Zbornik radova Prirodno-matematičkog fakulteta-Universitet u Novom Sadu knjiga 13 (1983)

Review of Research Faculty of Science-University of Novi Sad, Volume 13(1983)

A GENERALIZATION OF A DIEUDONNE THEOREM FOR A NONADDITIVE SET FUNCTIONS

Endre Pap

Prirodno-matematički fakultet. Institut za matematiku 21000 Novi Sad. ul. dr Ilije Djuričića br.4 Jugoslavija

ABSTRACT

In this paper the famous Dieudonne theorem is generalized. If M is a family of triangular set functions defined on the family B of all Borel sets of a locally compact set T with regular variations and M is bounded on every open set, then M is uniformly bounded.

1. INTRODUCTION

As it is well-known, the Nikodym boundedness theorem for measures in general fails for algebras of sets (see Example 5., Diestel, Uhl [2], p.18). But there are uniform boundedness theorems in which the initial boundedness conditions are on some subfamilies of a given \(\sigma\text{-algebra}\); those subfamilies must not be \(\sigma\text{-algebras}\). A famous theorem of Dieudonné [3] states that for compact metric spaces the pointwise boundedness of a family of Borel regular measures on open sets implies its uniform boundedness on all Borel sets. We shall generalize this Dieudonné theorem on a wider class of set functions. The class of finitely additive regular Borel set function (also in the case of vector measures) is necessarily countably additive - Kupka [7].

We take in this paper a wider class of real valued set functions, the so called triangular set functions. We prove a generalized Dieudonné type theorem for this class of set functions. Using some modifications we obtain also a generalization of Dieudonné's theorem for semigroup valued set functions.

AMS Mathematics subject classification (1980): 28A10, 28B10 Key words and phrases: Triangular set function, regular variation, Borel sets, open sets, commutative semigroup.

2. TRIANGULAR SET FUNCTIONS

Let T be a locally compact space and s a class of subsets of T such that $g \in s$.

DEFINITION 1. (Dinculeanu [4], p. 303). A set function $\mu: S \rightarrow R$ is said to be regular if for every $A \in S$ and every $\epsilon > 0$ there exist a compact set $K \subset A$ and an open set $G \rightarrow A$ such that for every set $A \cap S$, $K \subset A' \subset G$, we have

$$|\mu(\mathbf{A}) - \mu(\mathbf{A}')| < \varepsilon$$

DEFINITION 2. A set function $\mu:S\to R$ is said to be <u>trian</u>-gular if for every A,B \in S, such that A \cap B = 9 and A U B \in S, we have

$$\mu(A) - \mu(B) \le \mu(A \cup B) < \mu(A) + \mu(B),$$
 and $\mu(A) = 0$.

The following theorem is important for further characterization of set functions which are both regular and triangular.

THEOREM 1. Let S be a ring of subsets of T. If a set function μ S+ R is regular and superadditive, i. e. $\mu\left(AUB\right)\geq\mu\left(A\right)\ +\mu\left(B\right)\ \text{for every A,B}\in S\ ,\ A\cap B=\emptyset$ then it satisfies the following condition

(R) For every $A \in S$ and every number $\epsilon > 0$ there exist a compact set $K \subseteq A$ and an open set $G \supseteq A$ such that for every set $B \in S$ With $B \subseteq G \setminus K$ we have

Proof. It is enough to adapt the proof of Proposition 1. on page 304 in [4].

COROLLARY 1. If a set function $\mu:S+R(S \text{ is a ring})$, $\mu(\emptyset)=0$, has a regular variation, where the variation $|\mu|$ is defined in the usual way, i. s.

$$|\dot{\mu}|(E) := \sup_{\pi} \sum_{\mathbf{A} \in \pi} |\mu(\mathbf{A})| \quad (E \in S)$$

and the supremum is taken over all partitions π of E into a finite number of pairwise disjoint members of S, then μ satisfies the condition (R).

P r o o f. Since $|\mu|$ is superadditive - [4] , p.34, we can apply Theorem 1. on $|\mu|$. Then the inequality $\mu \le |\mu|$ implies our statement.

