Zbornik radova Prirodno-matematičkog fakulteta-Univerzitet u Novom Sadu knjiga 12 (1982).

Review of Research Faculty of Science-University of Novi Sad, Volume 12(1982)

POWER REGULAR SEMIGROUPS

Stojan Bogdanović

Prirodno-matematički fakultet. Institut za matematiku 21000 Novi Sad,ul. dr Ilije Djuričića br.4, Jugoslavija

ABSTRACT

In the present paper power intra-regular and power (left, right) regular semigroups are considered and in this way the theory of R.Croisot, [7] is generalized.

R.Croisot considered in |7| the semigroups which are unions of simple semigroups (so called intra-regular semigroups) i.e. semigroups with the property that each element is in a simple subsemigroup. He also considered left regular, right regular and regular semigroups.

Let P be one of the following properties defined below: power intra-regular, power left regular, power regular, power inverse or power orthodox. In this paper we shall consider the semigroups with the property P.

For undefined notions and notations we refer to |6|, |10| and |13|.

1. POWER INTRA-REGULAR SEMIGROUPS

DEFINITION 1.1. A semigroup S is power intra-regular if for every a ϵ S there exists meN such that a^m ϵ Sa 2m S.

LEMMA 1.1. S is power intra-regular if and only if for every a eS there exists meN such that $a^m J a^{2m}$ (1).

⁽¹⁾ $a^{Jb} <=> J(a) = J(b)$

THEOREM 1.1. S is a power intra-regular semigroup if and only if some power of each element of S lies in a simple subsemigroup.

Proof. Let S be a power intra-regular semigroup. Then for an arbitrary a ϵ S there exists meN such that $J(a^m) = Sa^mS$ and it is clear that

(1)
$$Sa^{m}S = Sa^{2m}S$$
, (Lemma 1.1.)

Assume that b,c $\in J_{am}^{(2)}$. Then cJa^m and c^2Ja^{2m} , so by (1) we have that cJc^2 . Similarly, bJb². From this it follows that

(2)
$$J(c) = Sc^{k}S, \quad J(b) = Sb^{r}S$$

for some k,r eN. Since

$$sc^kssc^ks \subseteq sc^ks$$

 $sc^ks = ss_1(c^k)^{2p}s_2s$, for some peN and $s_1, s_2 \in sc^kssc^ks$
 $= ss_1s_3(c^{kp})^{2h}s_4c^{kp}s_2s \subseteq sc^kssc^ks$
 $= ss_1s_3(c^{kp})^{2h}s_4c^{kp}s_2s \subseteq sc^kssc^ks$

it follows that

(3)
$$J(c) = J^2(c)$$
.

Similarly

(4)
$$J(b) = J^2(b)$$
.

From (3) and (4) we have

(5)
$$J(c) = J(c)J(c) = J(c)J(b) = Sc^k SSb^r S$$
,

(since cJb).

From $S(c^kSSb^r)^2S \subseteq Sc^kSSb^rS = S(S(c^kSSb^r)^{2h}S)S \subseteq S(c^kSSb^r)^2S$

we have

(6)
$$s(c^k ssb^r)^2 s = sc^k ssb^r s$$
.

By (5) and (6) it follows that

(7)
$$\operatorname{Sc}^{k}\operatorname{Ssb}^{r}\operatorname{S} = \operatorname{S}(\operatorname{c}^{k}\operatorname{Ssb}^{r})(\operatorname{c}^{k}\operatorname{Ssb}^{r})\operatorname{S} \subseteq \operatorname{Sb}^{r}\operatorname{c}^{k}\operatorname{S}$$

⁽²⁾ J_m is a J-class of element a^m .

(8)
$$\operatorname{sb}^{r} \operatorname{c}^{k} \operatorname{s} \subseteq \operatorname{s} (\operatorname{b}^{r} \operatorname{c}^{k})^{2t} \operatorname{s} \subseteq \ldots \subseteq \operatorname{sc}^{k} \operatorname{ssb}^{r} \operatorname{s}$$
.

