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ABSTRACT

In [3] a fixed point theorem for multivalued mappings in not ne-
cessarily locally convex topological vector spaces is proved. Here we ob-
tain, by using this fixed point theorem and the duzl result, two theorems
on the coincidence point, a result on the equilibrium state in a special

noncooperative game and three existence theorems for some classes of equ-

ations.
1. NOTATIONS AND DEFINITIONS

Recently some fixed point theorems for multivalued map-
pings in not necessarily locally convex topological vector spa-
ces have been proved ([3],[4],[5],(8],[¢],(10],[1],[13]). So-
me applications in the theory of optimization are given in Di
and [12]. This paper contains some further applications of fi-
xed point theorems from [3] and [11]. The following notations
and definitions are taken from [}i] and -[6]. In this paper it
will be assumed that all topological vector spaces are Haus-
dorff. If X is a topological space, by 2x we shall denote the
family of all nonempty subsets of X and by 2§ the family of
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all nonempty closed subsets ot X. The family of all nonempty,
closed and convex subsets . of X will be denoted by R(X) . If
X is a topological vector space and AGQ X then co A denotes the
convex hull of A.

Let f:X+Y, where X and Y are topological spaces. Then
for every ASX, BEY:

f(A):Uf(x)(, f_1(3)={x|xex, E(x)NB#FY .
X€A

The mapping f:X+Y is upper semicontinuous if and only

if for each closed set B Y, the set f—l(B) is a closed subset
of X.

DEFINITION, Let E be a topological vector space, U be
the fundamental family of neighbourhoods of zero in E and KSE.
We say that the set K is of Zima's type if and only if for eve-
ry Vel there exists Uel so that co(UMN (K-K)) SV .

Some examples of subsets of Zima“s type in not necessa-
rily locally convex topological vector spaces are given in [6].
Let E be a vector space and || || *:E~+ [0,~) so. that the follo-
wing conditions are satisfied:

1. || x|} * = 0<=>x=0.
2. || x| *= || -x|| * , for every xsE,
3. llx+yll *< |l x|l *+ {1 yll *, for every x,y €E.

4. If || x ~x || *+0 and Ap* A s when n-+« then I agx, -
- )‘oxo” *5 0,
Then (E, || ||*) is a paranormed space. This is a topological

vector space in which the fundamental system of neighbourhoods

of zero in E is given by the family V= {V_}

rrs0 ! where:

Vr={x|er, | || *<x}.

In [16] Zima proved a generalization of the Schauder
fixed point theorem for the mapping f:K +K, where K is a subset
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of E and (E,|| |[|*) is a paranormed space and there exists C> 0
so that
(1) Il tx]] *<c t|| x|| * , for every te [0,1] and x e £(K)-£(K).

It is easy to see that the inequality (1) implies that
f(K) is of Zima“s type. In [6] an example of E and K is given,
where K= E and (E,]| ||*) is a non-locally convex paranormed spa-
ce so that :

l x|l *<c t|l x|| * for every te [0,1] and x e K-K .

An example of K and E is given in [9] and [16].
In [3] the following fixed point theorem is proved.

THEOREM A. Let E be a topological apace, U the fun-
damental syetem of neighbourhoods of zero in E, K a closed
and convex subset of E, £:K+ R(K) an upper aemicontinuous map-
ping such that f£(K) is compact and £(K)ie of Zima’s type. Then
there exists x €K 8o that xe f(x).

2, TWO THEOREMS ON THE COINCIDENCE POINT

Using the same method as in [15], we shall prove the
following coincidence theorem,

THEOREM 1. Let E be a topologieal vector space, S a
nonempty closed and convex subset of E, K a compact subset of
S, H a topological space.and ¢$:8S » Zg, Y:K > Zg upper semicontinu-
ous mappings such that w-l(d’(s)) i3 of Zima’s type. Let for
every X€S -

(1) d(x) NY(R) # # .
(11) I’l-l(¢(x)) be convex.

If H 28 regular or H ig Hausdorff and Y(x) 18 compact for eve-
ry X €K, there exists X €K such that ¢(xo) ﬂw(xo) ¥ 0.
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Proof. Let us define, as in [15j, the mapping
$:8 + 210( in the following way:

$x) = v e(x)), xes .

