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ABSTRACT

In [3] H.Steinhaus introduced the concept of a permutation func-
tion of the interval [0,1) and proved several theorems about these func-.
tions. A.Mookhopadhyaya {Z]| and H.Miller [1] each have several results
dealing with Steinhaus permutation functions.

The purpose of this paper is to consider another class of func-
tions, which we will call 'switch functions', and show that they share

certain properties with the Steinhaus permutation functions.

1. PRELIMINARIES. Each number t € [0,1), can be writen in
one and only one way in dyadic form. This is not quite true
that is some numbers, those having finite dyadic representa-
tions, have two representations; for example

@

172 = § 1721,
n=1

In such cases we always assign the finite representation to
the number under consideration, and in this sense each num-

ber in [0,1) has one and only one representation.
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By a permutation P of the natural numbers we shall
mean any one-to-one function of the natural numbers onto the-
mselves,

As menhtioned above each t € [0,1) can be written in
the form

«©

t = (e /2% ,
n£1 n

where each e, is either 0 or 1.

For simplicity we will write this formula as
t = O-eleze3 ese o
If P is a permutation, then by applying P to the in-
dices on the right hand side of the equation for t we obtain
a new development which corresponds to a real number t~ in
[0,1) given by

t” = 0'e1e2e3 ... , where e, = eP(n)

for each n=1,2,3,... .

For convenience we shall write P(t) =t~. That is the
same symbol, i.e. P, 1is used for two different functions,
but no confusion will occur as it will always be clear which
P we are discussing from the context in which it occurs.

Many facts about Steinhaus permutations functions(i.
e. functions of the type P :[0,1)~[0,1), P(t) =t~ described
above) are known. In the following some of the most important
facts about Steinhaus permutation functions will be listed.

1) If E is a Lebesgue measurable subset of [0,1)
and P is any Steinhaus permutation function, then

P(E) = {P(e) :e€eE}
is a Lebesgue measurable set and
m(P(E)) = m(E) ,

where m denotes Lebesgue measure. Two different proofs of
this fact can be found in the literature (H.Steinhaus [3]
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and H.Miller [1]).

2) Each Steinhaus permutation function is continu-
ous at each point of [0,1) with the exception of at most
countabily many points. The proof of this theorem is given
in the paper of A.Mookhopadyaya [Z2].

3) Suppose that P is a Steinhaus permutation fun-
ction that moves infinitely many natural numbers (i.e. P(n)#
#n for infinitely many n). Then it follows that P"(x), the derivative
of P at x, exists nowhere on [0,1). This result is due to
H.Miller and can be found in [1].

We will now consider a new class of functions which

we will call switch functions.
If t,y e[0,1) and

t = 0-e1e2e3 see g

y = 0-y1y2y3 e
are the unique (adopting the earlier mentioned convention)
binary developments of t and respectively, then Sy(t) is
defined by the formula
Sy(t) = Ocejejes ...,
where

e’ = e if y. =0 and
n n n

e’ = e if  y 1,

n

where ~ is the switch operation, i.e. =1 ana { =0. The fun-
ction t +Sy(t) (having domain [p,l)) will be called the
switch function determined by y.

In this paper switch function analogues of results

about Steinhaus permutation functions will be proved.

2, RESULTS. Let P denote the collection of all
Steinhaus permutation functions and let S denote the collec-
tion of all switch functions. In our first result we will
show that the only function in PN S is the identity function
defined on [0,1).
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THEOREM t. PN S={1i} , where 1 denotes the identity

funetion on [0,1), Z.e. i(x) =x for every x € [0,1)

Proof, Suppose that P is a permutation of the
natural numbers and P(i) =j, with 1 #3j.

Then (P(x))i, the ith number in the expansion of

P(x), is given by

(P(x))i =xj , where x =0-xlx2x2 .

Furthermore (Sy(x))i, the ith number in the expan-

sion of Sy(y), is given by

(SY(X))i =Xy or x, ,

depending on whether Yy is 0 or 1, where y =0-y1y2y3,... .

