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ABSTRACT

In the present paper some new characterizations of semigroups with
a completely simple kernel by bi-ideals and left ideals are given. Also, in
this paper we consider semigroups in which every proper left ideal (bi-ide-
al) is a completely simple semigroup and the isomorphism theorem of this

semigroup is given.
INTRODUCTION

Semigroups which contain minimal ideals are considered by A.H.
Clifford, |6|. If a semigroup contains at least one minimal le-
ft and at least one minimal right ideal, then it contains a co-
mpletely simple kernel,or equivalently, it contains a quasi -
ideal which is a group (see Theorem 3.3. |6]| and Theorem 5.14.
[18]). The structural theorem for this class of semigroups is

is given by A.H.Clifford, |7| (see also Theorem 2.1. 13| and Thearem 1.1.[16l).

The description of this class of semigroups by bi-ideals and AB-
ideals is given by S.Bogdanovié, |1

Semigroups in which every proper subsemigroup is a group
are considered by G.Polldk and L.Rédei, [15|. &.Schwarz, |17]
worked on semigroups in which every proper left ideal is a gro-
up. The same class of semigroups was studied by R.Hrmov&, |11|
G.%upona, |8| considered first a semigroup S in which every sui-
set Sx #S is a group, later, semigroups in which some left ide
al is a group, |9]. This result is a special case of the resul :
given by A.Clifford, |7]. Clearly, this class of semigroups is
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is more extensive that the one considered by Schwarz and HrmovA4.
The result of é.éupona was an impulse for S.Milié& and V.Pavlo -
vié, [13], to give a structural description of semigroups in
which some ideal is a completely simple semigroup, i.e. a semi-
group with completely simple kernel. It is given an extension
of a Rees matrix semigroup over a group in their paper. (See ,
also, |7| by A.H.Clifford). In |16] P.Protié and S.Bogdanovié
give the description of an extension of Rees matrix semigro-
up over a monoid.

Here will be given some new characterizations of semi-
gropus with completely simple kernel by bi-ideals and 1left
ideals (Theorem 2.1.). Also, in this paper we shall consider
semigroups in which every proper left ideal (bi-ideal) is a co-
mpletely simple semigrowp (Theorem 2.1. and Theorem 6.1.),
and next, semigroups in which every proper left ideal is aright gro-
up. In section 8. some isomorphism theorems will be given. Se-
migropus in which every left ideal is a left groupare described
by Bogdanovié, |2}. Various generalizations of the results of
Poll&k-Rédei, |15| are given in |3! and |4
lts, the description of semigroups in which every proper sub-

. Among other resu -
semigroup is simple is given in [4| (Theorem 2.1.).

2. SEMIGROUPS WITH COMPLETELY SIMPLE KERNEL

Here will be given some new characterizations of semi-
groups with completely simple kernel. Let us denote M(G;I,J;P)

a Rees matrix semigroup over a group G.

THEOREM 2.1. The following conditions on a semigroup
S are equivalent:
1° Some left tdeal of S i8 a completely simple semigroup;

2 Some bi-ideal of 8 is8 a completely simple semigroup;
3°  some left tdeal of 8 i8 a left group;

4° s has a completely simple kernel.

Proof£. 1° => 2°. Let L be a left ideal of §
which is a completely simple subsemigroup of S. Then L =

-

=M(G;I,J;P), so the group Hij ={(g;i,j): geG}, (i€I, 1eJ)
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is a bi-ideal of L. It follows that

H,.SH,. =H,.SH, .H,. <H, .SLH, .<H, ,LH, ., cH, .
i3 i3 ij77i3i3 =13 ij="ij iij =13

Therefore, Hij is a bi-ideal of S.

2° => 4° Let a bi-ideal B of S be a completely sim-

ple semigroup. Then a maximal subgroup G of B is a bi-ideal of
B, so it is a bi-ideal of S. Consequently, by Theorem 1. |1/,
S has a completely simple kernel.

3° => 4%,  If a left ideal L of S is a left group ,

then L contains a right ideal G which is a group; G is a bi -
ideal of S, so by Theorem 1. |1|, S has a completely simple ke-
rnel.

4° => 3°, 1If s contains a completely simple kernel K,
then we can put K =M(G;I,J;P), thus Lj ={(g;1,j) :g€ecg) 1 eI ,
jeJ is a left ideal of K . Semigroup L, is a left group, so

2 . 2 :
L. =L, J. It follows that SL. =SL. < SKL. <KL.<L.. There-
jToyr I ° j j =20y j Sty There

fore, S has a left ideal which is a left group.