It remains to be proved that $ satisfieg all the conditions of

Theorem A. Since w'1(¢(5)) is of Zima“s type, we shall prove
that 3 is upper semicontinuous and 3(x) € R(K) for every xeS.
Since (11) holds, the relation $(x) € R(K) follows from the
upper semicontinuity of y and the closedness of the set ¢(x).
The upper semicontinuity of ¢ follows as in (15}, since

(A)

. {x|xeS, $(x)n A# P} =

(x|xes, v (ex)NA¥G) =

{x|xeS, ¢(x)n ¢(A) # &}
where A is a closed subset of K.

COROLLARY %, Let X be a topological veetor space, L
a nonempty, closed and convex subset of X, f:L-+ R(X) an upper
semicontinuous mapping such that f(L) is eompact, and G a li-
near one to one mapping from X onto X such that G and G_1 are
continuous and £(L)= G(L). If f(L) <8 of Zima’s type, there

exists X €L such that G(x) € £(x).

Proof. LetH=X,8=L, K=G ‘£(L), ¢~f and y=G.
From the compactness of f(L) , it follows that K is a compact
subset of L. Since G™! is a linear mapping and f(x) € R(X) for
every xeL, it follows that G le(x) e R0 .

From f£(L) =G(L) it follows that (i) is satisfied. Let
us prove that G—l(f(s)) is of Zima“’s type. By U we shall deno-
te the family of all neighbourhoods of zero in X and let Ve l,
We shall prove that there exists Ue U so that:

coU n (¢ le(s) -6 le(s))) sv .

Since G_1 is continuous and linear, there exists V- el so that
G_l(V');V. Further, the set f(L) is of Zima“s type and so
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there exists U” ¢ U such that:
co(U°N (£(8)~£(S))) =V~ .

From the linearity of the mapping G-l, we have that:
¢ L(co(un (£(85)-£(5)))) =co(c™ (U” N(£(S)-£(S)))) .
This implies that:
(2) cotc lwynaliss-£(s))) s tvy sv .

Furthexr, the mapping G is continuous and so there exists Uel
such that GU= y- . Hence US G—I(U “), and from (2) we obtain
that:

coun (6 1e(s)-c"1£(8))) S co(a T (u) 0 (67 te(s)-c T E(S))))S V.

Using the method of duality and Theorem A,in [11] the follo-
wing fixed point theorem is proved:

THEOREM B. Let L be a nonempty compact subset of Zi-
ma ‘s type of a topological vector space E, f:L~+ 2E an upper
gemicontinuous mapping such that LS f(L), f(x)=f(X) for every

xel, c—of_l(x) !f-l(x) s for every xeg £(L) and f(L) =co £(L)
be compact. Then there exzists x, €L such that X, € f(xo).

Applying Theorem B we shall prove the following coinci-
dence point theorem.

THEOREM 2. Let S be a nonempty, compact and convexz
subset of Zima s type of tolopogical vector space E, K a com~
pact subset of E such that SS KEE, H a convexr subset of a
topological vectior apace, tl):s+2:;l » w:K+22° (all convex sub-
setsof H) upper semicontinuous mappings such that for every
XéeS:

$(x)N ¥(K) # 0, Pix) N ¢(S) # @

and lb-l(ct:(S)) =c_ov.p-1(¢(5)). If for every x,,X, €S and every
@820, atB=1, ad(x,) +Be(x,) So(ax,+8x,) it follows that the-

re exists X €S so that ¢(xo)n Pix) #9 .



20 Olga Had¥ié

Proof, Let, as in Theorem 1:
A -1
¢(x) = ¢ (¢(x)), xe€S .

From the condition ¢(x) N ¢ (K) ¥ g, for every xe S it follows
that $(x) # @ for every x€S. It is obvious that $(S) SK. Let
us prove that all the conditions of Theorem B for L=S are sa-
tisfied.

First, let us prove that Lc_:$(L). Since:

Vo)) = (x|xeK, $IN ¢(S) # §)

from y(x) N ¢(S) # § for every xeS, it follows that S=¢I¢(S))
and so Ls$(L). Furthermore , ¢(x) is closed and ¢ is upper se-
micontinuous and so $(x) is closed for every xeS. It is obvi-
ous that $(S) ==i:_6$(s) and so it remains to be proved that:

Eaa-l(x) = 3 l1x), for every xe ¢(S)

and that $ is upper semicontinuous. The upper semicontinuity
can be proved as in [15]. Since E is Hausdorff, {x} closed
and ¢ upper semicontinuous, we conclude that ¢ 1({x}) is closead.