In any case by the statistical independence of the

th

numbers appearing in the i and j places of the binary

developments of numbers in [0,1) we have
m(x e [0,1) :(P(x))i;‘(sy(x))i) =1/2 .

From this it' follows that P #Sy for every y e [0,1).

We next prove the analogue of 2) in section 1.

THEOREM 2. If SeS, then S ie continuous on [0,1)
with the exception of at most countabily many points.

Proof. If S €S, then S =Sy for same y e[0,1).

n=e defined as fol-

Consider the sequence of functions (S;)Nn=1

lows. For each x =0-x1x2x3 ... and each natural number n

n -
((sy)(x))i (Sy(x))i for i=1,2,...,n

and

((S;)(x))i X, for all i >n.

Then the sequence (Sn)nzT has the following properties,

y'n
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n
s
a) (y

) “{x) , the derivative of (S;) at x, equals one
for each x e[b,l)\cn, where Cn is a finite set for each n.

n, n=«
b) The sequence (Sy)n=l

fo,1).

From a) and b) it is immediate that Sy is continu-

converges uniformly to Sy on

[+ o]
ous at each point of the set [_b,l)\~ U Cn.
n=1

The next result is an analogue of 1) in section 1.

THEOREM 3. If E 28 a Lebesgue measurable subset of
[0,1) and Sy 8 any switch function, then

S _(E) = {S_(e) : e eE}
Yy Yy )
i8 a Lebesgue measurable set and
S _(E = E
m ( y()) m(E)
n=m

n=1
in the proof of Theorem 2. Since (S;)‘(x) exists for all x

Proof. Let the segquence (s™) be defined as

in [O,l)\\Cn, where Cn is a finite set, it follows that each
function S; is Lebesgue measurable (in fact is a Baire func-

tion of class one). Therefore, by b) in the proof of Theorem
2, it follows that S_ is Lebesgue measurable (in fact is a
Baire function of class two). Let B be any Borel subset of
fo,1). pefine

(Sy)—l(B) = (xel0,1) : s, (0 €B) .

It is not difficult to see that the symmetric difference of
the sets
-1
S _(B) and (s} “(B) .
Yy Yy
is an at most countable set, where the symmetric difference
of any two sets M and N is defined to be the set (M\N) U (N\M).

Therefore Sy(B) is a Lebesgue measurable set for each Borel
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set B (in fact Sy(B) is a Borel set).

The remainder of the proof follows the proof of Theo-

rem 2 in DJ, but is included for completeness.

By Theorem 2, Sy is continuous on a set [0,1)C,
where C is at most countable. Let B” denote the set B~C.
Clearly m(B”) =m(B). Furthermore, for every ¢ >0, there exi-
sts Cﬁ, a closed subset of B”, such that

m(B~") - m(CE) <e .,

We will now show that for each x e[@,l),

lim sup X n (x) .

(x) < X
N s, (C) -
Y

. SY(CE)

Here XD denotes the characteristic function of the set D,

i.e. XD(x) =1 if x eD and XD(x) =0 if x ¢D. To see this sup-

pose that x e[},l) and lim sup X n (x) =1. Then there ex-
n+eo s_(C.)
y €
ists a subsequence (nk)t:T of the positive integers, with
n
x esyk(CE) for each integer k. Therefore for each k there

n
. k
exists e eCE, such that x =Sy (ek). There is a subsequence

(ek )qu of the sequence (e )kiw such that the 1lim e

. §=1 k' k=1 - k.
] Jreo J

exists, that is 1lim e =e,.

p k.
Joe ]

However C_. is a closed set and therefore e €C.. This

in turn implies that

Dy

S (e) = 1im S_ J(e, )
g = lm s Fiey )

since the sequence (S?)ﬁZT converges uniformly to Sy on[b,l)’

e is a point of continuity of S_ and lim e, =e. But
X Y I e 73
x=5_ J(e, ) for each j=1,2,... .