4° => 1°. It follows immediately.

Also, let us consider the following conditions:

5° Some bi-ideal of S is a group;

Some guasi-ideal of S is a group;

S has at least one minimal left and at least one mini-

mal right ideal.

According to Theorem 1. |1|, Theorem 3.2. |6| and The-
orem 2.1. we get the following result.

THEQOREM 2.2. Conditions 1°-7° are equivalent on a

semigroup S



432 Stojan Bogdanovié and Silvija Gilezan

3. SEMIGROUPS IN WHICH EVERY PROPER LEFT IDEAL A COMPLETELY
SIMPLE SEMIGROUP

LEMMA 3.1. [21]. Let I be a (left) two sided ideal
of a semigroup S, and let K be a (left) simple subsemigroup
of S such that KNI #¢, then Ke1I.

LWMMA 3.2. 2] Let I be a proper two-sided ideal of
S whieh 18 not a proper subset of any proper left ideal of S .
Then

a) S\I t8 a left simple semigroup
or
b) s~1I = {a}, az'eI.

LEMMA 3.3. A left ideal L of a completely simple se-

migroup S i8 a completely simple subsemigroup of S.

Proof£. It is known that S is the union of groups,
so for each a ¢ L there exists a_1 e S such that a=aa-la, aa_l =

“laal-alalaesL €L Thus L is the union of

= a, al=a
groups and because of the fact that each idempotentof S is a pri-
mitive idempotent, we have that L is a completely simple semi-

group, (|10|, IV Theorem 2.4.).

LEMMA 3.4. Every proper left ideal of a semigroup S
is g completely simple semigroup if and only if S has a kernel
K and orne of the following condition hold:

10

2
S and for each a &€ S~K, Ka=K;

S=KzM{G;I,J;P) ;
° KzM(G;I,J;P), S~K 18 a left simple subsemigroup of

"
3° K is a left group, S~\K={al and a“ ekK.

Proof. Let every proper left ideal of S be a co-
mpletely simple semigroup. Then by Theorem 2.1. S has a kernel
K which is a completely simple semigroup.
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Assume that K #S, If L is a proper left ideal of S, then
by hypothesis it is a completely simple semigroup. Obviously
ENL #¢ and by lemma 3.1. LSK. Thus, K is the unique maximal
left ideal of S. According toIemma 3.2. S~XK is a left s:mele
subsemigroup of S or S\K=1{a}, aZ ek.

The case: S\K=T is a left simple semigroup. let us
take a €T, then the left ideal [a] [ Jenerated by a is

[a] ;= aUsa=aU(RUT)a =alURKaUTa = T UKa

(because T is a left simple semigroup). If [a]; isaproper left
ideal of s, then it is a completely simplé sem-icjroup and since
K- nlaly:# #, by lemma 3.1. we have that l_a]LCK, i.e. T<K ,
which is impossible. Therefore [a]L = 8. It follows from this
that TUXKa=T UK and since KNT = @ we have that KSKa for
each aeT, _
The case: S~XK ={a}, a? ¢X. Let us assume that K is

not a left group. Then there exists a proper left ideal LJ of
K which is a left group and a2 € LJ. The left ideal generated

by a is

[a]L= alUsa =al (KU{alla = aUa2UKa .

Then ra]L = ava’ua?uka, thus from fa]l; = ,a]L it follows
that ae [a] IS K, which is impossible. Therefore a2 # faly,
so [a]; is not a completely simple semigroup, and [a]; = s,

i.e. ala UKa = KUa. Immediately it follows that azUKa =K,

thus a3 UKa2= Ka, and K<.:.a2Ua3UKa2 ch , i.e. K ELj . This

means that K is a left group. Contradiction. So we have proved
that s=k U {a}, aex and K is a left group.

Conversely, if 1° holds then the proposition follows
by Lemma 3.3, If 3° holds, let us take the proper left ideal
Lof S. Then KN L # ¢, thus KSL . If K# L , thenael ,i.e.
S = L, but this is impossible. Hence, K=L . The case 20. If
L 1is a proper left ideal of S and L &K, then the assertion
follows by lemma 3.3. If LK, then L NT # ¢ , so by lemma
3.1. we have that T= L . For a €T is K= Kac= KL< L . Hence,

S=KUT =1L , i.e. = L , which is not possible.
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REMARK, Lemma 3.4. can be given in the following
way: Every proper left ideal of a semigroup S is a completely
simple semigroup if and only if S has a kernel K= M'(G;I,J;P)
and SN\K = § or K is the unique maximal left ideal of 8. (This
can be seen easy from the proof of Lemma 3.4.).