Hence, by (7) and (8) we have

(9)
$$sc^k ssb^r s = sb^r c_k s.$$

Now by (5) and (9) we have $J(c) = J(c)J(b) = Sb^{r}c^{k}S \subseteq SbcS \subseteq J(bc)$ and since $J(bc) \subseteq J(b)J(c)$ we have J(bc) = J(c). Hence, $J_{a^{m}}$ is a subsemigroup of S. We shall show that $J_{a^{m}}$ is simple. If b,d $\in J_{a^{m}}$, then b, $bd^{3}b \in J_{a^{m}}$ and

 $b = xbd^3by$.

From this it follows that $b = x^2bd^3bybd^3y$. Put u = xbd. Then $b = xud^2by$. Hence b^Ju . Similarly we have that dby = vJb. Therefore, b = (xbd)d(dby), $(xbd,dby \in J_{am})$, i.e. J_{am} is a simple subsemigroup of S.

Conversely, if for an arbitrary a eS there exists meN such that a^m is in a simple subsemigroup P of S, then $a^m \in Pa^{2m}P \subseteq Sa^{2m}S$.

A semigroup S is intra-regular if a $\in Sa^2S$ for every a $\in S$

COROLLARY 1.1. (|6|, |7|). S is intra-regular if and only if S is a union of the simple subsemigroups of S.

THEOREM 1.2. Every principal left ideal of S is a simple subsemigroup of S if and only if a e SabSa for every a, b e S.

Proof. If every principal left ideal of S is simple and L(a) is an arbitrary principal left ideal of S, then $L(a) = L(a) \times L(a)$ for every $x \in L(a)$. For b \in S we have that ba \in L(a) and L(a) = L(a)baL(a) \subseteq L(a)bL(a) \subseteq L(a), i.e. L(a) = L(a)bL(a) for every b \in S. Hence, a = aba or a \in Saba or a \in SabSa for every b \in S. From this if follows that a \in SabSa for every a,b \in S.

Conversely, if x,y &L(a), then

x = a, $y = a \Longrightarrow x = \alpha aa\beta a \in L(a)yL(a)$

x = za , $y = a \Longrightarrow x = \alpha(za)a\beta(za) \in L(a)yL(a)$

x = a, $y = ua \Longrightarrow x = \alpha a(ua) \beta a e L(a) y L(a)$

x = za, $y = ua \Longrightarrow x = \alpha(za)(ua)\beta(za) \in L(a)yL(a)$.

Hence, L(a) is a simple subsemigroup of S.

PROBLEM 1.1. Do the following formulas $(\forall a \in S) (\exists m \in N) (a^m \in Sa^{m+1}S), \quad (\forall a \in S) (\exists m \in N) (a^m \in Sa^{2m}S)$ define the same class of semigroups?

PROBLEM 1.2. Describe the class of semigroups with the property that each proper left ideal is a power intra-regular (intra-regular, simple) semigroup.

REMARK. Semigroups in which every proper left ideal is a completely simple semigroup are described in [4].

2. POWER LEFT REGULAR SEMIGROUPS

DEFINITION 2.1. A semigroup S is power left regular if for every a eS there exists m eN such that a^m eSa $^{m+1}$.

Analogously we define a power right regular semigroup.

THEOREM 2.1. The following conditions are equivalent on a semigroup \mathbf{S} :

- (i) S is power left regular
- (ii) For every a &S there exists m &N such that a mLa m+1
- (iii) Some power of each element of S lies in a left simple subsemigroup of S;
 - (iv) Every principal left ideal of S is power left regular.

