FUZZY CONGRUENCE RELATIONS AND CONSTRUCTIONS OF ALGEBRAS Branimir Šešelja Prirodno-matematički fakultet. Institut za matematiku 21000 Novi Sad, ul. dr Ilije Djuričića 4, Jugoslavija ### **ABSTRACT** The Boolean extension of an algebra (|1|) is here given as a collection of fuzzy sets. It is shown that fuzzy relations, especially fuzzy congruence relations (|2|,|3|) are closely related to those structures. Some applications of fuzzy relations in constructing new algebras and extensions are given. - 1. A fuzzy binary relation ρ on the set A. is a fuzzy subset of A x A, with the membership function $\mu_{\Omega}: A \times A \to B$, where $B = \langle B, A \rangle$ $\Lambda, V, 1, 0, 1$ is a Boolean algebra. - A fuzzy equivalence relation ρ on A is a fuzzy binary relation on A, which satisfies: - a) $(\forall a \in A) (\mu_{\rho}(a,a) = 1)$ (ρ is reflexive); b) $(\forall a,b \in A) (\mu_{\rho}(a,b) = \mu_{\rho}(b,a))$ (ρ is symmetric); - c) $\mu_{\rho}(a,b) \geq \sqrt{(\mu_{\rho}(a,c) \Lambda \mu_{\rho}(c,b))}$, for all a,b eA. (ρ is transitive). - 3. If $A = \langle A, 0 \rangle$ is an algebra, then a fuzzy binary relation on A is a fuzzy congruence relation on A , iff it is a fuzzy equivalence relation on A, satisfying the substitution property: If $\mu_A(a_i,b_i) = p_i$, i = 1,...,n, $(p_i \in B)$, then for every n-ary operation $f \in O$, $$(f(a_1,...,a_n),f(b_1,...,b_n)) \ge \int_{i=1}^{n} p_i$$ ([2]). DEFINITION 1. |1| Let $A = \langle A, 0 \rangle$ be an algebra, and B the complete Boolean algebra. The collection A(B) of fuzzy sets X on A is said to be a Boolean extension of A iff for every $X \in A(B)$: - 1. $a \neq b$, $a,b \in A$, implies: $\mu_{\mathbf{X}}(a) \wedge \mu_{\mathbf{Y}}(b) = 0$, and - 2. $V_{\mathbf{a} \in \mathbf{A}} \mu_{\mathbf{X}}(\mathbf{a}) = 1$. $A(B) = \langle A(B), 0 \rangle$ is a new algebra, with the operations defined in the following way: $$f(X_1,X_2,\ldots,X_n)=Y \quad \text{where, for a ϵ A,}$$ $$\mu_Y(a)=\bigvee_{f(a_1,\ldots,a_n)=a}(\mu_{X_1}(a_1)\wedge\ldots\wedge\mu_{X_n}(a_n)), \quad \text{and the supremum runs over all } n-\text{tuples } (a_1,\ldots,a_n), \quad \text{such that } f(a_1,\ldots,a_n)=a.$$ It is easy to check that the operations are well defined, i.e. that Y is also a fuzzy set satisfying 1) and 2). The supremum used in defining the operations explains why B has to be complete (provided that A is not finite). REMARK If $\mathcal{B} \simeq \mathcal{P}(I)$ (as the Boolean algebra), then $A(\mathcal{B})$ is isomorphic to the direct power $A^{I}(|4|)$. In the following we shall consider some special fuzzy relations on $A\left(B\right)$. PROPOSITION 1. Let A be an algebra, and B the complete