It is obvious that a triangular set function μ with a regular variation is itself regular.

DEFINITION 3. A set function $\mu:S\to R$ is said to be exhaustive whenever given a sequence (E_n) of pairwise disjoint member of S, $\lim_{n\to\infty}\mu(E_n)=0$.

3. UNIFORM BOUNDEDNESS THEOREM

We shall take from now on for the class S the collection B of all Borel sets of a Hausdorff locally compact topological space T. Now we shall formulate the main theorem.

THEOREM 2. Let M be a family of triangular set functions defined on B with regular variations. If the set

$$\{\mu(O), \mu \in M\}$$

is bounded for every open set 0, then

is a bounded set.

REMARK 1. We shall assume in the following proofs that T is a compact Hausdorff space. Namely, we can replace T with an Alexandrov one point ω compactification $TU\{\omega\}$, taking $\mu(\omega)=0$ $(\mu\in M)$

We obtain easily the following

COROLLARY 2. Let M be a family of regular scalar measures defined on B. If the set

is bounded for every open set 0, then

$$\{ |\mu(B)| : \mu \in M, B \in B \}$$

is a bounded set.

Proof. Let $\nu(B) := |\mu(B)|$ (B $\in B$, $\mu \in M$). It is obvious that the family F of all such set functions ν satisfies the conditions of Theorem 2. (by Proposition 24. from 4, p. 319 $|\nu| = |\mu|$ is also regular). So we apply Theorem 2.

In the proof of Theorem 2 we need two lemmas.

LEMMA 1. Let μ be a triangular set function defined on B with a regular variation. Then μ is σ -subadditive on each sequence of disjoint open sets (\mathfrak{d}_n) , i. e.

$$\mu \left(\begin{array}{cc} \overset{\infty}{\mathbf{U}} & O_{\mathbf{j}} \\ \mathbf{j} = 1 \end{array} \right) \leq \overset{\infty}{\underset{\mathbf{j}}{\sum}} \mu \left(O_{\mathbf{j}} \right)$$

Proof of Lemma 1. First, we shall prove that μ is order continuous on open sets, i. e. for each sequence (U_n) of open sets such that $U_j \supset U_{j+1}$ $(j \in N)$ and $\bigcap_{j=1}^n U_j = \emptyset$ holds $\lim_{j \to \infty} \mu(U_j) = 0.$

For each $\ \epsilon\!>\!0$ there exists a sequence of compact sets (K $_n$) such that K $_i$ $\ \subset$ U $_i$ and

(1)
$$|\mu| (U_{j} \setminus K_{j}) < \frac{\varepsilon}{j} \quad (j \in N).$$
 Then there exists $n_{0} \in N$ such that $\int_{j=1}^{n} K_{j} = \emptyset$ for

Then there exists $n_0 \in \mathbb{N}$ such that $\int_{j=1}^{n} K_j = \emptyset$ for all $n \ge n_0$. Let $n \ge n_0$. Then we have

$$\mu\left(\mathbb{U}_{n}\right)=\mu\left(\mathbb{U}_{n}\diagdown\bigcap_{j=1}^{n}\mathbb{K}_{j}\right)=\mu\left(\begin{array}{cc}n\\\mathbb{U}\\j=1\end{array}\left(\mathbb{U}_{n}\backslash\mathbb{K}_{j}\right)\right)\leq$$

Hence, since $|\mu|$ is subadditive (i. e. $|\mu|$ (AUB) $\leq |\mu|$ (A) + $|\mu|$ (B) for every papir A,B of not necessarily disjoint sets from B-analogously as in [4] , p. 35-36 and p. 16) and nondecreasing, we obtain by (1)

$$\mu(U_{\mathbf{n}}) \leq \sum_{\mathbf{j}=1}^{\mathbf{n}} |\mu|(U_{\mathbf{j}} \setminus K_{\mathbf{j}}) < \varepsilon$$

for all $n \ge n_0$. Now, let $\binom{0}{n}$ be a sequence of disjoint open sets. Then we have

Taking n → ∞ we obtain

$$\mu \left(\begin{array}{ccc} \infty & \infty & \infty \\ 0 & 0 \end{array} \right) \leq \sum_{j=1}^{\infty} \mu \left(0_{j} \right).$$

The following lemma is given by C. Swartz in [12] as an extract from the elementary proof of the Antosik-Mikusiński diagonal theorem - [1].

