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ABSTRACT

A simple proof of Tauberian type theorems for measures Is given,
The used limit is general enough to allows the approach not only to the
vertex of the cone, but also to any point of the boundary of the conju-

gate cone,

1. INTRODUCTION

v.S, Vladimorov [7] proved theorems of the Abelian
and Tauberian type for positive measures starting from their
applications especially in the gquantum field theory and also
in order to solve same convolution equations. Vladimirov’s
paper opened up much research in this directiorn, We shall
mention only the results of Yu.N,DroZinov and B. Zavjalov [2]
[3]. They proved theorems of the Abelian and Tauberian type
for tempered distributions and then, as a special case, they
applied these results to measures improving those of Vliadimi-
rov.

Our paper [6] relates also to Vladimirov’s results.
We shall choose another way: we shall prove first same theo-
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rems for measures and then we shall entarge themtosame clas-
ses of generalized functions. In such a way we can start
with minimum suppositions and with a simpler proof adding
new suppositions in relation with the larger class of dis-~
tributions. In this paper we shall enlarge the limit pro-
cess in such a way that we can use it to analyse what hap-
pens when we approach not only the vertex of cone I'* but any
point of its boundary.

2. NOTATIONS

Let T be a closed and acute cone in R™ with vertex
in zero. r*={ye Rn, (y,x) io, X 6 T} be the conjugate cone
of the cone I'. We know that for an acute cone ©' intI*# §
and we denote it by C; Ir'* is closed and convex; let prC=
= {e€C,|e| =11},

H‘; be the half space {teR", (e,t) >0}; if eeT*,
then T'c H; .

~ n n
Jk={1,z,...,k}; I"={teR, 0<t, <1, ieJn] :

n n
I (u,v)={teRr, °i“1<t1<"111' 1eJn] F

m
Dp,kx = {xe1 , x . = ...=xm=1},

Dm,k(“'V) ={xe Im(u,v) Xy = oo =xm=1} .

p., be a regular varying function of the power y:

Y
lim p(ut) / p(t) = u’ , u>0,
t+o¥ (w)
3. THEOREM ON ASYMPTOTIC BEHAVIOUR OF THE LAPLACE TRANSFORM OF
A MEASURE

THEOREM 1. Let us suppose:
- {oi}?gl be linear independent elements from the convex closed
cone T* ;

- p(r) =°1(r1) ---pm(rm); py(xry) be regular varying functi-

ons of powers al.-..,ak>0; ak+l=...=am=0, m<n ;
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. . . n

- g{x) >0 be a bounded semicontinuous funetion over I, con-
tinuous for almost all x € 1® and that the point (1,...,1) <s
not an accumulation point of discontinuities;

- 1 be a nonnegative measure with support in I, w0 ;
-y = e_(y't)du(t) exists for all yeC=intl*.
T

m n
_ _.m
If for y = 121 riuiui+i—z+luioi=yr+51 ui >0,

ieJm; "130' ieJn, there exists

) —(let)
(1) lim p(r) f e du(t) =h(y),
r+ot(w) T
then
-(y_,t)
lim p(n) fe F g(z,,...,2)du(t) =
r+ot (=) r
(2) 1 X ai-l
[ T——h(Y) (l{_'_)k'l'l""l'k g(Tll--OITm)r_-]ti dtr kill
T—](ai)
l g(l,...,1)h(y), k=0;
-t, =r.u (G ot)
where T =e 1, ieJ;Ti=1.ieJm\Jk and i;=e e

We will give the proof of this theorem by using three
lemmas as follows. The first one is a generalization of a le~-
mma proved by J.Karamata [5].

LEMMA 1. If g(x) is defined over Im, continuous for
almost all xel.‘;m'k and bounded over. Dm,k’ then for ay > 0,

ied . 1<k<m, and € >0 there exist polynomials p(xl,...,xm)
and P(xl,...,xm) such that

(3) p(xl,...,xm)ig(X)_<_P(x1....,xm)

and
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k a,-1
(4) f TieeaT i _
(®RHk 1 k [ ¢ lryveenty)
- p_(rl,...,'rm):]dt<e
where -t

T, =e i,ieJ and T,=1, 1ieJNJd, .
i m

k i k

Proof, We shall divide our proof into three
parts like J.Karamata. First we suppose that g(x) is of the
form:

(1 x€e D (ua,v)
(5) g(x) = ’ mok T

0, x eIm\Dm’k(u,v) .