We shall prove the convexity of ry (x), Xe ¢(S). Let u,,u, €
€ $-1(x) » 9,8>0, a+tB=1. This means that ¢(u,) A ¥(x) ¥4,
'Nuz) nyix)#4@. If Y, € ¢(u1) fl ¢(x) and Y, ¢(u2) fi p(x), then
ay1+By2 e p(x), since Y(x) is convex and ay1+By2 € ad (ul) +

+ Bé(uy) =¢lau,+pu,).

So, we conclude that ay, + By2 € cb(«:m1 + Buz)n $(x) .

3. EQUILIBRIUM STATE IN A SPECIAL NONCOOPERATIVE GAME

In this section we shall use Theorem A in order to ob-
tain, similarly as in [12] , a theorem on the equilibrium
state in a special noncooperative game,

THEOREM 3. Let {Ei}ieI be a family of topological

vector apaces,for each ie€el, Ki a closed and convezx subset of
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E,, K=i]—|Ki , E= ﬂEi, for each 1 €I, ¢4:K+R(K,) be upper
eI iel

semicontinuous and ¢1(K)‘EC1‘.=_K1 (1 €I) where cy i8 a compact

set for each i €I. If, for every ie€e1I, ¢1(K) <8 of Zima’s ty-

pe, there exists an X € K such that iiecti()—t) where >-t1=projx‘)_:,
i
ielI.

Proof. The proof is similar to [12]. Let ¢:K+R(K)
be defined by:
o) = [ ¢,(x), xeK .
iel .
Then,¢ (x) is compact, since it is the product of compact sets
¢i(x), (i ¢ I). Furthermore, ¢(x) is convex and so ¢(x) e R(K)
for every xe K. Since ¢(K) = [ | Ci’ the upper semicontinuity
iel
of ¢ follows from the closedness of the graph of ¢. This can
be proved as in [15]. It remains to be proved that ¢(K) is of 2i-
ma“s type. Let us denote by V the fundamental system of neigh-
borhoods of zero in E and by Vi the fundamental system of ne-

ighbourhoods of zero in Ej (i eI). Let Ve V. We shall show
that there exists Ue¢ U so that co(U N ($(K)-¢(K)))=V. Since

VeV, there exists a finite set J&I such that v={"] v/
ieI
ieINd
= and Vievi, ied.
Vi, 1edJ

where v

Since ¢1(K) is of Zima“s type, there exists Uie\):L (LeI) so
that:

co(Uin (¢1(K)-¢1(K)));V ied .

il

il ieJ

Let U: = (1eI). Then it is easy to
Ey» ieI\NT

prove [12] that for U = [ |U we have that co(UN(¢(K)-¢(K)))=V.
ieI
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as in [15] we can formulate the following theorem on the equi-
librium state in a special noncooperative game.

THEOREM 4. Let ‘{Ei}ieI be a family of topological

vector spaces, for each 1 €I let Cy be a nonempty convex sub-

K
set of Ey, C=I—IC1 s $4:C>2 1 be a continuous function for
el

every 18I, where K, Zs a nonempty compact subset of C and
Y i P /4 1

fi:C+Rl be a continuous function for every i1€XI., If the sget:

(3) $i(x)={y|ye¢i(x), £, (y,x]) = max fi(?xi,xi')}

7 xiegi(x)

i8 convex for each x € C where, x£=projc,x,ci’= 1 Cj (ie I)
i jeI,j#d

and ¢;(C) is of zima’s type, then there exists an X€K= |_1Ki

iex
such that:
- _ ~ -, - -
(4) £,(x) =  max _ f,(x,,x/) and x, €¢,(x) .

xiui(x)

P r o o f. The proof follows from Lemma 5 in [15]
and Theorem 3.

COROLLARY 2. et {(E;, | || 1,

eI be a family of para-

K
normed spaces, C= I_]C:L » $g:C>2 1 pe a continuous function
iel ; .

for every 1 eI where Ki i8 a nonempty compact subset of non-
empty convex subset Ci of Ei’ fi:C-rRl be a continuous finc-
tion for every 1eI so that ai(x) Ax€C), defined by (3), is
convex. If there exists M, (1 €eI) so that:

lfex ) F<mtll x| ¥, te[0,1], xed, (C)-¢,(O) ,

then there exists an xe K= [ |K, such that (4) holds.

jer i
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4. EXISTENCE THEOREMS FOR SOME CLASSES OF EQUATIONS

Using Corollary 1 we shall prove the following theo-

THEOREM S. Let X be a topological vector epace, U
the fundamental system of sero in X, K a compact and convex
subget of X, G a linear one to one mapping from X into X such
that G and G—'1 i8 continuous, T € L(X,X) and S an upper semi-
continuous mapping from K into R(X) such that the following

two conditions are satisfied:

(1) Por every ye co(S(K)~S(K)) there exists a unique
x(y) e G(K) such that x(y) =Tx(y) +vy.