LEMMA 2. Let X be a Banach space. If $x_{ij} \in X$ (i, $j \in N$) such that $\lim_{j \to \infty} x_{ij} = 0$ (i $\in N$), $\lim_{i \to \infty} x_{ij} = 0$ (j $\in N$) and

 $\|\mathbf{x}_{11}\| \ge \delta > 0$ (if N), then there exist a sequence $(\mathbf{1}_n)$ of natural numbers and a sequence (ε_n) of positive real numbers such that

$$\| \sum_{k=1}^{n-1} \mathbf{x}_{i_{n}i_{k}} \| = (\frac{1}{2} - \epsilon_{n}) \| \mathbf{x}_{i_{n}i_{n}} \| \| \mathbf{x}_{i_{n}i_{+g}} \| < 2^{-2} \epsilon_{n} \| \mathbf{x}_{i_{n}i_{n}} \|$$

(in [12] is
$$\delta$$
 instead of $\parallel x_{\stackrel{.}{n}_{n}^{\stackrel{.}{n}}} \parallel$).

Proof of Theorem 2. It suffices to prove that every point in T belongs to an open set 0 so that

(2)
$$\sup \{ \mu(A) : A = O(A \in B), \mu \in N \} < \infty.$$

Suppose that this is not true. Then there exists a point $x \in T$ such that (2) does not hold for every open set 0 such that $x \in O$. We shall prove that there exists a sequence of pairwise disjoint open sets (E_n) and a sequence (μ_n) from M such that

$$\mu_{i}(E_{i}) > i \quad (i \in N).$$

For any open set 0 such that $x \in 0$ there exists a Borel set $B \subset 0$ and $\mu_1 \in M$ such that

(3)
$$\mu_1(B) > 4 + 2 \sup_{\mu \in H} \mu(\{x\}).$$

It is easy to prove that the preceding supremum is finite. Since

 μ_1 has a regular variation by Corollary 1 there exists a compact set KCB and an open set OCO, BCO such that

$$\mu_1(B') < 1$$

for each B \subset 0 \backslash K. We have by the subadditivity of μ_1

$$\mu_{1}(K) + \mu_{1}(B \setminus K) \ge \mu_{1}(B)$$
.

Using the preceding inequality, the inequality

$$\mu_1$$
 (B\K) < 1

and (3) we obatain

$$\mu_1(K) > 3 + 2 \sup_{\mu \in M} \mu(\{x\}).$$

Let $K_1=K$ U $\{x\}$. Then the last inequality implies (directly for $x\in K$) by the triangularity of μ_1 (for $x\not\in K$)

$$\mu_1(K_1) > 3 + \sup_{\mu \in M} \mu(\{x\}).$$

By the regularity of μ_1 there exists an open set U such that $0 \Rightarrow U \Rightarrow K_1 \quad \text{and} \quad$

$$\mu_1(B') < 1$$
 for every $B'' \subseteq U \setminus K_1$.

The preceding inequality together with the inequality

$$\mu_{\mathbf{1}}(\mathtt{U}) \ \geq \ \mu_{\mathbf{1}}(\mathtt{K}_{\mathbf{1}}) \ -\mu_{\mathbf{1}}(\mathtt{U} \setminus \mathtt{K}_{\mathbf{1}})$$

implies

(4)
$$\mu_{1}(U) > 2 + \sup_{u \in M} \mu(\{x\}).$$

Again by the regularity of μ_1 there exists an open set W such that $\ \{x\} = \ W = U \ \ and$

(5)
$$\mu_1(B^*) < 1$$

for every B ~ ~ ~ {x} .