Boolean algebra. Let θ be an (ordinary) congruence relation A. Then the fuzzy relation θ , given by $$\mu_{\underline{\theta}}(X,Y) = \bigvee_{(a,b)\in\theta} (\mu_X(a) \wedge \mu_Y(b)), \quad X,Y \in A(B),$$ is a fuzzy congruence relation on A(B). Proof. $\underline{\theta}$ is a fuzzy equivalence relation on A(B): It is obvious that $\underline{\theta}$ is reflexive and symmetric in the sense of a) and b) in 2. We shall here prove that it is transitive: $$\mu_{\underline{\theta}}(X,Z) \wedge \mu_{\underline{\theta}}(Z,Y) =$$ $$= \bigvee_{(\mathbf{a},\mathbf{c}_{1}) \in \theta} (\mu_{\mathbf{X}}(\mathbf{a}) \wedge \mu_{\mathbf{Z}}(\mathbf{c}_{1})) \wedge \bigvee_{(\mathbf{c}_{2},\mathbf{b}) \in \theta} (\mu_{\mathbf{Z}}(\mathbf{c}_{2}) \wedge \mu_{\mathbf{Y}}(\mathbf{b})) =$$ $$= \bigvee_{(\mathbf{a},\mathbf{c}_{1}) \in \theta} (\mu_{\mathbf{X}}(\mathbf{a}) \wedge \mu_{\mathbf{Z}}(\mathbf{c}_{1}) \wedge \mu_{\mathbf{Z}}(\mathbf{c}_{2}) \wedge \mu_{\mathbf{Y}}(\mathbf{b}); (\mathbf{a},\mathbf{c}_{1}) \in \theta, (\mathbf{c}_{2},\mathbf{b}) \in \theta) =$$ $$= \bigvee_{(\mathbf{a},\mathbf{b}) \in \theta} (\mu_{\mathbf{X}}(\mathbf{a}) \wedge \mu_{\mathbf{Z}}(\mathbf{c}) \wedge \mu_{\mathbf{Y}}(\mathbf{b}); (\mathbf{a},\mathbf{c}) \in \theta, (\mathbf{c},\mathbf{b}) \in \theta) \leq$$ $$\bigvee_{(\mathbf{a},\mathbf{b}) \in \theta} (\mu_{\mathbf{X}}(\mathbf{a}) \wedge \mu_{\mathbf{Y}}(\mathbf{b})) = \mu_{\underline{\theta}} (\mathbf{X},\mathbf{Y}),$$ by 1), Definition 1., and since θ is transitive. Now let $\mu_{\underline{\theta}}(X_1, Y_1) = r_1, i=1, \ldots, n$, and for an n-ary operation $f, \mu_{\underline{\theta}}(f(X_1, \ldots, X_n), f(Y_1, \ldots, Y_n)) = r$. Then, $$\begin{array}{c} & \overset{n}{\bigwedge} r_{i} = \overset{n}{\bigwedge} (\ \ V \ (\mu_{X_{i}}(a) \ \wedge \mu_{Y_{i}}(b)) = \\ & \overset{n}{\downarrow} r_{i} = (a,b) \in \theta \\ & \overset{n}{\bigvee} (\ \ \bigwedge (\mu_{X_{i}}(a_{i}) \ \wedge \mu_{Y_{i}}(b_{i})); (a_{i},b_{i}) \in \theta, \ i=1,\ldots,n) \leq \\ & \overset{n}{\bigvee} (\ \ \bigwedge (\mu_{X_{i}}(a_{i}) \ \wedge \mu_{Y_{i}}(b_{i})); (f(a_{1},\ldots,a_{n}),f(b_{1},\ldots,b_{n})) \in \theta) = \\ & \overset{n}{\downarrow} r_{i} (\ \ \bigwedge (\mu_{X_{i}}(a_{i}) \ \wedge \mu_{X_{i}}(a_{i}); f(a_{1},\ldots,a_{n}) = a) \ \wedge \\ & (a,b) \in \theta \qquad i=1 \\ & \overset{n}{\downarrow} r_{i} (\ \ \bigwedge (a_{i}); f(b_{1},\ldots,b_{n}) = b) = \mu_{\theta} (f(X_{1},\ldots,X_{n}), f(Y_{1},\ldots,Y_{n})), \\ & \overset{n}{\downarrow} r_{i} (\ \ \bigwedge (a_{i}); f(b_{1},\ldots,b_{n}) = b) = \mu_{\theta} (f(X_{1},\ldots,X_{n}), f(Y_{1},\ldots,Y_{n})), \\ & \overset{n}{\downarrow} r_{i} (\ \ \) \) r_{i} (\ \ \ \ \ \ \ \) r_{i} (\ \ \ \ \ \) r_{i} (\ \ \ \ \ \) r_{i} (\ \ \ \ \ \) r_{i} (\ \ \ \ \ \) r_{i} (\ \ \ \ \ \) r_{i} (\ \ \ \ \) r_{i} (\ \ \ \ \) r_{i} (\ \ \ \ \ \) r_{i} (\ \ \ \ \) r_{i} (\ \ \ \) r_{i} (\ \) r_{i} (\ \ \ \ \ \) r_{i} (\ \ \ \ \ \) r_{i} (\ \ \ \ \) r_{i} (\ \ \ \ \) r_{i} (\ \ \ \ \ \) r_{i} (\ \ \ \ \) r_{i} (\ \ \ \ \) r_{i} (\ \ \ \ \ \) r_{i} (\ \ \ \ \) r_{i} (\ \ \ \ \ \) r_{i} (\ \ \ \ \ \) r_{i} (\ \ \ \ \ \) r_{i} (\ \ \ \ \) r_{i} (\ \ \ \ \ \) r_{i} (\ \ \ \ \ \) r_{i} (\ \ \ \ \ \) r_{i} (\ \ \ \ \) r_{i} (\ \ \ \ \ \) r_{i} (\ \ \ \ \) r_{i} (\ \ \ \ \ \ \) r_{i} (\ \ \ \ \ \) r_{i} (\ \ \ \ \) r_{i} (\ \ \ \ \ \) r_{i} (\ \ \ \ \ \) r_{i} (\ \ \ \ \) r_{i} (\ \ \ \ \ \) r_{i} (\ \ \ \ \) r_{i} (\$$ If θ is the equality on A, then the corresponding fuzzy congruence relation on A(B) can be given as follows: COROLLARY 2. Fuzzy relation $\underline{\sigma}$ on A(B), given by its membership function $$\mu_{\underline{\sigma}}(X,Y) = \bigvee_{\mathbf{a} \in A} (\mu_{X}(\mathbf{a}) \wedge \mu_{Y}(\mathbf{a})),$$ is a fuzzy congruence relation on A (B). * * * In the following propositions we shall describe the use of fuzzy congruence relations in some constructions of algebras, based on Boolean extensions. DEFINITION 2. Let A(B) be the Boolean extension of A, σ the fuzzy congruence relation on A(B) (defined in Corollary 2.) and F any filter in B. The reduced extension $A(B)_F$ of A is an algebra in which $$\begin{array}{lll} A\left(B\right)_{\,F} &=& \left\{\,\sigma\left(X_{\,F}^{}\right) &; & X\in A\left(B\right)\,\right\} &, & and \\ & & & & & \\ \sigma\left(X\right)_{\,F} &=& \left\{\,Y\,;\,Y\in A\left(B\right) \right\} & and & \mu_{\,\sigma}\left(X\,,\,Y\right)\in F\,\,\right\}\,. \end{array}$$ The operations on these collections of fuzzy sets are defined in the natural way: $$f(\sigma(X_1)_F, \dots, \sigma(X_n)_F) \stackrel{\text{def}}{=} \sigma(f(X_1, \dots, X_n))_F$$, and it is easy to show that the resulting element does not depend on the representatives, the fuzzy sets X_1, \ldots, X_n . Clearly, the following lemma holds. LEMMA 3. If F is a principal ultrafilter in B, then $$A(B)_F \cong A$$. Proof. The isomorphism is given by the mapping $h:A\to A(B)_F$, where $h(a)=\sigma(X)_F$ and $\mu_X(a)=1$. Let p and q be two arbitrary elements of a Boolean algebra B . Denote the Boolean expression (p \vee q') \wedge (p' \vee q) by p \circ q. PROPOSITION 4. Let A = <{a,b},0> be a two-element algebra, and B an arbitrary Boolean algebra. Then there is a 1-1 map of B into A(B) (p \rightarrow X_p) such that if $\underline{\sigma}$ is a fuzzy congruence relation defined in Corollary 2, then for all p,q \in