(11) o0eG(K) 1 S(K) and for every Vel there exists
Uel gso that co(UN(S(K)-S(K))EV .

Then there existe x €K so that G(x) ¢ TG(x) + Sx.

Proof. Let us define the mapping R:C6(S(K)-S(K))+
+ G(K) in the following way:

Ry =TRy +y, for every ye co(S(K)-S(K)) .

We shall prove that the mapping R is continuous. Let {Yu}aeA

be a convergent net from co(S(K)-§(K)) and lim ya=ye§(s(x)-s(l()).
agh

Since {Rya} © G(K) and G(K) ig compact, there exists a

a€eA

subhet {yaa} g such that z=1im Ry . Then from Ry, =TRy, +

i Be Ly BEE g 8 8
+y . we have 1 Ry = 1lim TRy
08 &m GB B GB

this it is easy to conclude that Ry=lim Ryc . Furthermore,
B 8

from MSS(K)-S(K) it follows that coR(M) = R(coM). Indeed, if
u € coR(M), then:

+1lim Yo and so z=Ry. From
8 B

n : ‘ n
u= J tju,, u, eRM, t, >0 (He{l,2,...,0D), [ ¢ =1.
i=1
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Since uieR(M) (Le {(1,2,...,n}), there exists v, eM (1e (1,

i

2,...,n}) such that u,=Rv, (1€{1,2,...,n}) and we have that:

1 i
‘Rv1=TRvi+vi(ie{1,2,...,n}). Hence:
n n n n
i_z__ltiRvi=T( 1£1t1Rvi) + 1.Z_1t1v1' 1£1tiviec°M

n n
which implies that R ( t,v,) = t,Rv,. So, we have that
LR

R(coM) =co R(M) .

Since 0Oe S(K), it follows that S(K) S co(S(K)-S(K))
and so we can define the mapping R* in the following way:
R*x= U Ry, for every xe K. Since T is a linear mapping from

yeSx
X into X and for every ve Co(S(K)-S(K)) there exists one and
only one element x(y) € G(K) such that Ry=TRy +y, it follows
that R(0O) =0.

So, for every Vel there exists V- e U such that:

R(V° N co(S(K)-S(K))NE V .

The rest of the proof is similar to [3], but we shall
repeat 1t here for completeness. Namely, we shall prove that
the mappings G and R* satisfy all the conditions of Corollary
1 and that there exists x e K such that G(x) e R*(x).

It is obvious that R* is an upper semicontinuous map-
ping from K into R(X), since R is continuous and S is an upper
semicontinuous mapping from K into R(X) and M=S(x), xeK im-
plies that R(M) 1s convex. Furthermore, there exists U” ¢ V
such that:

co(U” N (S(K)-S(K)))= V N co(S(K)-S(K)) .

Since R(co(U” M (S(K)-S(K)) = co(R(U” N (S(K)-S(K))) it follows
that co(R(U-N (S(K)-S(K)) S V. We have that R ‘z=z- Tz for
every z € R(CO(S(K)-S(K))), Hence, R’ is continuous,and so there
exists U el such that:
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R 1 (UN R(S(R)-S(K))) S U~ N (S(K)-S(K)) .

Hence, co(UNl (R*K-R*K)) cV, since for every x,y € S(K), R(x-y) =

= Rx-Ry. From Corollary 1 it follows that there exists x €K
such that G(x) e R*(x).

This means that there exists u €5x) such that G(x) =Ru
So, we have that G(x) =Ru=TRu+u=TG(x) +ue TG(x) + Jx)

REMARK. From the proof it is easy to conclude that it
is sufficlient to suppose that K is a nonempty closed and con-

vex subset for X, that the set {x(y)} is com-

yeco(S(K)-S(K))
pact and S such that the set S(K) is compact.

That is, in this case we can also prove that the map-
ping R is continuous.

COROLLARY 3.[3]Let X be a topological vector space, K
a compact, convex subset of X, OeK, TeL(X,X) and S:K-» R(X)
an upper semicontinuous mapping. Suppose that the following
two conditions are satisfied:
(i) For every Y e co{S(K)-S(K)) there exists one and only
one element x(y) € K such that x(y) =Tx(y) +y.