Let H be an open set such that $x \in H \subset \overline{H} \subset W$ (where \overline{H} is the closure of the set H). Then we have

$$\mu_{1}(\widetilde{H}) \leq \sup_{A \subseteq \widetilde{H} \setminus \{x\}} \mu_{1}(A) + \mu_{1}(\{x\})$$

$$\leq \sup_{B \subseteq W \setminus \{x\}} \mu_{1}(B) + \mu_{1}(\{x\}).$$

Hence by (5) we obtain

(6)
$$\mu_1(\bar{H}) < 1 + \sup_{\mu \in M} \mu(\{x\}).$$

Let $E_1 = U \setminus \overline{H}$. Then we have $E_1 = 0$ and $E_1 \cap \overline{H} = \emptyset$ By the inequality

$$\mu_{1}(E_{1}) + \mu_{1}(\overline{H}) \geq \mu_{1}(U)$$
.

(4) and (6) we obtain

$$\mu_1(E_1) > 1.$$

Using the preceding procedure, taking in inequality (3)

" 5 + 2 sup
$$\mu(\{x\})$$
 " instead of " 4 + 2 sup $\mu(\{x\})$ " $\mu \in M$

and taking into account the facts that: $x \in H$ and the family M is not bounded on H, we obtain the open sets E_2 , H_1 ($H_1 \subseteq H$) and $\mu_2 \in M$ such that $E_2 \cap H_1 = \emptyset$, $x \in H_1$ and

$$\mu_2(E_2) > 2$$
. We have $E_1 \cap E_2 = \emptyset$.

Continuing this procedure we obtain a sequence $(\mu_{\underline{i}})$ from M and a sequence $(E_{\underline{i}})$ of pairwise disjoint open sets such that

(7)
$$\mu_{\mathbf{i}}(\mathbf{E}_{\mathbf{i}}) > \mathbf{i} \quad (\mathbf{i} \in \mathbf{N}).$$

We shall prove that $\mu_{\bf i}$ (i ϵ N) are exhaustive on a sequence (E $_{\bf n}$) of disjoint open sets, i. e.

(8)
$$\lim_{\mathbf{j}\to\infty} \mu_{\mathbf{i}}(\mathbf{E}_{\mathbf{j}}) = 0 \quad (\mathbf{i} \in \mathbf{N}).$$

Since $\bigcup_{j=1}^{\infty} E_j$ is an open set and $|\mu_i|$ are regular, for $\epsilon > 0$ by

Corollary 1 there exists a compact set $K \rightleftharpoons_j^{\infty} \ E$ such that $\mu_{\textbf{i}}(C) < \epsilon \ \text{for each i } \epsilon \ N \ \text{and each}$

 $C = \bigcup_{j=1}^{\infty} E_j \setminus K'$. Since (E_j) is an open cover of K'so there

exists $n_0 \in N$ such that $K \subset U^0 \to j=1$

Then we have for $m \ge n_0 + 1$

$$\mu_{1}(\mathbf{E}_{m}) \leq \sup_{\mathbf{C}} \mu_{1}(\mathbf{C}') \leq \sup_{\mathbf{C}} \mu_{1}(\mathbf{C}) < \varepsilon (1 \in \mathbf{N})$$

where $C \subseteq E_m \cup (\bigcup_{j=1}^{n_0} E_j \setminus K')$ and $C \subseteq \bigcup_{j=1}^{\infty} E_j \setminus K'$. So we obtain (8).

Let $x_{ij} = \mu_i(E_j) > i$. We have by (8) $\lim_{j \to \infty} x_{ij} = 0$ ($i \in N$).