Proof. (i)<=> (ii) <=> (iv) and (iii) => (i) follow immediately. (i) => (iii). Let S be a power left regular semigroup. Then by (i) and (ii) we have that for a ϵ S there exists meN such that $a^m L a^{2m}$. If b,c ϵ L then L bc $L c^2$ (since L is a right congruence) and from $cL a^m$ it follows that $c^2 L a^{2m}$, so $c^2 L a^m$. Hence $c^2 L c$. Therefore, bcL c, i.e. L is a subsemigroup of S. If b,d ϵ L a^m , then b,bd ϵ L a^m , so b = xbd for some x ϵ S a^m . From

this we have $b = x^k b d^k$ for every $k \in \mathbb{N}$. Let us put c = xb. It is sufficient to show that $c \in L_b$. Since S is power left regular we have that $x^k = yx^{k+1}$ for some $y \in S$ and $b = xbd = x^kbd^k = yx^{k+1}bd = yxx^kbd = yxb = yc$.

Hence, b = yc, c = xb, i.e. $c \in L_b$. Therefore, $L_a^m = L_b$ is a left simple subsemigroup of S.

Theorem 2.1. is a generalization of Theorem 4.2. |6|.

COROLLARY 2.1. Every proper subsemigroup of S is power left regular if and only if S is periodic.

LEMMA 2.1. |5| Every proper left ideal of L is minimal (left simple) if and only if L contains exactly one minimal left ideal or S sontains exactly two minimal left ideals L_1 and L_2 and $S = L_1 \cup L_2$.

The following lemma is known.

LEMMA 2.2. The union of all minimal left ideals of S is a (two sided) ideal of S, and is a kernel of S.

LEMMA 2.3. |5|. Let I be a left (twosided) ideal of S. If K is a left simple (simple) subsemigroup of S and K Π I $\neq \emptyset$, then K \subseteq I.

LEMMA 2.4. |5|. Let I be a proper twosided ideal of S which is not contained as a proper subset in a left ideal L \neq S. Then S \setminus I is a left simple semigroup or S \setminus I = {a}, a² e I.

THEOREM 2.2. Every proper left ideal of a semigroup S is minimal if and only if one of the following conditions holds:

 1° S has a kernel K which is a left simple subsemigroup of S and S \ K is a left simple subsemigroup of S;

 2° S has a kernel K which is a left simple semigroup and $S \setminus K = \{a\}, a^{\circ} \in K;$

3° S contains exactly two minimal left ideals $\mathbf{L_1}$ and $\mathbf{L_2}$ and $\mathbf{S} = \mathbf{L_1} \cup \mathbf{L_2}$.

Proof. If all proper left ideals of S are minimal, then by Lemma 2.1. we have two cases. Assume that S has exactly one minimal left ideal K. Then by Lemma 2.2. K is a twosided ideal of S and it is the kernel of S. By Lemma 2.4. we have that $S \setminus K$ is a left simple subsemigroup of S or $S \setminus K = \{a\}$, $a^2 \in K$. If S contains exactly two minimal left ideals, then by Lemma 2.1. we have the case 3° .

Conversely, suppose that 1° holds. Let K be a kernel of S and let K be left simple. If L is a proper left ideal of S, then $K \cap L \neq \emptyset$, so $K \subseteq L$. If $K \neq L$, then $L \cap (S \setminus K) \neq \emptyset$ and by Lemma 2.3. we have that $S \setminus K \subseteq L$. Hence, $S = K \cup (S \setminus K) \subseteq L$, which is not possible. Therefore, K = L, i.e. K is the unique proper left ideal od S. The case 2° . If L is a proper left ideal of S and $L \neq K$, then from $K \subseteq L$ it follows that $L = K \cup \{a\} \neq S$ which is not possible.

A subsemigroup B of S is a <u>bi-ideal</u> of S if BSB \subseteq B, |6|.

COROLLARY 2.2. Every proper bi-ideal of S is minimal if and only if one the following condition holds:

 1° S has a kernel G which is a group and SNG is a group; 2° S has a kernel G which is a group and SNG = $\{a\}$, a° eG; 3° S is a left group I xG (|I|=2) or S is a right group G xJ (|J|=2).

REMARK. The semigroups described in Corollary 2.2 are, in fact, the F-semigroups considered by Schwarz, $\lfloor 17 \rfloor$.

A semigroup S is a band Y of left (right) ideals $L_{\dot{1}}$ (i e Y) if

$$S = U L_i$$
, $L_i \cap L_j = \emptyset$, $(i \neq j)$, $|3|$.