(ii) OeS(K) and S(K) ©s of Zima ‘s type.

Then there exists X € K such that X e Tx + Sx.

Proof. It is enough to take inTheorem 5 that Gx =

= X, xX€X,

COROLLARY 4. Let (X,|| || *) be a complete paranormed
space, K a closed and convex subset of X, S:K-+R(X) an upper
semicontinuous mapping, T & L(X,X), S(K) compaét, 0eS(K)NK
so that the following conditions are satisfied:

1. |} mx{| *<qll x|l *, for every xeX, where qe[0,1)

2. T(K) + co(S(K)-S(K)) S K

3. There exists C>0 so that || tz|] *<cCt || z|l* for every
te [0,1] and every zeS(K)-S(K).

Then, there exists X € K such that x € Tx + Sx.
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Proof£. It remains to be proved that for every
y € co(S{K)-5(K)) there exists one and only one element x(y) € K

such that x(y) =Tx(y) +y and the set {xy) Yyeco(s (k) -s(x)) 1%

compact. Since || Tx-Ty||-*<q|| x-y|| *, for every x,y e X and

T(K) + co(S(K)-S(K)) € K
it follows from the Banach fixed point theorem that for every

y 8 co(S(K)-S(K)) there exists x(y) eK so that x(y) = Tx(y) +y.
From the inequality: '
Il vy-v,oll *

2
” x(yl) -x(yz) ” * < ——1—-_—6—
for every y;,v, € Co({S(K)-S(K)) follows the continuity of the

mapping y »x(y) (y e co(S(K)-S(K))). The rest of the proof is si-
milar to the proof of Theorem 5.

THEOREM 6. Let K be a nonempty, compact, convex sub-
set of topologieal veector space E, F a topological vector spa-
ce, g a continuous mapping of KxK into F, and C a closed sub-
set of F. Suppose that for each x in K the set:

{vly ek, g(x,y) ec}

18 nonempty and convex. If K 18 of 2Zima’s type, there exists
an element ue€ K guch that glu,u) € C.

Proof. As in [1] for each x in K, we define T(x)
in the following way:

Tx = {y|yeK, g(x,y)eC }.

Since T(K)SK and K is of Zima“s type, it follows that T(K) is
of Zima’s type. Furthermore, the mapping T:l<->2K satisfies
the condition T(x) = coT(x) for every x € K, since C is closed
and g continuous. The upper semiconil:inuitx of T follows as in
(1], and so from Theorem A it follows that there exists x €K
such that x € Tx. This implies that g(x,x) eC.

As in [1], from Theorem 6 we obtain the following Co-
rollaries.
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COROLLARY 5. Let K be a compact, convex subset of
topological vector space E, F a topological vector space,and
g a continuous mapping of KxK into F. Suppose that g(x,tly1 +

+t2y2) =tlg(x,y1)+tzg(x,y2) for all X,Y,i¥, €K and tyrty, >0,
tl + t2 = 1 and there exists for every xeK, y €K such that

g(x,y) =0.If Kia of Zima’as type, there exists u€ K such that
glu,u) =0.

Proof. For C= {0}, the set {y|yeX, g(x,y)eC}
is nonempty and convex for every x € K.

COROLLARY 6. Let K be a compact, convex subset of
Zima ‘s type of topological vector space E, C a nonempty, clo-
sed, convex gsubset of E such that £(K) SK+C. Then there exi-
sta an element u€ K guch that f(u) e uicC. ‘

Proof. Let in Theorem 6, F=E and g(x,y) = f(x)-y
for every x,y € K. Then

{yly ek, gi(x,y) ec} = K n(£(x)-C)

and so the set {y|yeK, g(x,y) € C} 1s nonempty and convex
for every x & K.
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REZIME

NEKE PRIMENE TEQOREME O NEPOKRETNOJ TACKI ZA
VISEZNACNA PRESLIKAVANJA U VEKTORSKO TOPOLOSKIM PROSTORIMA

u ovom radu su dokazane teoreme o koincidenciji za vi~
Sezna®na preslikavanja a data je i primena teoreme o nepokret-
noj ta¥ki iz rada [3] u teoriji igara. Dokazane su i tri teo-
reme o postojanju reSenja nekih klasa jedna&ina u vektorsko

topolo3kom prostoru.