We obatin by the boundedness assumption of the theorem $\lim_{i\to\infty} x_{ij} = 0$ $(j \in N)$. Applying Lemma 2 on the infinite matrix $|x_{ij}|$ $(i,j \in N)$ we obtain a sequence (i_n) from N and a sequence (ε_n) of positive real numbers such that

(9)
$$\sum_{k=1}^{n-1} x_{i_n i_k} = (\frac{1}{2} - \varepsilon_n) x_{i_n i_n}$$

(10)
$$x_{i_n i_{n+q}} < 2^{-q} \epsilon_n x_{i_n i_n} \quad (n \in \mathbb{N}).$$

Using the triangularity of $\mu_{\mathbf{1}_n}$ (n $\in \mathbb{N}$) and Lemma 1 we obtain

(n ϵ N). Hence by (9) and (10)

$$\frac{\mathbf{i}_{n} \quad \mu_{\mathbf{i}_{n}} \left(\quad \bigcup_{k=1}^{\infty} \mathbf{E}_{\mathbf{i}_{k}} \right) \geq \mathbf{x}_{\mathbf{i}_{n} \mathbf{i}_{n}} - \sum_{k=1}^{n-1} \mathbf{x}_{\mathbf{i}_{n} \mathbf{i}_{k}} - \sum_{k=n+1}^{\infty} \mathbf{x}_{\mathbf{i}_{n} \mathbf{i}_{k}} \geq \frac{\mathbf{x}_{\mathbf{i}_{n} \mathbf{i}_{n}}}{2} \quad (n \in \mathbb{N}), \quad \mathbf{i}. \quad \mathbf{e}.$$

$$\mu_{\mathbf{i}_{\mathbf{n}}}$$
 ($\bigcup_{k=1}^{\infty} E_{\mathbf{i}_{k}}$) $\geq \frac{\mu_{\mathbf{i}_{\mathbf{n}}}(E_{\mathbf{i}_{\mathbf{n}}})}{2}$ ($\mathbf{n} \in \mathbb{N}$).

Then by (7) we obtain

$$\mu_{\underline{i}_n}$$
 ($\bigcup_{k=1}^{\infty} E_{\underline{i}_k}$) $\geq \frac{\underline{i}_n}{2}$ for each $n \in \mathbb{N}$.

Since $\widetilde{\mathfrak{v}}$ E is an open set we obtain a contradiction with the k=1 i_k

boundedness of $(\mu_{\underline{1}_n})$ on open sets.

4. FURTHER GENERALIZATIONS

Let X be a commutative semigroup with a neutral element 0. Let $d:X \to [0,+\infty)$ be a pseudometric which satisfies the following condition

$$(d_+)$$
 $d(x+x_1,y+y_1) \le d(x,y) + d(x_1,y_1)$

for all $x, x_1, y, y_1 \in X$.

EXAMPLE. Weber [13] has proved that for every commutative complete uniform semigroup there exists a family of pseudometrics which satisfy (d_{\perp}) and which generate its uniformity.

Let X be endowed with a pseudometric d which satisfies (d_{+}) . Now we can extend the definition of the regularity of a set function $\nu: S+X$ only taking in Definition 1 ν and $"(d(\nu(A), \nu(A')) < \epsilon$ instead of μ and $"(\nu(A)-\nu(A')) < \epsilon$ " respectively.

The pseudometric d induces a triangular functional - E. Pap [8], [10] in the following way

$$f(x) := d(x,0) (x \in X)$$
.

The functional f satisfies

$$(F_1)$$
 $f(x+y) \le f(x) + f(y)$ and (F_2) $f(x+y) \ge |f(x) - f(y)|$ for all $x, y \in X$.

Now we define the variation $|\nu|$ of a set function $\nu: \mathit{S} + X$ with $\nu(\emptyset)$ =0 in the following way

$$|v|(E) := \sup_{\pi} \sum_{A \in \pi} f(v(A))$$
 (E $\in S$)

where the supremum is taken over all partitions π of E into a finite number of pairwise disjoint members of S . It is easy to

see that |v| is superadditive.

A set function $\nu\colon S\to X$ is said to be a semigroup valued triangular set function if it satisfies

$$v(\emptyset) = 0$$

$$f(v(A)) - f(v(B)) \le f(v(AUB)) \le f(v(A)) + f(v(B))$$

for A, B $\in S$ with A \cap B= \emptyset .

Now we have the following generalization of Theorem 2.

