Zbornik radova Prirodno-matematičkog fakulteta-Univerzitet u Novom Sadu knjiga 13 (1983)

Review of Research Faculty of Science-University of Novi Sad, Volume 13(1983)

A NOTE

ON SOME CONVERGENCES ON SEMIGROUPS

Endre Pap

Prirodno-matematički fakultet. Institut za matematiku 21000 Novi Sad.ul. dr Ilije Djuričića br.4, Jugoslavija

ABSTRACT

In the paper a new notion on a commutative semigroup with a non-trivial subadditive and homogeneous functional - Chauchy sequence condition is introduced and with it a general theorem on convergences is obtained. As consequences of this theorem, some Orlicz-Pettis theorems are obtained.

INTRODUCTION

The point in the proofs of many Orlicz-Pettis type theorems ($[\Bar{2}]$, $[\Bar{8}]$, $[\Bar{9}]$) is: if $[\Bar{\Sigma}x]_n$ is weak subscries convergent then the sequence $(x]_n$) has a subsequence which is norm convergent to 0. The purpose of this paper is to prove a general theorem - Theorem 3.3, on a commutative semigroup which extracts this connection between convergences. Let us observe that even in the classical case the approach is a new one.

An important tool is a generalization of the Hahn-Banach theorem on commutative semigroups ([3],[4]) which gives us the existence of a nontrivial special additive functional.

AMS Mathematics subject classification (1980): 40A04, 40J05 Key words and phrases: Commutative semigroup, subadditive and homogeneous functional, additive functional, H-Cauchy sequence condition.

2. SUBADDITIVE, HOMOGENEOUS AND ADDITIVE FUNCTIONALS

Let X be a commutative semigroup. A functional $f:X \to R_+$ (R_+ is the set of all nonnegative real numbers) will be called a <u>subadditive</u> functional if it satisfies the following condition

$$(F_1)$$
 $f(x+y) \le f(x) + f(y)$ for all $x,y \in X$.

REMARK 1. H.Weber [10] has proved that for every commutative complete uniform semigrup there exists a family of pseudometrics d which satisfy $d(x+x_1,y+y_1) \leq d(x,y)+d(x_1,y_1)$ for all $x,x_1,y,y_1 \in X$ and which generate its uniformity Such a pseudometric induces a subadditive functional f in the following way

$$f(x) := d(x,0) (x \in X)$$
.

We say that a functional $f:X + R_{+}$ if homogeneous if

$$(F_2)$$
 $f(nx) = n f(x)$ $(x \in X, n \in N)$.

The condition (F_2) is independent from (F_1) . For example, let (h_k) be a Hamel basis for a vector space, then for $x = \sum a_k h_k \in X$ we define $p(x) = \sum \sqrt{|a_k|}$. Obviously p(.) is a quasi-norm, but $p(nx) = \sqrt{n} p(x)$ for all $n \in N$ and all $x \in X$.

To each subadditive functional we can correspond a homogeneous functional which is closely connected with the original one in the following way.

 $\label{eq:proposition} PROPOSITION~2.1. Let~f~be~a~subadditive~functional \\ on~a~commutative~semigroup~X.~Then~there~exists~a~homogeneous \\ functional~F~on~X~such~that$

- (i) F is subadditive,
- (ii) $F(x) < f(x) (x \in X)$:

Proof. We take that $F(x) = \inf \left\{ \frac{1}{n} f(nx) \mid n \in \mathbb{N} \right\} \quad (x \in X).$

As an easy consequence of the generalized Hahn-Banach theorem from [3] and [4] (also in [7]) we can obtain the following theorem.

THEOREM 2.2. Let X be a commutative semigroup and f be a homogeneous finite subadditive functional on X. If \mathbf{x}_0 is an element from X such that $\mathbf{f}(\mathbf{x}_0) \neq \mathbf{0}$, then there exists an additive functional h on X such that $\mathbf{h}(\mathbf{x}_0) = \mathbf{f}(\mathbf{x}_0)$ and $\mathbf{h}(\mathbf{x}) \leq \mathbf{f}(\mathbf{x})$ for all $\mathbf{x} \in \mathbf{X}$.

REMARK 2. Condition $f(x_0) \neq 0$ from the preceding theorem implies $nx_0 \neq x_0$ for each neN, i.e. x_0 is not of a finite order.

3. MAIN RESULTS

Let X be a commutative semigroup with a neutral element 0 and with a nontrivial homogeneous subadditive functional f.

