CORRECTIONS TO "SOLVABILITY OF CONVOLUTION EQUATIONS IN #' { Mp }"

Stevan Pilipović and Arpad Takači Prirodno-matematički fakultet. Institut za matematiku 21000 Novi Sad, ul.dr Ilije Djuričića br.4, Jugoslavija

Our paper "Solvability of Convolution Equations in H^{M_D} " was published in this Journal, Volume 11(1981),45-58.

In the proof of Theorem 5 we overlooked that β (p. 55) must not be bounded. So from this point up to the end of the paper we have to suppose the following additional assumption

(B) For every p 6 N there exist p $^{\circ}$ e N, $\delta > 0$, and $x_{\chi} > 0$ such that

$$M_p^*(x) \ge M_p^*(x^{1+\delta})$$
 if $x > x_{\delta}$

To avoid missunderstendings we shall reformulate The orem 5 and give the complete proof of it.

THEOREM 5. Let $F(\xi)$ be an entire analytic function which is M_q -slowly decreasing for some $q\in N$ and let $p\geq q'$ where q' correspond to q in (B). If $F(\xi)$ satisfies an estimate (9) for some c,n, and this p then $F(\xi)$ is extremely slowly decreasing.

Proof. We shall use the idea of the proof of Theorem 3' from [4].

AMS Mathematics subject classification (1980): 46F05 Key words and phrases: Convolution equations, distributions.

There exists L, >0 such that

$$\sup\{\texttt{M}_{p}^{\star}\left(\texttt{x}\right)/\texttt{M}_{q}^{\star}\left(\texttt{x}/\texttt{A}_{1}\right),\quad \left|\texttt{x}\right|\geq \texttt{L}_{1}\}\leq 1$$

holds (A, is from (13)). Namely if $0 < \delta_1 < \delta$ from (B) follows

$$\texttt{M}_{q}^{\star}(\texttt{x}/\texttt{A}_{1}) \geq \texttt{M}_{p}^{\star}((\frac{\texttt{x}}{\texttt{A}_{1}})^{1+\delta}) \geq \texttt{M}_{p}^{\star}(\texttt{x}^{1+\delta_{1}}) \geq \texttt{M}_{p}^{\star}(\texttt{x})$$

for sufficiently large |x|.

Let us take $L \ge L_1$ so large that $\rho_1(\log(1+|\xi|)) \ge 1$ for each ξ with $|\xi| \ge L$. Let us fix ξ with $|\xi| \ge L$ and define

$$\beta := \frac{\log \rho}{\log (M_{D}^{\star^{-1}}(M_{G}^{\star}(\rho/A_{1}))) - \log \rho}$$

where $\rho = \rho_1(\log(1+|\xi|)) > 1$. Observe that from (B) follows that $0 < \beta \le \delta$. Let us put $\overline{R} := \rho^{(\beta+1)/\beta}$.

As in |4|, we apply Hadamard's Three Circles Theorem on the function $F(\xi+\lambda w)$ ($\lambda-complex$ variable) for the circles with radiuses $1,\rho,\bar{R}$ and

$$\gamma \colon = \frac{\log{(\overline{R}/\rho)}}{\log{\overline{R}}} = \frac{1}{\beta+1} .$$

All the time, w is a complex parameter. So we have

(14)
$$\sup\{|F(\xi+w)|; |w| \le 1\} \ge$$

$$\ge (\sup\{|F(\xi+\rho w)|; |w| \le 1\})^{1+\beta}/(\sup\{|F(\xi+Rw)|; |w| \le 1\})^{\beta}.$$

Using (9) we obtain

$$\begin{aligned} & \left| \mathbf{F} \left(\boldsymbol{\xi} + \overline{\mathbf{R}} \mathbf{w} \right) \right| \; = \; \left| \mathbf{F} \left(\boldsymbol{\xi} + \overline{\mathbf{R}} \cdot \mathbf{R} \mathbf{e} \mathbf{w} + \mathbf{i} \cdot \overline{\mathbf{R}} \cdot \mathbf{I} \mathbf{m} \mathbf{w} \right) \right| \; \leq \\ & \leq \mathbf{c} \cdot \left(1 + \left| \boldsymbol{\xi} \right| \right)^{\mathbf{n}} \cdot \left(1 + \overline{\mathbf{R}} \right)^{\mathbf{n}} \cdot \exp \left(\mathbf{M}_{\mathbf{p}}^{\star} \left(\overline{\mathbf{R}} \right) \right) \; \leq \mathbf{c}^{\star} \cdot \mathbf{c} \cdot \left(1 + \left| \boldsymbol{\xi} \right| \right)^{\mathbf{n}} \cdot \exp \left(2 \cdot \mathbf{M}_{\mathbf{p}}^{\star} \left(\overline{\mathbf{R}} \right) \right) \end{aligned}$$

where we have put c':= $\sup\{(1+\overline{R})^n \exp(-M_{\overline{p}}^*(\overline{R})); \overline{R} \in R \} < \infty$.

Since we have construced \bar{R} so that $M_p^*(\bar{R}) = M_q^*(\rho/A_1)$ we have

(15)
$$\sup\{|F(\xi+Rw)|; |w| \le 1\} \le C \cdot (1+|\xi|)^{n+2}$$

for some C > 0. Returning to (14) using (11) we obtain the statement for $|\xi| > L$, because β is bounded.

Using the Maximum Principle we obtain for $|\xi| \le L$ sup{ $|F(\xi+w)|$; $|w| \le 1$ } $\ge C_1 > 0$

and this togerher with (15) gives that $F(\xi)$ is extremely slowly decreasing.

Let us remark that after the condition (B) Theorem 5 is superfluous.

At last in Theorem 7 there is a miss print, namely $S \in O_C^*(\mathcal{H} \cap \{M_n\})$.

We are indebted to Olaf von Grudzinski who noticed that β must not be bounded without additional conditions.

Received by the editors September 29, 1983.

REZIME

ISPRAVKA RADA "REŠIVOST KONVOLUCIJE JEDNAČINE U H'{M_p}"

Ispravljen je dokaz Teoreme 5 iz rada objavljenog u Zborniku radova Prirodno-matematičkog fakulteta u Novom Sadu, serija za matematiku, knjiga 11(1981), 45-58.