For every w > 0 there exist nonnegative numbers ¢°,

¢" and a continuous function h(x), Oih(x) _<_1, X eIm; gx)=

= h(x), x eDm,k(u’V) and h(x) =0, x eIm\Dm'k(u-e’,Vﬂ:") and
such that

ko @o-1
(6) (lj;+)krl...rk [_It1 [h(rl,...,rm)—q(rl,....rmidt<w .

The Stone Weierstrass theorem says that there exists
a polynamial Qs(xl,...,xm) such that

lQ_ (k) sevesxy) ~h(x) | <€, xeI'.

We can take now P(xl,...,xm) =Qe(x1,...,xm) +¢ and in this

case g(x) <h(x) <P(x;s...sX ), x €™, and

k ai—l
Js x Tpeeer [ty [P(Tl""'Tm)_g(Tﬂdt <
)

R
( k C‘-i—l
i(R‘[)k Tyeeer U1 5 Q€T seepr)-hin) |at +
k Cl.i-l
1y + J tpeeen 1t [h(o-g(n]at +
(R) % Kk %-1 K
+ i~ U‘i_l
£ -]+ . Tyeee [ dt<w+ 28(1{"‘)]‘ Tl"kar—]ti dat,
(R™)
-t ~tK

= (e 1,...,e floeea,1)
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In the same way we can find a polinomial p(xl,...,xm)
such that p(xl,...,xm) <g(x), xe 1™ and
ai-l k
(8) ( i)k TyeeeTy M ty [g(r)—p(Tl,...,Tmfjdt:im+2e I Tlay).
R

The same can be proved for a step function with a fini-

te number of jumps in every coordinate.
There only remains to suppose that our function g(x) has
the properties fixed in the lemma.
We can define & and p in such a way that
k ui-l
(9)  2m[ ]k+ f Tye.eTy 185 dt] <e/s6

st () K\

where M= sup|g(x)|, xe I",
over the bounded set Im(é,p) the function
k ai-l
(10) Tyee e T 9Ty rene, 1) M ty
has the Riemann integral; so we have ([4] p.69) two step fun-
ctions with a finite number of jumps;gl(x) and gz(x),such that
gl(x) 59(")592(")' xeDm,k(é,p) and

; k ai—l

11
(L) TyreeerTy M ty

o (T peee,t ) -
Ik(ﬁ,p) [ 2°°1 m

- gl(rl,...,rk)]dt< e/6 .

The functions 9, and g, can be extended over (R+)k \Ik(ﬁ,p) by

the constant M. The first part of this proof says that there
exist polynomials P(xl,...,xm) and p(xl,...,xm) such that

p(xl,...,xm) _<_gl(x) <gix) _<_g2(x) iP(xl,...,xm)

and
. k oy
(12) {k Teee [y
(R)

-1
[P(Tl,...,rm)-gz(r)]dt< e/3
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k oy

(13) [ ot et [t
- 1 k i
®Hk

-1
[gl('r)-p('rl, ...,Tm)]dt< e/3 .

From relations (9},(10),(11),(12) and (13) there follows
relation (4) which had to be proved.

LEMMA 2. Let g(x) be a bounded, semicontinuous func-
tion over Im, continuous for almost all x e I™ and the point
(1,...,1) not an accumulation point of discontinuities. Then
for € >0 there exist polynomials p(xl,...,xm) and P(xl,...,xm)

such that p(xl,...,xm)f_g(x):P(xl,...,xm) for xeI® and P(1,
e ) =p(1,0..,1) <€

Proof. From our suppositions it follows that
there exist an interval In(l—m,l) and a continuous function h(x),

X e 1™ such that g(x) <h(x), xe€ Im, g(x) =h(x), x¢€ Im(l—m,l) .
By the Stone-Weierstrass theorem there exist two polynomials
P(x,,...x ) and P(x,,...,x ) such that

0<p(xX;,aeerX ) -h(x) <e/2, xeI',
0<h(x) -p(xy,..iX ) <e/2, xeI",

These two polynomials satisfy the conditions of our lemma.

LEMMA 3. Let us suppose that {o are linear in-

n
i}i=1
dependent elemente from r*; g(x) >0 <& a bounded and upper (lo-

wer) semicontinuous function for x e 1™,

n
If for all yeC, y= ] HyO4s Wy >0 there exists the
integral 1=1
(14) [ e W gy
T
then the integral
(15) Je W,z )aule)
T
exists too, where - .
z, = e Uiyt i=1,...,m .
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-u, (o,,t)
Proof. By supposition on g(x), g(e soos
'um(Gm,t)
ce.,€ ), for a fixed yeC, is upper (lower) semiconti-

nuous in t el and therefore ([4] p. 96) p-measurable on every
closed and bounded subset E of T' and the integral

[ W g0, .zt
E
exists for every such . E ([4], p. 112). Let us denote by
m

m_ m .
izl P;u40; .We know that ypeC for all p>0; for EecC,

ynp"+F, belongs to C too, because T* is convex. The integral (14)
exists for all y e€C and

(¥, *E.t) - (y,8) ~(yp, )
e P du(t) = [ e e du(t) .
T r
From this relation it follows that for every polynomi-
al P(xl,...,xm), m<n there exists the following integral too:

{, e—(y’t)p(zl,...,zm)du(t)
=M (G.It)
where z.l=e i .