PROPOSITION 2.1. [3]. S is a left (right) zero band of semigroups from the class K if and only if S is a band of right (left) ideals from K.

THEOREM 2.3. The following conditions are equivalent on a semigroup S:

- (i) Every principal left ideal of S is a left simple subsemigroup of S;
 - (11) S is a right zero band of left simple semigroups:
 - (iii) a e Sba for every a, b e S.

Proof. (i) => (ii). If all principal left ideals of S are left simple, then the principal left ideals are minimal, so the principal left ideals are disjoint. From this and Proposition 2.1. it follows that S is a right zero band of left simple semigroups.

(ii) \Longrightarrow (iii). If S is a right zero band Y of left simple semigroups S_{α} (α eY), then for a eS, b eS, we have

ba $\in S_{\beta}S_{\alpha} \subseteq S_{\beta\alpha} \subseteq S_{\alpha}$, so $a \in S_{\alpha}ba \subseteq Sba$.

(iii) \Longrightarrow (i). Let condition (iii) hold. Assume a \in S and x,y \in L(a). Then we have:

- (a) x = a, y = a. Then $x = a \in Saa \subseteq L(a)y$. Hence,
- (*) L(a) = L(a)y for every y e L(a)
- (b) x = za, y = a. Then $x = za \in zSaa \subseteq L(a)y$, i.e. condition (*) holds.
- (c) x = a, y = ua. Then $x = a \in S(au)a \subseteq L(a)ua \subseteq L(a)y$ i.e. (*) holds.
- (d) x = za, y = ua. Then $x = za \in zS(au)a \subseteq L(a)ua = L(a)y$ i.e. (*) holds. By (a),(b),(c) and (d) we have that L(a) is left simple.

3. POWER REGULAR SEMIGROUPS

DEFINITION 3.1. S is power regular if for every a eS there exists m \in N such that $\mathbf{a}^m \in \mathbf{a}^m S \mathbf{a}^m$.

PROPOSITION 3.1. An element $a\in S$ is power regular if and only if there exists $m\in N$ and an idempotent $e\in S$ such that

$$(1)' a^m s^1 = es.$$

Proof. If a eS is power regular, then $a^m = a^m x a^m$ for some $m \in N$ and $x \in S$ and $e = a^m x$ is an idempotent such that $ea^m = a^m$. Therefore, (1) holds.

Conversely, if (1) holds, then $a^m = ex$ for some $x \in S^1$, so $ea^m = e^2x = ex = a^m$ and $e = a^my$ for some $y \in S$. It follows from this that $a^m = ea^m = a^mya^m$. Hence, a is power regular.

A semigroup S is regular if a eaSa for every a eS |6|

COROLLARY 3.1. |6|. Amelement a eS is regular if and only if there exists an idempotent e eS such that $aS^1 = eS$.

DEFINITION 3.2. S is power completely regular if for every a eS there exists meN and x eS such that $\mathbf{a}^m = \mathbf{a}^m \mathbf{x} \mathbf{a}^m$, $\mathbf{a}^m \mathbf{x} = \mathbf{x} \mathbf{a}^m$.

PROPOSITION 3.2. The following conditions are equivalent on a semigroup S:

- (i) S is power completely regular;
- (ii) For every $a \in S$ there exists $m \in N$ such that $a^m \in a^{m+1}$; $(Equivalently \ a^m \in a^{m+1} Sa^m)$
 - (111) Every left ideal of S is power regular.

Proof. (i) \Longrightarrow (ii). This implication follows immediately. (ii) \Longrightarrow (i). If for every a eS there exasts meN and xeS such that $a^m = a^m x a^{m+1}$, then $a^m \in Sa^{m+1}$, so $a^m \in Sa^{2m}$. This and Theorem 4.3. |6| imply that a^m lies in a subgroup of S. Therefore, S is a power completely regular semigroup. (ii) \Longrightarrow (iii). This implication follows immediately.