The following notion will be crucial in the main theorem 3.3 of this section. Let (y_j) be a sequence of elements from X and H be a family of additive functionals defined on X such that $h(x) \le f(x)$ $(x \in X)$. Then a subset X_1 of X will be called a $((y_j),H)$ - subsemigroup if: x belongs to X_1 iff $h(u_1+\dots+u_k) \to h(x)$ as $k\to\infty$ and all heH for some sequence (u_j) such that u_j is either $\lambda_j y_j$ (for $\lambda_j \in \mathbb{N}$) or 0 and $\int_{\mathbb{R}^n} |h(u_j)| < \infty$ $(h \in H)$.

 X_1 is nonempty. Namely, 0 and all the members and the finite sums of the members of the sequence (y_j) belong to x_1 . Since the series $\sum_{j=1}^{\infty} h(u_j)$ (heH) are unconditionally convergent it is easy to see that X_1 is really a subsemigroup of X.

We need in the proofs of Theorem 3.3 and Theorem 3.4 the following theorem. We always have finite additive functionals.

THEOREM 3.1. Let (h_n) be a sequence of additive functionals on a commutative semigroup X. Let (\mathbf{x}_n) be a sequence from X such that for its every subsequence (\mathbf{z}_n) there exist a subsequence (\mathbf{y}_n) of (\mathbf{z}_n) and an element y from X such that

$$h_n(y_1 + ... + y_k) + h_n(y)$$

as k + ∞ for each n ∈ N.

Then there exist an infinite set $I \subset N$ and an element x from X such that for all $n \in I$

$$\begin{split} &\sum_{\mathbf{j} \in \mathbf{J}} \left| \mathbf{h_n(x_j)} \right| < \infty \qquad \textit{for some } \mathbf{J} \subset \mathbf{I}, \\ &\left| \mathbf{h_n(x)} \right| \geq \frac{1}{2} \left| \mathbf{h_n(x_n)} \right| \end{split}$$

Since $h_n(\cdot)$ are triangular functionals (i.e. subadditive and $|h_n(x+y)| \ge |h_n(x)| - |h_n(y)|$ for $x,y \in X$, $|h_n(0)| = 0$) the proof of Theorem 3.1 is analogous to the proof of the Antosik-Mikusiński Diagonal Theorem [1],[5] and [6] (using in the second part of the proof the assumption on sequence (x_n)).

Let H be a family of finite additive functionals h on X with the property $h(x) \le f(x)$ (x & X). We say that X satisfies the H-Cauchy sequence condition if for each sequence (y_j) from X such that

$$\sum_{j=1}^{\infty} |h(y_j)| < \infty \qquad (h \in H)$$

and each sequence (h_n) from H such that it is a Cauchy sequence on (y_i) , i.e. for each $\epsilon>0$ there exists n_0 ϵ N such that

 $|h_n(y_j) - h_m(y_j)| < \epsilon \quad \text{for all} \quad n,m \ge n_0 = n_0(j), \ j \in \mathbb{N}, \ \text{then } (h_n)$ is a Cauchy sequence on the ((y_j),H) - subsemigroup.

It is easy to see that if X is a finite semigroup or H is a finite family, then X satisfies the H-Cauchy sequence condition.

In a specially important case we have the following proposition.

PROPOSITION 3.2. Each normed space X satisfies the B^* - Cauchy sequence condition (B^* is the unit ball in the dual X^*).

Proof. We shall prove that each sequence (h_n) of continuous linear functionals from B* which is a Cauchy sequence on each member of the sequence (y_j) is a Cauchy sequence on the whole closed linear subspace $L((y_j))$ generated by (y_j) .

Let $x \in L((y_j))$. Then for each $\epsilon > 0$ there exist $\lambda_1, \ldots, \lambda_{k_0}$ such that

$$\|\lambda_1 y_1 + \dots + \lambda_{k_0} y_{k_0} - x\| < \frac{\varepsilon}{3}$$

Since (h_n) is a Cauchy sequence on (y_n) there exists $n \in \mathbb{N}$ such that

$$|h_m(y_j) - h_n(y_j)| < \frac{\varepsilon}{3|\lambda_j|k_0} \quad (\lambda_j \neq 0)$$

for each $n,m \ge n_0$ and each $j=1,...,k_0$. Hence we have

$$\begin{aligned} &|h_{m}(x)-h_{n}(x)| \leq 2||\lambda_{1}Y_{1}+\ldots+\lambda_{k_{0}}Y_{k_{0}}-x|| + \\ &+\sum_{j=1}^{k_{0}}|\lambda_{j}||h_{m}(Y_{j})-h_{n}(Y_{j})| < \epsilon \end{aligned}$$

for each $n,m \ge n_0 = n_0(\varepsilon,x)$.