Let P(xl,....,xm) be the polynomial from Lemma 1. then

t)

é e—(y’t)g(zl,...,zm)du(t)5_{‘ e—(y' P(zl,...,zm)du

for every E =T which shows that the integral

f e-(y, t)

! g(zl,...,zm)du(t)

exists.
P r o o £ of Theorem 1. Case kz 1. Let us suppose
that P(xllo--,xm) and p(xl,...,xm) are polynomials from Lemma 1,

then by our suppositions and Lemma 3 we have:

- (¥p*E.t)

e P(zl"-"zm)d“(t)i

m
[ o Yoty Lma
) T r
=y t&t)

< {‘e p P(z),...,z ) du(t) ,
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-p,H, (o, ,t)
where zi==e 171771 ; Similarly:

k oa4-1
([+)kT1"‘Tk’_1 ti P‘Ti'--ole)dt:
R .

k ai—l
(17) < f Ty Ty IR t,” glmadt <

k ui—l
TyeeeTpe [ 847 Pl ... T)dt

iA
—

+ k

_tl -
where T= (e P - fl,00.,1).

Now, in relation (2) instead of r
+
(ni l)ri, i eJm, then

i’ ieJm, we write

-(yTHE,t) - (YR Lt
1im  plr) fe T e M au(r) =
r+ot () T

(18) =

1
=hiy) =y
M1 (ny+1) .

This relation shows that for any polynomial P(xl,...,xm)
we have
- (YHE. )

lim p(r) [e P(Z,,...,2 )du(t) =
r+o¥ (w) r 1 m

AW b y B et s
= 17 % 1,...,Tm ti ‘ t .

+
Mre) ®H*
From relations 16-19 it follows:

h (v) k ai—l
-E——JL——- f Tl"'TkP(Tl""'T Y ty dt <
+.k m -
F(ui) (R)
1 / ~pree) ( )dy (
(20) < lim pl{r)) e g(2.,...,2 pl{t) <
Tr+ot(») 1 m -
k a;-1
h (y) i
f Tl...TkP(Tl,...,Tm)rw ty dt .

Tr@y) (&RHK
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Now, it is enough to use the properties of our polyno-
mials p and P from Lemma 1, and we shall have relation (2)
that we had to prove.

The difference of the proof in the case when no ai¥0
is only in the fact that we shall use Lemma 2 instead of Lemma
1.

Relation (18) in this case becomes

-(yo+E, ) —(yD 0
(21) lim p(r) fe % e ™ au(t) = h(y)
r+ot () T

For any polynomial P(xl,.. .,xm) we have

- (Y1+E,£)
(22) lim p(r) [e P(Z,,.00,2)dult) =
r+0o" (®) T
= h(y)P(l,---ll) 7
-r.u,; (o,,t)
where 2, =e it i,ieJ.
1 m

Now the proof follows as in the first case.

4. THEOREMS OF THE TAUBERIAN TYPE FOR THE LAPLACE
TRANSFORM OF A MEASURE

THEOREM 2. Let us suppose:

- {Gi}r'::=l are Linear independent elements from the conver

elogsed cone T* ;

- p(n) =pl(rl)...pm(rm); pi(ri) are regular varying func-—
tions of powerst,...,0% > 0; uk+l=...=<xm=0, respectively.

- u is a nonnegative measure with a support in I, u#0;

- li(iy)exists for all yeC. n
If there exists for a fized yeC, y= Hioys Wy 20

i=1

- (Yp+E,t)
(23) l_J;._m p(r) [e du(t) = h(y)

’
r+o (=) T

n
) Hy0y then

n
m

where y_= | r,u,0, and £=
rog2y it 1=m+1
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(24) im o(1/r) i e B8y =
r+w (ot) m o +
ra ( n ri ——x THO )
Hiloy 1
—E——ML)_ R k>1
_ [—]I‘(ai+1)
h(y) , k=0 .

To prove this theorem we shall use our Theorem 1 and
the lemma as follows.