B, $\mu_{\sigma}(X_p,X_q)=p$ Θ q. Proof. If $X \in A(B)$, then $\mu_X(a) = p$ implies $\mu_X(b) = p$. Hence, every $p \in B$ uniquely determines one X, and if $p \neq q$, then clearly $X_p \neq X_q$. Now, $\mu_{\underline{\sigma}}(X_p, X_q) = (\mu_{X_p}(a) \wedge \mu_{X_q}(a)) \vee \mu(X_p(b) \wedge \mu_{X_q}(b)) = (p \wedge q) \vee (p \wedge q) = (p \wedge q) \wedge (p \wedge q) = p \otimes q$. Now let $$p^{k} = \begin{cases} p', & \text{if } k = 0 \\ p, & \text{if } k = 1 \end{cases}$$, $p \in B$, $k \in \{0,1\}$. A converse of the preceeding proposition can be formulated as follows. PROPOSITION 5. Let A =< A, σ > be an algebra, B any Boolean algebra, and suppose that there is and 1-1 map x_p of B onto A, and a fuzzy congruence relation $\underline{\sigma}$ on A, with $\mu_{\sigma}(x_p,x_q)=p\Theta q \quad \text{. Also let } f(x_p,\dots,x_p)=x_q, \text{ (fe0), where}$ (a) $$q = v(p_1^{i_1} \wedge ... \wedge p_n^{i_n}; f(x_{F^{i_1}}, ..., x_{F^{i_n}}) = x_F)$$ $$^{A}/_{\sigma_F} = \langle \{x_F, x_F, \}, 0 \rangle$$ and X_F is a class to which X_1 (1 eB) belongs. Then there is a two element algebra A, , such that $$A_1(B) \cong A$$. Proof. Let $A_1 = A_{/G_F}$, and denote the elements of $A_1(\mathcal{B})$ by X_p , if $\mu_{X_p}(X_F) = p$. The map h of $A_1(\mathcal{B})$ onto A: $h(X_p) = x_p$, is an isomorphism. Really, it is 1-1 by definition. Also, We shall describe now some fuzzy properties of induced notions, and then we shall use them in describing one construction of algebras. First, we repeat some definitions from [3]. - i) A fuzzy function from A to ${\bf A}_1$ is a fuzzy relation $\,\underline{f}\,$ from A to A, such that - for every a $\in A$, there is exactly one $X \in A_1$, such that $\mu_f(a,X) = 1$; ¹⁾ σ_F is a regular binary relation: (a,b) $\in \sigma_F$ iff $\mu_{\sigma}(a,b) \in F$ (see |4|). - every p & B, p $\neq 0$, appears once at most as a value of $\mu_{\mathbf{f}}(a,X)$, X & A $_1$. - ii) A fuzzy function \underline{h} from the algebra $A_1 = \langle A_1, 0 \rangle$ to the algebra $A_2 = \langle A_2, 0 \rangle$ is said to be a <u>fuzzy homomorphism</u> from A_1 to A_2 , if from $$\begin{split} & \mu_{\underline{h}}\left(a_{\underline{i}}, b_{\underline{i}}\right) = p_{\underline{i}}, \ a_{\underline{i}} \in A_{\underline{l}}, b_{\underline{i}} \in A_{\underline{2}}, \ \underline{i} = 1, \dots, n, \ \underline{i} \underline{t} \ \underline{f} \underline{o} \underline{l} \underline{o} \underline{t} \\ & \mu_{\underline{h}}\left(f\left(a_{\underline{l}}, \dots, a_{\underline{n}}\right), f\left(b_{\underline{l}}, \dots, b_{\underline{n}}\right)\right) \in \left(\left[\begin{array}{c} A \\ A \end{array} \right] p_{\underline{i}}\right)^{*}, \ \underline{f} \underline{e} \underline{0} \ . \end{split}$$ LEMMA 6. Let $X \in A(B)$, $p \in B$, and $\underline{\sigma}$ the fuzzy congruence relation defined in Corollary 2. Then there is $\underline{Y} \in A(B)$ such that $\mu_{\underline{\sigma}}(\underline{X},\underline{Y}) = p$. Proof. Let a and b be two arbitrary elements from algebra A, and let $\mu_{\underline{X}}(a) = p_a$, $\mu_{\underline{X}}(b) = p_b$. Define $\underline{Y} \in A(B)$ as follows: $$\mu_{\underline{Y}}(a) = (p \wedge p_{\underline{a}}) \vee (p' \wedge p_{\underline{X}}), (x \in A), \mu_{\underline{Y}}(b) =$$ $$= (p \wedge p_{\underline{b}}) \vee (p' \wedge p_{\underline{a}}), \text{ and}$$ $$\mu_{\underline{Y}}(x) = p \wedge p_{\underline{X}}, x \neq a, x \neq b.$$ Now it is easy to show that $\underline{Y} \in A(B)$, and that $$\mu_{\underline{\sigma}}(\underline{X},\underline{Y}) = p.$$ Now, starting with A(B), we can construct a new algebra A, by means of the fuzzy congruence relation $\underline{\sigma}$ (generalizing the notion of a quotient algebra). Let $$A_{\underline{\sigma}} = U_{\underline{p}eB} A(B)_{\underline{p}}$$. The operations are defined as in |3|: ^{*) [}p) is a principal filter in B, generated by p. $a = f(a_1, ..., a_n), fe0.$ The fact that p runs over all elements of B, is the consequence of Lemma 6. PROPOSITION 7. Algebra $A_{\underline{\sigma}}$ is a homomorphic image of A(B). Proof. The fuzzy relation \underline{h} from A(B) to $\underline{A}_{\underline{\sigma'}}$ defined as $$\mu_{\underline{\underline{h}}}(\underline{x},X) = \begin{cases} V(p_{\underline{1}}, \sigma(\underline{x})[p_{\underline{1}}) = X), & \text{if } \underline{x} \in X \\ 0, & \text{otherwise,} \end{cases}$$ is the required fuzzy homomorphism, as in |3|, and by Lemma 6. If A(B) is the extension of a two-element algebra A, then by Lemma 6, and by Proposition 4, every p ϵ B appears exactly ones as a value $\mu_{\underline{\sigma}}(a,\underline{x})$, for an \underline{a} ϵ A(B). Consider now the fuzzy relation g from A to A(B): $$\mu_{\underline{q}}(a,\underline{X}) = \mu_{\underline{\sigma}}(\underline{P},\underline{X})$$, where $\underline{P} \in A(B)$, and $\mu_{\underline{P}}(a) = 1$. PROPOSITION 8. A fuzzy relation g is a fuzzy homo-morphism from a two-element algebra A to A(B). P r o o f. \cdot By construction g is a fuzzy function. It satisfies the supstitution property: Clearly, $$\mu_{\underline{g}}(a,\underline{x}) = \mu_{\underline{X}}(a)$$. Thus, $$\mu_{\underline{\sigma}}(a_{\underline{i}},\underline{X}_{\underline{i}}) = \mu_{\underline{X}_{\underline{i}}}(a_{\underline{i}}), \quad \underline{i=1,\dots,n} \quad , \quad \underline{and}$$ $$\mu_{\underline{\sigma}}(f(a_{\underline{1}},\dots,a_{\underline{n}}),f(\underline{X}_{\underline{1}},\dots,\underline{X}_{\underline{n}})) = \mu_{\underline{Z}}(f(a_{\underline{1}},\dots,a_{\underline{n}})),$$ $$\underline{z} = f(\underline{x}_1, \dots, \underline{x}_n)$$. Now, since \underline{z} is from A(B), $\begin{array}{l} \mu_{\underline{Z}}(\mathbf{f}(\mathbf{a}_1,\ldots,\mathbf{a}_n)) = \mathbf{V}(\mu_{\underline{X}_1}(\mathbf{b}_1)\; \Lambda \ldots \; \Lambda \; \mu_{\underline{X}_n}(\mathbf{b}_n)) \; , \; \; \text{for all} \\ \mathbf{b}_1,\ldots,\mathbf{b}_n \; \; \text{such that} \; \; \mathbf{f}(\mathbf{a}_1,\ldots,\mathbf{a}_n) = \mathbf{f}(\mathbf{b}_1,\ldots,\mathbf{b}_n) \; , \; \; \text{and this} \\ \text{obviously is not less than} \; \mu_{\underline{X}_1}(\mathbf{a}_1)\; \Lambda \ldots \; \Lambda \; \mu_{\underline{X}_n}(\mathbf{a}_n) \; \; . \end{array}$ We finally give one example of the fuzzy mappings from the Propositions 7. and 8., using an arbitrary Boolean algebra B: $$A = \langle \{a,b\}, * \rangle \quad B = \{0,1,p,p',q,q',...\}$$ | <u>h</u> | $\{\underline{x}^{o}\}$ | $\{\underline{x}_1\}$ | $\{\underline{x}_{p}\}$ | $\{\underline{x}_{o},\underline{x}_{p}\}$ | $\{\underline{x}_1,\underline{x}_p,\ldots\}$ | }{ | $\frac{X}{-0}, \frac{X}{-p}, .$ | $\{\underline{x}_1,$ | (`q <u>X</u> | |---------------------------------|-------------------------|-----------------------|-------------------------|---|--|-------|---------------------------------|----------------------|--------------| | | | | | | 0 | | | | | | <u>x</u> 1 | 0 | 1 | 0 | 0 | p | • • • | 0 | p´ | •,•• | | $\frac{\mathbf{x}}{\mathbf{p}}$ | 0 | 0 | 1 | 0 | p | | p´ | 0 | | | $\frac{x}{p}$. | 0 | 0 | 0 | p | 0 | • • • | 0 | p´ | ••• | ## REFERENCES - | M.I.Gould and G.Grätzer, Boolean extensions and normal subdirect powers of finite universal algebras, Math. Z. 99(1967), 16-25. - |2| Vojvodić, G., Šešelja B., O strukturi slabih relacija ekvivalencije i slabih relacija kongruencije, Mat. vesnik, 1 (14)(29), 1977, 147-152. - |3| B.Šešelja, Characterization of fuzzy equivalence relations and of fuzzy congruence relations on algebras, Zbornik radova PMF u Novom Sadu, 10 (1980), 153-160. - |4| G.Grätzer, Universal algebra, Van Nostrand Co., 1968. Received by the editors February 10,1983. #### REZIME # RASPLINUTE KONGRUENCIJE I KONSTRUKCIJE ALGEBRI U radu se pokazuje da se koncept rasplinutih skupova može proširiti i na Bulove ekstenzije algebri i da se na njima mogu posmatrati rasplinute relacije. Opisana je jedna klasa rasplinutih relacija, kongruencija na tim algebrama i pokazano je da se one mogu koristiti za konstruisanje i opisivanje nekih konstrukcija algebri.