We obtain as a consequence of the Hahn-Banach theorem on normed spaces (i.e. if $s_n \in L(\{y_j\})$ ($n \in N$) and $h_n(s_n) \to h(s)$ as $n \to \infty$ for each $h \in B^*$, then $s \in L(\{y_j\})$)

$$((y_j), B^*) \subset \overline{L((y_j))}$$
.

We say that a family H of additive functionals on X with the property $h(x) \le f(x)$ ($x \in X$, $h \in H$) satisfies the $\underline{\varepsilon}$ condition if for arbitrary $x \in X$, each $\varepsilon > 0$ and each additive functional h on X with the property $h'(x) \le f(x)$ ($x \in X$) there exists $h \in H$ such that $h(x \cap X) + \varepsilon > h'(x \cap X)$.

If H is the family of all additive functionals with the property $h(x) \le f(x)$ (x e X, h e H) then it satisfies trivially the ϵ -condition.

E.Thomas has introduced in Theorem II.3 from [9] a subfamily H of the dual X* of a normed space such that $|| x || = \sup_{x \in H \cap B^*} |\langle x, x^* \rangle|$ (x \in X). It is easy to see that such a fa-

mily satisfies the ϵ -condition.

Now we have the main theorem.

THEOREM 3.3. Let X be a commutative semigroup with a neutral element 0 and with a nontrivial finite homogeneous subadditive functional f. Let H be a family of additive functionals on X which satisfies the ϵ -condition. If X satisfies the H-Cauchy sequence condition and (\mathbf{x}_n) is a sequence from X such that for every subsequence (\mathbf{y}_n) of (\mathbf{x}_n) there exists an element y ϵ X such that

$$h\left(y_1+\ldots+y_n\right)\to h\left(y\right)\ as\ n\to\infty$$
 for each $h\in H$, then $f\left(x_n\right)\to 0$ as $n\to\infty$.

Proof. of Theorem 3.3.

Suppose that the theorem is not true. Then for every $\epsilon>0$ there exists a subsequence (\mathbf{z}_n) of (\mathbf{x}_n) such that $f(\mathbf{z}_n)>$ $>4\epsilon$ (n ϵ N). By Theorem 2.2 there exists a sequence (\mathbf{h}_n') of additive functionals on X such that

$$h'_n(x) \le f(x)$$
 (x e X, n e N) and $h'_n(z_n) > 4\epsilon$.

Since H satisfies the ε -condition we have a sequence (h_n) from H such that $h_n(z_n) > 3\varepsilon$ $(n \in \mathbb{N})$. We have

$$h_n(y_1 + \ldots + y_k) \rightarrow h_n(y)$$

as $k \to \infty$ (n \in N) for a subsequence (y_n) of (z_n) and $y \in X$. Hence $h_n(y_j) \to 0$ as $j \to \infty$ for each $n \in N$. Then there exists a sequence (j_n) of natural numbers such that

(1)
$$|h_{j_s}(y_{j_s+q})| < 2^{-1-q'-q}$$
 (s,q e N),

where q' is a fixed natural number such that 2^{-q} < ϵ .

Now by the diagonal procedure we shall construct a subsequence of (h_{j_g}) which we denote with (q_n) , such the sequence $(g_n(y_{j_g}))$ is convergent for each fix seN.

Since (x_n) is a sequence from X such that for every subsequence (u_n) of (x_n) there exists an element $u \in X$ such that

$$\sum_{n=1}^{\infty} h(u_n) = h(u) \quad \text{for each } h \in H$$

so we obtain by Riemann's theorem on convergences of series of real numbers

$$\sum_{s=1}^{\infty} |h(y_j)| < \infty \quad (he H).$$

X satisfies the H-Cauchy sequence condition so (g_n) is a Cauchy sequence on the $((y_j),H)$ -semigroup X_1 .

Now we take $g_{j_{k+1}} - g_{j_k}$ (k s N). Then by Theorem 3.1 there exist $x \in X_1$ and an infinite set $I \subseteq N$ such that

$$|g_{j_{k+1}}(x) - g_{j_k}(x)| \ge \frac{1}{2} |g_{j_{k+1}}(y_{j_{k+1}}) - g_{j_k}(y_{j_{k+1}})|$$

for each kel. By $g_{j_{k+1}}(y_{j_{k+1}}) > 3\varepsilon$ and (1) we obtain

$$|g_{j_{k+1}}(x) - g_{j_k}(x)| > \varepsilon$$

for each keI. A contradiction with the fact that (g_{j_k}) is a Cauchy sequence on x_1 . So $f(x_n) \to 0$.