(iii) => (ii). For any a es we have that $a^m e a^m L(a^m) a^m = a^{3m} U$ $a^m S a^{2m}$. Hence, condition (ii) holds.

Following Drazin [8] we say that an element x of a semigroup S is pseudo-invertible in S iff there is an element \bar{x} 6 S such that

- (i) $x\bar{x} = \bar{x}x$
- (ii) $x^n = x^{n+1} x^n$ for some $n \in \mathbb{N}$

Following Munn |12| an element a eS is said to be pseudo-invertible iff some power of a lies in a subgroup of S. By Proposition 3.2., Theorem 2.1. and its dual and by the results of Munn we have the following:

THEOREM 3.1. The following conditions are equivalent on a semigroup S:

- (i) S is power completely regular;
- (ii) For every a e S there exists me N such that a me a msa m+1;
- (iii) Every left ideal of S is power regular;
 - (iv) Every element of S is pseudo-invertible;
 - (v) Some power of each element of S lies in a subgroup of S.

REMARK. Power completely regular semigroups are treated also in |11,14,16| .

COROLLARY. 3.2. |1|. Every proper subsemigroup of S is regular if and only if S is a monogenic semigroup of the index 2 or S is a union of periodic groups.

COROLLARY 3.3. The following conditions are equivalent on a semigroup S:

- (i) S is a union of groups;
- (ii) Every left ideal of S is regular;
- (iii) Every principal left ideal of S is regular.

4. POWER INVERSE SEMIGROUPS

A semigroup S in inverse if for every a e S there exists a unique $x \in S$ such that a = axa, x = xax, |6|.

DEFINITION 4.1. |9|. A semigroup S is power inverse if for every a eS there exists meN and a unique x eS such that $a^m = a^m x a^m and x = x a^m x$.

THEOREM 4.1. The following conditions are equivalent on a semigroup S:

- (i) S is power regular and for every two idempotents e and f from S there exists $n \in N$ such that $(ef)^n = (fe)^n$.
- (ii) For every $a \in S$ there exists $m \in N$ such that S^1a^m and a^mS^1 contain a unique idempotent generator;

(iii) S is power inverse.

Proof. (i) \Longrightarrow (ii). By Proposition 3.1. there exists an idempotent e such that $a^m S^1 = eS$. If there exists an idempotent $f \in S$ such that $a^m S^1 = fS$, then eS = fS, so efe = f and fe = e. Since $(ef)^n = (fe)^n$, for some $n \in N$ we have that e = f.

(ii) = (iii). By Proposition 3.1. S is power regular. We have to prove the uniqueness of the inverse element of a^m . Let b and c be the inverses of a^m . Then $a^mbS = a^mS = a^mcS$, $Sba^m = Sa^m = Sca^m$ and since the idempotent is unique we have $a^mb = a^mc$, $ba^m = ca^m$, so $b = ba^mb = ba^mc = ca^mc = c$.

(iii) = (i). This implication follows by Theorem 4.6. [9].

DEFINITION 4.2. S is a strongly power inverse semigroup if S is power regular and the idempotent elements commute.

THEOREM 4.2. S is a strongly power inverse semigroup if and only if S is power inverse and the product of any two idempotents of S is an idempotent.

Proof. By Theorem 4.1.

5. POWER ORTHODOX SEMIGROUPS

DEFINITION 5.1. A semigroup S is power orthodox if S is a power regular in which idempotents form a subsemigroup.

The following theorem analogous to the theorem of Reilly and Scheiblich, |15| (see also |10|).

THEOREM 5.1. If S is a power regular semigroup, then the following statements are equivalent:

- (i) S is power orthodox:
- (ii) If for any a,b \in S there exist m,n \in N and x,y \in S such that $a^m = a^m x a^m$, $x = x a^m x$, $b^n = b^n y b^n$, $y = y b^n y$ then yx is an inverse of $a^m b^n$.

Proof. (i) \Longrightarrow (ii). Similarly as (A) \Longrightarrow (B) in Theorem IV 1.1. |10|. (ii) \Longrightarrow (i). If e and f are idempotents

of S, then each is an inverse of itself and by (ii) we have that $ef = effeef = (ef)^2$.