EXAMPLE . The semigroup S given by
1 2 3 4 a
14§j1 2 1 2 1
2911 2 1 2.1
33 4 3 4 3
4 |13 4 3 4 3
w1 21 2 1

has a kernel K = {1,2,3,4} which is a rectangular band, S\K ={a},
a2 =1 e K. But S has another maximal left ideal. It is {1,3,a}
and it is not a completely simple semigroup.

Let K=M(G;I,J;P) be a Rees matrix semigroup and let
T be a left simple semigroup such that KN T = ¢,

Let & :p-vsp be a mapping of T into the semigroup T(I)
of all mappings of I into itself, and n :p-»np the mapping of
T into the semigroup of all sirjections of J onto J, and for
p,9 €T let

(1) E g T E 8 v N, =n.n
Let
¢ : TxXxI=>G and y: T xJ=+G
be a mappings with

(i1) ¢ (pg,i) = ¢(p,i£q)¢(q,i)
(1i1) v(pgq,3) w(p,j)w(q,jnp)

(iv) P ¢(p,i) = ¥v(p,itp._ . .
JiEp anl

Let us define a multiplication on =G xIxJUT with

(1) (a;i,3) (b;k,L) = (apjkb;i,l)
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(2) (a;i:j)p (ay (PIJ) ;iljnp)

(3) plazi,j) = (¢(p,i)a;i£p,j)
(4) pq =reT => pq =rel
for all i,keI; j,2 e€eJd; p,geT and a,beaG.

Then, I with a miltiplication defined above is a semi-
group. We shall denote it by M, (G;I,JsP;T,¢,¥,E,n) .

LEMMA 3.5, A semigroup S has a kernel K which 18 a
completely simple semigroup, S~K 18 a left simple semigroup
and for each p e SN\K, IE Kp if and only if S is isomorphic with
some MI(G;I,J;P;T,¢r¢rErn ).

Proof. Let K be a completely simple kernel of S,
K=M(G;I,J;P), let SN\K =T be a left simple semigroup and
K SKp for each p éT. Then by Theorem 1.1. |16| (see also Theo-
rem 1.1. |13{ ) there exist functions ¢,y,£ and n with proper-
ties (i)~(iii) and a multiplication on S can be defined by
(1)-(4). It remains to prove that the mapping np is a sirjec-
tion for each peT. For an arbitrary j eJ we have that (a;i,j)e
eK, i.e. there exists (b;k,%) e K such that

(a;i,3) = (bsk,2)p = (by(p,R);k, Eng) .

So j=1npfor some £ €J. Thus, ”p is a sirjection of J onto J.
Conversely, let n_.(peT) be a mapping of J onto it -
self. Then for (a;i,Jj) ek, j=ILnp for some ¢ eJ, so

(a31,3) = (a[b(®,2)] " 41,2)p e Kp.

Thus, KSKp for each peT. The other conditions follow from
the construction.

Let K=IxG be a left group, b a fixed element of G ,
agkK, ¢ :a—»ga, gaeT(I) and ga£a=const. .Let us define a
multiplication on ¥ = IxG U {a} by:

(i,x) (j,y) = (i,xy) ‘a(i,x) = (1§, ,bx)
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for each i,j €I; x,y €G. Then, I with a miltiplication defined
in this way is a semigroup, to be denoted by MZ(G;I;a,b,Ea).

LEMMA 3.6. [2| . 4 semigroup S contains a kernel K
which 18 a left group, S~K={al and a’ ek if and only if S
18 isomorphic with some MZ(G;I;a,b,Ea).

By Lemmas 3.4, 3.5 and 3.6. we have

THEOREM 3.1. Every proper left ideal of a semigroup
S <8 a completely simple semigroup if and only if one of the

following conditions hold:

1~ s =MI(G;1,J;P)
2° 5 =M, (GiI,TiPiT,0,¥,8,n)
3° s 2M,GiTza,b,E) .

L., SEMIGROUPS IN WHICH SOME LEFT IDEAL 1S A GROUP

THEOREM 4 .1. The following conditions on a semigroup

S are equivalent:

(1) Some left ideal of S 18 a right group;
(11) Some left ideal of S i8 a group;
(1ii) S has a kernel which is a right group.