In a specially important case, when X is a normed space, we obtain by Proposition 3.2 and Theorem 3.3 the classical Orlicz-Pettis Theorem and also the Orlicz-Pettis type theorems II.3 and II.4 from [9].

REFERENCES

- [1] Antosik, P., On the Mikusiński Diagonal Theorem, Bull. Acad. Polon. Sci. Ser. Math. Astronom. Phys. 19(1971), 305-310.
- [2] Day, M. M., Normed linear spaces, Springer-Verlag, 1973.
- [3] Kaufman, R., Interpolation of additive functionals, Studia Math. 27 (1966), 269-272.
- [4] Kranz, P., Additive functionals on Abelian semigroups, Comment. Math. 16 (1972), 239-246.
- [5] Mikusinski, J., A theorem on vector matrices and its applications in measure theory and functional analysis, Bull. Acad. Polon. Sci. Ser. Math. Astronom. Phys. 18 (1970), 193-196.
- [6] Pap, E., A generalization of the Diagonal theorem on a block-matrix.

 Mat. ves. 11(26) (1974), 66-71.
- [7] Pap.E., Functional analysis, Institute of Mathematics, Novi Sad, 1982. (in Serbo-Croatian).
- [8] Swartz, C., A generalized Orlicz-Pettis Theorem and applications,
 Math. Zeit. 163 (1978), 283-290.
- [9] Thomas, E., L'intégration par rapport a une measure de Radon, vectorielle, Ann. Inst. Fourier (Grenoble) 20(2)(1970), 55-191.
- [10] Weber, H., Fortsetzung von Massen mit Werten in uniformen Halbgruppen, Arch. Math. 27 (1976), 412-423.

Received by the editors April 11, 1984.

REZIME

JEDNA BELEŠKA O NEKIM KONVERGENCIJAMA NAD POLUGRUPAMA

U radu se uvodi novi pojam H-Košijev nizovni uslov, te se pomoću njega dokazuje jedna opšta teorema o konvergenciji u komutativnoj polugrupi. Neka je X komutativna polugrupa sa neutralnim elementom koja je snabdevena netrivijalnom subaditivnom i homogenom funkcionelom f. Neka je H familija konačnih aditivnih funkcionela h nad X sa osobinom $h(x) \le f(x)$ $(x \in X, h \in H)$. Kažemo da X zadovoljava H-Košijev nizovni uslov ako za svaki niz (y_i) iz X takav da je

$$\sum_{j=1}^{\infty} |h(y_j)| < \infty \qquad (h \in H)$$

i svaki niz (h_n) iz H takav da je Košijev niz nad (y_j) , tada je (h_n) Košijev niz i nad $((y_j),H)$ -polugrupom X_1 $(x \in X_1)$ ako i samo ako $h(u_1+\ldots+u_k)+h(x)$ za $k+\infty$ i sve $h \notin H$ za neki niz (u_j) takav da je u_j ili $\lambda_j y_j$ $(za \lambda_j \in N)$ ili 0 i $\sum_{j=1}^{\infty} |h(u_j)| < \infty$ $(h \in H))$.

Ako je X konačna polugrupa ili je H konačna familija tada X uvek zadovoljava H-Košijev nizovni uslov. U slučaju normiranog vektorskog prostora X, X zadovoljava B*-Košijev nizovni uslov (B* je jedinična lopta u dualu X*)- Propozicija 2.1.

Za familiju H se kaže da zadovoljava ϵ -uslov ako za svako x $_0$ ϵ X, svako ϵ > 0 i svaku aditivnu funkcionelu h' nad X sa osobinom h(x) \leq f(x) (x ϵ X) postoji h ϵ H tako da je

$$h(x_0) + \varepsilon > h'(x_0)$$
.

U glavnoj teoremi 3.3 se dokazuje da ako niz (x_n) iz polugrupe X, koja zadovoljava H-Košijev nizovni uslov za familiju H koja zadovoljava ϵ -uslov, ima osobinu da za svaki njegov podniz (y_n) postoji y ϵ X tako da je

$$h(y_1+\ldots+y_n)+h(y)\quad kada\ n+\infty\quad (h\in H)\;,$$
 tada $f(x_n)+0$ za $n+\infty$.

Pomoću ove teoreme se dokazuju neke teoreme tipa Orlicz-Pettisa.