COROLLARY 5.1. If S is power orthodox, then every inverse of an idempotent is an idempotent.

Proof. Let e be an idempotent and x its inverse, i.e. e = exe, x = xex. Then xe and ex are idempotents and so each is an inverse itself. By Theorem 5.1. we have that xex is an inverse of ex^2e . Hence, $x = x(ex^2e)x = xex$ $xex = x^2$.

PROBLEM 5.1. Describe the power regular semigroups in which the inverse element of each idempotents is also idempotent.

PROBLEM 5.2. A more general approach than that of power orthodox semigroups is as follows: Let S have nonempty set R of regular elements. S is called an R-semigroup if R is a (regular) subsemigroup of S.

Examples are provided by: (1) A semigroup in which the identity axabyb = abzab holds is a power regular R-semigroup; (2) A commutative power regular semigroup is an R-semigroup. The power regular R-semigroups remain to be described in the general case.

REFERENCES

- Bogdanović, S., Sur les demi-groupe dans lesquels tous les sous-demigroupes propres sont idempotents, Math. Sem. Notes, 9 (1981), 17-24.
- |2| Bogdanović,S., Sur les demi-groupes dans lesquels tous les sous-demigroupes propres sont idempotents II, Mat .Vesnik 5(18) (33), 1981, 239-243.
- |3| Bogdanović, S., Some characterizations of bands of power joined semigroups, Algebraic conference 1981, Novi Sad, 121-125.
- |4| Bogdanović, S., and S. Gilezan, Semigroups with completely simple kernel, Zbornik radova PMF Novi Sad, Ser. Mat. 12(1982),42 →445.
- |5| Bogdanović,S., Semigroups in which every proper left ideal is a left group, K.Marx Univ. Economics, Dept.Math. Budapest, No. 4(1982), 8-13.

- [6] Clifford, A.H. and G.B. Preston, The algebraic theory of semigroups I,
 Amer. Math. Soc. 1961.
- [7] Croisot, R., Demi-groupes inversifs et demi-groupes réunions de demi-groupes simples, Ann. Sci. École Norm. Sup. (3)70(1953), 361-379.
- 8 Drazin, M.P., Pseudo-inverses in associative rings and semigroups, Amer. Math. Mon. 65(1958), 506-514.
- 9 Galbiati, J.L. e M.L. Veronesi, Sui semigrouppi che sono un band di t-semigrouppi, Istituto Lambardo Rend, Sc. A-114-217-234 (1980).
- | 10 | Howie, J.M., An introduction to semigroup theory, Acad. Press 1976.
- | 11 | Madison, B.L., T.K. Mukherjee and M.K. Sen, Periodic properties of groupbound semigroups, Semigroup Forum 22(1981), 225-234.
- 12 Munn, W.D., Pseudo-inverses in semigroups, Proc. Camb. Phil. Soc. 57(1961)
- [13] Petrich, M., Introduction to semigroups, Merill Publ. Comp. 1973.
- | 14 | Putcha, M.S., Semigroups in which a power of each element lies in a subgroup, Semigroup Forum 5(1973), 354-361.
- 15 Reilly, N.R. and H.E. Scheiblich, Congruences on regular semigroups, Pacific J. Math. 23(1967), 349-360.
- | 16 | Schein, B.M., Semigroups for which every transitive representation by functions is a representation by reversible functions (Russian), Izv. Vyss. Uceb. Zaved., Matem. 7(1972), 112-121.
- | 17 | Schwarz, S., Semigroups in which every proper subideal is a group,

 Acta Sci. Math. 21(1969), 125-131.

Received by the editors May 19,1983.

REZIME

STEPENO REGULARNE POLUGRUPE

U ovom radu razmatraju se polugrupe sa svojstvom P: stepeno intra-regularna, stepeno levo (desno) regularna, stepeno regularna, stepeno inverzna, stepeno ortodoksna.