Prooft. (1) => (i1i). Let a left ideal L of the
semigroup S be a right group. Then L. contains a left ideal G
which is a group, so SG=SGG<=S LG= LG=G. Thus G is a left
ideal of s. )

(11) => (iii). See Corollary 2. [1].

(iii) => (i) Follows immediately.

REMARK. Semigroups in which every proper left ideal
is a group are described by ¥.Schwarz, !17|. Semigroups in
which some left ideal is a group are describedlnﬂé.éuxna,|9
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S. SEMIGROUPS IN WHICH EVERY PROPER LEFT {DEAL IS A RIGHT
RIGHT GROUP

LEMMA S5.1. Every proper left ideal of a semigroup S
18 a right group if and only if one the following conditions
hold:

© S hds a kernel K which is a right group and SN K=§ or

1
S~K=T 18 a left simple semigroup and K<'Ka for each aeT ;

© s has a kernel K which ie a group and S~K ={al ,

2
a2 eK .

Proof. If every proper left ideal of S is a ri-
ght group, then by Lemma 3.4. there are three cases. Let the
kernel Kof S be a left group, S\K=1{a}, a’eK. K has to be a
right group also. Thus K is a group. The other cases and the

converse follow immediately.

tet K=G xJ be a right group and T a left simple se-
migroup such that KNT =¢g. Let n : t-ng be a mapping of T
into the semigroup of all epimorphisms of J onto itself . and
let ¢ : T -G be a homomorphism. Iet us define a multiplication

on E=GxJUT by

(x,1) (y.3) = (xy.,3) t(x,1) = (¢ (t)x,1)
(x,)t = (x¢(t),1iny) ts=r €T, then ts=r e}

for each i,j €J; x,y €G; t,s €T. Then & , with a multiplication
defined in this way, is a semigroup to be denoted by M3(G;J;T,

$,n).

LEMMA 5.2. A semigroup S contains a kernel K which
ig¢ a right group, S~K =T 18 a left simple semigroup and K=Ka
for each a€ Tif and only if S i8 isomorphic with some M3(G;J;
T,%,n).

Proof. Similar to the proof of Lemma 3.4.

Let K be a group, b a fixed element of K and a £K.
Let us define a multiplication * on L =K U{a}l by



438 Stojan Bogdanovi¢ and Silvija Gilezan

x*y = xy, X,y € K; a*x = bx, x€K;

x*a = xb, xeK; a*x = b2 .

Then, I with this multiplication is a semigroup, to be denoted
by M, (K;a,b).
It is easy to prove the following

LEMMA 5.3. A semigroup S has a kernel K which is a
group and S~K={a}, azeK if and only if S ig igomorphic with
some M, (K;a,b).

THEQREMA 5.1. Every proper left ideal of a semigroup
S is a right group if and only if one of the following conditi~
on hold :

°© g= M3(G;J;T,¢,n) ' { T can be empty)
2° s = M, (K;a,b).
Proof.  Lemmas 5.1, 5.2. and 5.3. imply the as-
sertion.
REMARK, Semigroups in which every proper left ideal

is a left group are described by S.Bogdanovié, |2].

6. SEMIGROUPS IN WHICH EVERY PROPER BI-IDEAL 1S A
COMPLETELY SIMPLE SEMIGROUP

Let K=M(G;I,J;P) be a Rees matrix semigroup and let
T be a group such that KNT =¢.

Let £ : p-+£p be a mapping of T into the semigroup of
all sirjection of I onto itself, and let n :p-+np be’ a mapping of
T into the semigroup of all sirjections of J onto itself, and
let the conditions (i), from construction of Lemma 3.5., hold.
let mappings ¢ :Tx I -G and ¢ : T xJ~>G fulkil the conditions
(ii)-(iv) . We can define a multiplication on Z=KUT by (1)-(4).
Then I with such a defined multiplication is a semigroup. Let
us denote it by MS(G;I,J;P;T,¢,w,£,n).
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LEMMA 6.1. A gemigroup S hae a kernel K which ig a
completely simple semigroup, S~K i8 a group and for each
a€S\K, K=KaflakK 7f and only ¢f S <8 igomorphic with some
Ms (GiI,J5P;T,¢,9,5,m) .

THEOREM 6 .1. Every proper bi-ideal of a semigroup S
is a completely simple semigroup if and only if one of the fol-
lowing conditions hold:

1° s =M(@G;1,3;P)

O ~

2 S = MS(GiIrJ;P;TI‘bH’)IE'n)
3° sz

M4(K;a,b) .