THEOREM 3. Let F be a family of semigroup valued triangular set functions with regular variations defined on B. If the set

is bounded for every open set 0, then

{
$$f(v(B)); v \in F, B \in B$$
}

is a bounded set.

Proof. We take $\mu(B):=f(\nu(B))$ (B \in B , ν \in F) and we apply Theorem 2.

REMARK 2. Theorem 3. holds also for a family of N-triangular set functions $v:B\to G$ ($(G,|\ |)$ is a quasinormed group) with a constant N \in $(0,\infty)$ - [6], [4], i. e. such that $v(\emptyset)$ = 0 and

$$|v(A)| - N |v(B)| \le |v(AUB)| \le |v(A)| + N |v(B)|$$

for all disjoint A, B € B.

REFERENCES

- [1] P. Antosik, On the Mikusinski Diagonal Theorem, Bull. Acad. Polon. Sci. Ser. Math. Astronom. Phys. 19 (1971), 305-310.
- [2] J. Diestel, J.J. Uhl, Vector measures, Math. Surveys 15, AMS, 1977.
- [3] J. Dieudonné, Sur la convergence des suites de mesures de Radon, Anais Acad. Brasil. Ci. 23 (1951), 21-38, 277-281.
- [4] N. Dinculeanu, Vector Measures, Pergamon Press, New York, 1967.
- [5] L. Drewnowski, On the continuity of certain non-additive set functions, Coll. Math. 38 (1978), 243-253.
- [6] Н.С. Гусельников, О продолжении квазилипшицевых функций множества, Математические заметки, 17(1975), 21-31.

- [7] J. Kupka, Uniform boundedness principles for regular Borel vector measures, J. Austral. Math. Soc. (Series A) 29 (1980), 206-218.
- [8] E. Pap, A generalization of the diagonal theorem on a block-matrix, Mat. ves. 11(26) (1974), 66-71.
- [9] E. Pap, On the continuous functions with the values in a semigroup, Coll. Math. Soc. János Bolyai Vol.23, Topology-Budapest 1978, 1980, 931-938.
- [10] E. Pap, Triangular functionals on commutative semigroups, Proc. of the Conf. on Conv. Structures in Schwerin, Akad. der Wiss. der DDR (to appear)
- [1] J.D.Stein, A Uniform Boundedness Theorem for Measures, Mich. Math. J. 19 (1972), 161-165.
- [12] C. Swartz, Applications of the Mikusiński's diagonal theorem, Bull. Acad. Polon. Sci. Ser. Math. Astronom. Phys. 26 (1978), 421-424.
- [13] H. Weber, Fortsetzung von Massen mit Werten in uniformen Halbgruppen, Arch. Math. 27 (1969), 412-423.

Received by the editors February 22, 1984. REZIME

JEDNO UOPŠTENJE TEOREME DIEUDONNEA NA NEADITIVNE SKUPOVE FUNKCIJE

U radu se kao uopštenje teoreme Dieudonné-a dokazuje teorema o uniformnoj ograničenosti familije, u opštem slučaju, neaditivnih skupovinih funkcija. Klasa izučavanih skupovnih funkcija se sastoji od tkzv. trougaonih skupovnih funkcija. $\mu: S \to R$ (S je familija podskupova lokalno kompaktnog prostora i $\emptyset \in S$ je trougaona skupovna funkcija ako za svako A, B $\in S$, tako da je A \cap B= \emptyset i A \cup B \in S, važi

$\mu(A) - \mu(B) \le \mu(A \cup B) \le \mu(A) + \mu(B) \quad 1 \quad \mu(\emptyset) = 0.$

Neka je M familija trougaonih skupovnih funkcija definisanih na familiji B svih Borelovih podskupova lokalno kompaktnog prostora T sa regularnim varijacijama. Ako je familija M ograničena nad svakim otvorenim skupom, tada je ona i uniformno ograničena (teorema 2). Na kraju se dobijeni rezultat prenosi i na skupovne funkcije sa vrednostima u komutativnoj polugrupi i na N-trougaone skupovne funkcije sa vrednostima u komutativnoj grupi sa kvazi-normom [6],[4].