Y kg

Therefore Sy(e) =x, with e eCE and hence
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X =1,
c
sy( )

Therefore we have shown that for each x € [:O,l) ’

lim sup X (x) <X (x) .
n—+e : Sy(CE) Sy(Ce)
This implies that lim f _(x) <X (x) for every x € [0,1),
n+e n - Sy(CE)
where
£ _(x) = sup X (x) .
n k>n s];(ce)
Therefore 1lim (f (x) -X (x)) <0 and by the Lebesgue
n s_(C.) -
n*wo y €

daminated convergence theorem we have

1 1
iﬂ £ fn(x)dx < % xsy(cs)(x)dx .
Furthermore
1 1 n
(j) £ (x)dx > (j) xs;(ce) (x)dx = m(sy(ce)).

By a) in the proof of Theorem 2 it follows that

]
g
(@]

m(S;(Ce)) and therefore we have

m(Sy(Ce)) (x)ax > m(C) , Ve >0,

}
X
o Sy(Ce)
Fram this it follows that
m(S_ (B >m (B
( y( )) >m(B)

for every Borel set B contained in [0,1).
If m(Sy(B)) >u(B) for same Borel subset of [0,1),

then we would have

m (s, (B)) +m(sy(B°)) > m(B) + m(8%) ,
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where B® =[0,1)\B; which implies 1 > 1.
Therefore we have shown that
| m(Sy(B)) = m(B)
for every Borel subset B of [0,1).
Finally if E is any measurable subset of [0,1) then
there exist Borel sets B1 and Bz, such that

B) SEEB, < fo0,1), and
m(Bl) =m(E) = m(Bz).
However, Sy(Bl) Esy(E) Ssy(Bz), and therefore Sy(E) is Lebes-

gue measurable and
m(E) = m(Sy(E)), concluding the proof.

Our next result is an analogue of 3) in section 1.

THEOREM 4. If y=0-y,¥, --- e[0,1) and (n:y =0)
and (n:yn =1) are both infinite sets, then (Sy)'(x) s the de-

rivative of Sy at x, exists nowhere in [0,1).

Proof. Letxe[0,1) and let

X =0'x1x2x3 ... Dbe its binary developmment.

Define the sequence (hn)::T in the following way:

hn =1/2 if X, 0 and hn 1/2 if X, 1.
A simple calculation shows that:
1 if (anyn) =(0,0)

Sy(xn +hn) -Sy(xn) _ -1 if (xn,yn) =(0,1)

hn 1 if (xn,yn) =(1,0)

-1 if (x .y ) =(1,1)
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Since the sets (n:yn =0) and (n:yn =1) are both assumed to
be infinite it follows that the sequence

Sy(xn +h ) - Sy(xn) n=w
h n=1
n

contains infinitely many minus ones and infinitely many ones
and therefore (Sy) “(x) does not exist.

The next theorem is the switch function analogue of
Theorem 3 in [1] .

THEOREM 5. If ES[0,1), m(E) =Yy >0 and € >0, then
there extists Yoo 0 Syosl, such that 0 <y XY, “mplies

m(EﬂSy(E)) >Y -€.

Proof. The proof of this theorem will not be
given since it is campletely analogous to the proof of Theo-
rem 3 in [1:]
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REZIME

O JEDNOJ KLASI FUNKCIJA

U radu [3] H.Steinhaus je uveo pojam permutacione
funkcije intervala [:0,1] i dokazao nekoliko teorema o ovim



112 Harry Miller

funkcijama. A.Mookhopadhyaya [2] i H.Miller [1] takodje ima-
ju nekoliko rezultata koji se odnose na Steinhausove permu-
tacione funkcije. U ovam radu se definife klasa "switch funk-
cija” 1 dokazuju za ovu klasu funkcija rezultati analogni
onim koji su dobijeni za Steinhausove permmutacione funkecije.