Proof. Let every proper bi-ideal of S be a com-
pletely simple semigroup. Then Lemma 3.4. S has a kernel K
which is a completely simple semigroup and S~X is a left sim-
rle semigroup and K<Ka for each ae S~ K. By Lemma which is du-
al to the Lemma 3.4. S~ K is, also, right simple and KSaK
for each a e S~ K. Thus S~ X. ijg a group and Kc aK Nga for each
aeS~K. If K is a left group, S~K={a}, azeK, then K has
to be a right group and so K is a group and the assertion fol-
lows by Lamas 6.1. and 5.3.

The converse follows immediately.

COROLLARY 6.1. Every proper bi-ideal of S i8 a group
if and only i1f one of the foZZow'an conditiong hold:

—
n
[l

= M(G;I,J;P) and |I| =2, |3 =1 or |I|=1, |J|=2;
GUT, GNT =@, G and T are groups and the multiplica-

N
0
1Y

tion *on GUT 28 defined by using a homomorphiem ¢ : T ~G in the
following way

g*t = go(t) , geG, teT
t*g ¢(t)g, teT, geG
X*y Xy in other cases,

3° g = M, (K;a,b)
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REMARK. By Theorem 1. |17| and Corollary 6.1. we ha-
ve that every proper bi-ideal of S is a group if and only if
S is an F-semigroup, |17| , i.e. semigroup in which every pro-
per left and right subideal of S is a group.

7. SEMIGROUPS IN WHICH ALL PROPER
SUBSEMIGROUPS ARE SIMPLE

The following theorem is given in ]4!. Let M(2,r) de-
note a monogenic semigroup with the index 2 and period r.

THEOREM 7.1. Every proper subsemigroup of a semigro-
up S e 8imple if and only i{f one of the following conditions
hold :

1° s is M(2,r) ;
2° Is| =2
3° S 18 a completely simple peritodic semigroup.

Proof. Let every proper subsemigroup of S be si-
mple, then S is a GE-semigroup (Theorem 2.3. |3]), also S is
an M(2,r) or S is the union of periodic groups.

Let S be the union of periodic groups and |S| >2.

If S is simple, then S is a completely simple periodic
semigroup. :

If S is not simple, then S has a completely simple ker-
nel K, so (by Lemma 3.2) SNK=P is a left simple subsemigroup
of S. Take idempotents, e eK and f e P. They generated a semi -
group T,

T = <e,f> = {e,f} U<ef> U<fe> U <efe> U <fef> .
If T#S, then T is simple, thus
T = <ef> U <fe> U <efe> U <fef><K.

i.e. £ eK. Contradiction. If T = S, then

T = <ef> U <fe> U <efe> U <fef> =K.

Contradiction.
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Conversely, take case 3°, i.e. let S be a completely
simple periodic semigroup and S~ a subsemigroup of S. Then S=
= M(G;I,J;P), G is a periodic group. Let Hij = {(g;i,3): geG}.
Changing the index, if necessary, we can get S§° and Hll to have a
nonempty interesection. G° = {g eG:(g:1,1) €S°} is a subsemigro-
up of the periodic group G, thus, it is a subgroup of G. Imme-
diately we can prove that Sle' # g implies S~ ﬂli - # g
Tn that case S~ I1H ={(g;i,1):ge G"} and s°n H . =
= {tg;i,d): g €eG} are provable Also, if s° NHy 4 ..# @ then the ide-
mpotent (p. i,:I.,]) is in §8° and pJ is in G~. Flnally say I° =
= {ie I:8~ ﬂH #ﬂ} and J° ={je J:S8° ﬂH j #@} and therefore S =
= MG ;I°,J° ,P ).
Cases 1° and 2° follow immediately.

REMARK. Theorem 7.1, was given in |4|, but the proof
was not completely correct. This is the reason wy it is given
again with its complete proof. This theorem is a generalizati-
on of Proposition 1.1. |12| and the second part of the proof
of the Theorem 7.1. is the same as the proof of Proposition

{12].

COROLLARY 7.1. [15| .  Every proper subsemigroup of
Si8 a group if and only <f one of the following conditions
hold:

° s e M(2,1);
° Is| =2 ;
o

S 18 a periodie group.