LEMMA &, Let g(y) be the function defined on "
[ -1
[ r‘]yi ' e :yiil,forall ieJm
gly) = )
a , o_<_y1<e‘,for one 1eJ
then
Zy.eeZy g(zl, ,2 ) = Irt)\ 1

+
. ( e, ~H_ )
I‘n[ qy i e, ]
for e;&pr T*, ieJy and teT, where ¢F ig the characteristic_

function of the set F and

-(e,,q,t)
zi=e 17 rq1>0'

Proof£f. By our supposition on g we have:

1, if Oi(ei'tqi)il’ for all 1eJm

Z....2 . 9{(Z.,...,2) = {
1 m 1 I 0, if 1< (ei,tqi), for one ieJm .

The inequality 0 < (ei,tqi) <1 is equivalent with

1 1,2
0 — t = .
_<_(qiei, )5(qi)

The first part is always satisfied for teT. For the second

part we have

1 1 ’
(_.e , — e _t)>0
qi i qi i - !
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whence
+ 1
- -teH or teée( — e, -
CH i ey 94 i e
It follows that t belongs to T' and to every halfspace al—-el -H
i
P r oo f of Theorem 2. If we take in Theorem 1 the
function g as in our Lemma 4, then from relation (2) with r,=

+

ei‘

i
= l/ri we have:
(&, t),
lim p(1/x). {e e 2 g(2....2 )dy(t) =
r+=(ot) 1 m 1 m
h(y) -1
_E—y— f rl...rkg(rl,...,r )l"_] t dt
={ Mry) ®&H¥
h(y) g(1,...,1) ,
- -1 ~
where 2, =e (ci"riuit)-r =e ti ieJg,_and t,=1, 1eJ \J
i R § ! k i ’ m k*
Ey Lemma 4 we have:
Um  p(1/1) . e &ty =

Hylo

—E-}l-(x)—— j r‘]t dt,k_>_1

= I—II‘(ai *
h(y) ’ k=20.
whence follows relation (24) of our theorem.

REMARKS. The nonnegativity of the measure p in Theo-
tem 2 can be replaced by a less restrictive condition as fol-
lows: '

Let p“(r) be the product of regular \iarying functions
¢ (r ) of powers a >0, 1e Jy - We know that every real measure

u is the difference of two nonnegative measures u+ and p , u =

+
=y -u -
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Theorem 2 remains valid if instead of the nonnegativity
of U we suppose that u~ is with support in T and that there
exists p~ such that

a) o.{_<_oti and
~(ypHE,t) -
(25) 1im p(r) [ e du (t)=h"(y) #0
r+ot T
or
b) agy <ey and
-(yprE e -
(26) lim p(r) fe du (t)=h"(y) # 0 .
r->w T

In case a) in our Theorem 2 we have use the limit only
with the first value, and in case b) with the one which is in
brackets. )

The following function shows the interest of our Theo-

rem 2. The two~dimensional Laplace transform of the function

1 J,(2/x+y) is ([17, p.241): e (1/W)_ -(/V)

‘/-x—;y TV vhere Jl is
the Bessel function. There is no « >0 such that
D S
Pu ov
. a e. ~- e _
lm 0" =y — =R # 0

p+o
u,v#0, u#v.

But we can use our Theorem 2. (See Remarks). We have to
take that I'*= (R+)%01= (1,0), o, = (0,1), It is easy to see

that 1 1 1
Iru v v
1im £ rue_ — = e _
r+ot v
and 1.1 1
u rv u
1im & uziv =& _ .
r+°+ u

There exists one and only oneelement 'to which belongs to
all hyperplanes q;0, - Hc’i' qi# 0, 1e Iy because the system
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(27) (qo;,t) = (@)%, q #0, 1eJ

n
has one and only one solution to. The set 1 (qici - H: ) is a
i

cone translated in the point t o° To show this let us suppose
n n

+ +
that. ten (qioi-Hoi), then to-t belongs to 1l HU:I. :
(qici,to-t) = (qioi,to-t) + (qici,qici- to)
(qioi,qioi-t)zo, i eJn .
+.n
In the case =(R ), oi=ei=(0,...,1,...,0) the set

n
n qiei—H:i is the cone -(R')™ translated in the point (q,.

...,qn).
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REZIME

GENERALISANE TAUBEROVE TEOREME ZA MERE

Dat je jednostavan dokaz Tauberove teoreme za meru ko-
ja je nenegativna 1ili zadovoljava dodatni uslov. Graniéni pro-
ces je op$tiji i dozvoljava da se ispituje $ta se deZava kada
se pribliZimo ne samo vrhu konjugovanog konusa, veé i bilo ko-

joj tacki njegovog ruba.



