nuclear space according to the sequence of scalar products

$$(\phi,\psi)_{p} = \sum_{q=0}^{\infty} c_{p,q} \int_{I} \phi^{(q)}(x) \overline{\psi}^{(q)}(x) dx$$
, pen.

We embedded the space $\sigma\{N_p(x)c_{p,q}\}$ into the space $\Phi(E_n)$ by the isometry

$$i: \phi \to \{\phi \mid_{I_n} ; n = 0, 1, -1, \dots \}$$

The space $i(\sigma\{N_p(x)c_{p,q}\})$ is a closed subspace of $\phi(E_n)$ and so it is nuclear.

REFERENCES

- [1] I.M.Gelfand, G.E.Shilov, Genaralized Functions, Vol. 2, Spaces of Fundamental and Generalized Functions, Acad. Press, New York, (1968).
- [2] I.M.Gel fand, G.E.Shilov, Generalized Functions, Vol. 4, Applications of Harmonic Analysis, Acad. Press, New York, (1964).
- [3] H.Komatsu, Ultradistributions, I, Structure theorems and a characterization, J.Fac. Sci.Univ. Tokyo, Sec. IA, 20, (1973), 25-105.

- [4] S.Pilipović, A characterization of the Space $D_{\vec{p}}$, Math. Vesnik, 6(19) (34), (1982), 409-416.
- [5] S.Pilipović, A.Takači, On a Class of Spaces of the Type $\sigma^*\{M_p(x,q)\}$,

 Zb. Rad. Prir.-Mat. Fak., Univ. u Novom Sadu, ser. mat.

 13 (1983), 145-166.
- [6] R.E.Showalter, Hilbert Space Methods for Partial Differential Equations, Pitman, London, (1977).

Received by the editors June 22, 1983.

REZIME

NUKLEARNOST PROSTORA $\sigma\{M_{D}(x, q)\}$

U radu je pokazana nuklearnost prostora $\sigma\{M_p(x,q)\}$ gde je $M_p(x,q) = M_p(x)c_{p,q}$, a $\{M_p(x)\}$ i $\{c_{p,q}\}$ zadovoljavaju odredjene uslove.