8. SOME ISOMORPHISM THEQREMS

THEOQOREM 8.1. Two semigroups S =M1(G;I,J;P;T,¢,m,€,n)
and S* =M1(G*;I*,J*;P*;T*,¢*,w*,g*,n* ) are igsomorphic Lif

and only if there is an isomorphism w :G >G*, a mapping i++ui

of I into G*, a mapping j'*V of J into G*, bijeetiong h : I > 1I*
and k : J +J* and an 1somorphzsm Q :T+T* such that
= *
1) jS” v. pJkih i 3) npk kn P Q
u

2) Eh=nht* 4) ¢(p,i)m=

1 *
p po ¢ (pQ,ih)ui

tp
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. -1
5) Y(p,Jlw = v ¥*(pl,jk) v,
j Jnp
COROLLARY 8.1. Two semigroups M3(G;J;T.¢m) and

M3(G*;J*;T*,¢*,n*) are isomorphie if and only if there exists
an isomorphism w : G +G*, a bijection k : J +JI* and an Zsomorph-
tem  : T +T* guch that ¢w =0260* and n_k =kn¥*
P PQ
THEOREM 8.2. Two semigroups Mz(G;I;a,b,Ea) and
MZ(G*;I*;a*,b*,ga*) are itsomorphic if and only if there is an
igomorphisem w : G >G* and a bijection h : I +I* such that bw =b*
and 5ah =h£;* .

COROLLARY 8.2. Two semigroups M, (G;a,b) and.
My (G*;a*,b*) are <somorphic <f and only if there <& an isomor-
phism w : G +G* such that w(b) =b*

We have given some isomorphism theorems but we shall
only prove Theorem 8.1. because the other proofs are similar
to this one.

P roof of Theorem 8.1. Let £ : § +S8* be an isomo-
rphism GxI xJ is a kernel in S and G* XxI* xJ* is a kernel in
S} therefore G xI xJ & G* x I* xJ*. Now, by Theorem 2.8. |10] ,
there exists an isomorphism w : G +G*, bijections h : I +1I%,

k *+J+J* and elements LI €G (ieI, jed) such that conditi-
on 1) is satisfied. For peT and (a;i,j) €G xI xJ we have
(p(az;i,j))f = (¢(p,i)a;1€b,j)f =
= [uiEp (¢(p,1)a)wvj;igph,jk] €EG* X I* xJ*
and

(pf) ((a3i,j)f) = psz[ui(aw)vj;ih,jk)j =
= @x‘-*(pﬂ,ih)ui(aw)vj;ihggﬂ,jk:I

so 5ph=hgl‘;9 , i.e. condition 2) holds. The proof of 3) is

similar. Further,
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uigp(d)(p,i)a)wvj = d)"‘(pQ,ih)ui(aw)vj
therefore
$(p,ide = uy, 6*(pQ,ih)u, .
£ i
P
Hence, condition 4) is satisfied. The proof of 5) is similar.

Conversely, let us define a mapping f : S »5* by

[ui(aw)vj;ih,jk:] , XEGXxIxJ
xf

X Q , XeT .

f is an isomorphism. For X,y €GxI xJ f is an isomorphism by
Theorem 2.8. |10
ins to prove that f is an isomorphism for pe€T and (aj;i,j) €
€ GxIxJ. Indeed,

.  is an isomorphism of T onto T* . It rema-

(p(a;i,3))f = (¢ (p,i)a;iEp,j) f

[uigp(¢ (p,i) a)ouvj ;iEPh 3k ]

Eliipd) (p,i)w(aw) Vj;ihE;Q, jk]

[y W iy 6% (P2, i)y, (aw)vyihes,3K] =
p

p

[6* (PR, ih) u, (aw) vyiihER,, K]

and
(pf) ((a;i,3) ) = pQ[ui(aw)vj;ih,jk:[ =
= [¢*(pQ,ih)ui(aw)vj;ihE;Q,jkj :

Thus (p(a;i,j))f = (pf) ((a;i,j)f). The proof of ((a;i,j)p)f =
= ((a3i,3j)f) (pf) is similar. Thus, £ is as isomorphism.

REMARK. If T and T* are partial semigroups, then a si-
milar Theorem to Theorem 8.1. can be given. In that case insteid
of the isomorphism @ : T »T* we have a partial isomorphism. Suc:
a theorem (without restriction for np) is given without a proc?
in |16

-
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REZIME

POLUGRUPE SA POTPUNO PROSTIM JEZGROM

U ovom radu daju se neke nove karakterizacije pomocu
bi-ideala i levih ideala za polugrupe sa potpuno prostim jez-
gram: Takodje, u avom radu razmatraju se polugrupe u kojima
svaki pravi levi ideal (bi-ideal) jeste potpuno prosta polu-
grupa i teoreme o izomorfizmu ovakvih polugrupa su date.



