ON A STRUCTURE DEFINED BY A TENSOR FIELD f OF THE TYPE (1,1) SATISFYING $f^{2\cdot 2^{q}+1}-f=0$

Jovanka Nikić

Fakultet tehničkih nauka. Institut sa primenjene osnovne discipline, 21000 Novi Sad, Veljka Vlahovića br. 3, Jugoslavija

ABSTRACT

In this paper was chose an adapted frame for f(2k+1,-1)-structure and a matrix of tensors g_{ij} and f_i^j with respect to this adapted frame. Given is the necessary and sufficient condition for an n-dimensional manifold M^n to admit a tensor field f of the type (1,1) and the rank r such that $f^{2\cdot 2^q+1}-f=0$, $f^{2i+1}-f\neq 0$ for $1\leq i\leq 2^q$, $q\in N$.

1. Let us first observe the structure f with satisfies the condition $f^{2k+1} - f = 0$.

DEFINITION 1. Let M^n be a differentiable manifold of the class C^∞ and let there be given a tensor field $f \neq 0$ of the type (1,1) and of the class C^∞ such that

(1.1)
$$f^{2k+1} - f = 0$$
, $f^{2i+1} - f \neq 0$ for $1 \le i \le k$

where k is a fixed positive integer greater than 1. Let rank f = r be constant. We call such a structure an (2k+1,-1)-structure or an f-structure of rank r and of 2k+1 -degree.

THEOREM 1.1. For a tensor field f, f \neq 0 satisfying (1.1), the operators

$$(1.2) m = 1 - f^{2k} and l = f^{2k}$$

(1.1)denoting the identity operator applied to the tangent space at a point of the manifold, are complementary projection operators.

Proof. We have

$$\ell + m = 1$$
, $\ell^2 = \ell$, $m^2 = m$, $m\ell = \ell m = 0$

by virtue of (1.1) which proves the Theorem.

Let L and M be the complementary distributions corresponding to the operators ℓ and m, respectively. If the rank f = r is constant, then dimL = r and dimM = n - r.

THEOREM 1.2. For f satisfying (1.1) and l, m, defined by (1.2) we have

$$\ell f = f \ell = f$$
, $mf = f m = 0$, $f^2 m = 0$.

Proof. Trivial.

THEOREM 1.3. For f satisfying (1.1) and m, defined by (1.2) we have

$$(1.3)$$
 $(m+f^k)^2 = 1$, $fm = mf = 0$.

Proof. Trivial.

THEOREM 1.4. Suppose that there is given on $\mathbf{M}^{\mathbf{n}}$ a projection operator \mathbf{m} and that there exists a tensor field \mathbf{f} such that (1.3) is satisfied, then \mathbf{f} satisfies (1.1).

PROPOSITION 1.1. Let an f-structure of rank r and of the 2k+1-degree be given on M^n , then $f^{2k}l=l$, and $f^{2k}m=0$. Then f^k acts on L as almost a product structure operator and on M as almost a tangent structure operator.

2. We shall now introduce a local coordinate system in the manifold and denote by f_{1}^{p} , ℓ_{1}^{p} , m_{1}^{p} the local components of the tensor f, ℓ ,m, respectively. We shall also introduce a positive definite Riemannian metric g in the manifold and take r as mutually orthogonal unit vector u_{1}^{p} (a,b,c=1,2,...,r) in L and n-r as mutually orthogonal unit vector u_{1}^{p} (A,B,C=r+1,...,n)

in M. We have

$$\ell_{\mathbf{i}}^{\mathbf{p}}\mathbf{u}_{\mathbf{b}}^{\mathbf{i}} = \mathbf{u}_{\mathbf{b}}^{\mathbf{p}}, \ \ell_{\mathbf{i}}^{\mathbf{p}}\mathbf{u}_{\mathbf{B}}^{\mathbf{i}} = \mathbf{0} \,, \quad \mathbf{m}_{\mathbf{i}}^{\mathbf{p}}\mathbf{u}_{\mathbf{b}}^{\mathbf{i}} = \mathbf{0} \,, \quad \mathbf{m}_{\mathbf{i}}^{\mathbf{p}}\mathbf{u}_{\mathbf{B}}^{\mathbf{i}} = \mathbf{u}_{\mathbf{B}}^{\mathbf{p}} \,.$$

We also have $f_i^p u_B^i = 0$. If we denote by (v_i^a, v_i^A) the matrix inverse to (u_b^p, u_B^p) , then v_i^a and v_i^A are both components of linearly independent covariant vectors and satisfy

(2.1)
$$v_{i}^{a}u_{b}^{i} = \delta_{b}^{a}$$
, $v_{i}^{a}u_{B}^{i} = 0$, $v_{i}^{A}u_{B}^{i} = 0$
 $v_{i}^{A}u_{B}^{i} = \delta_{B}^{A}$, $v_{i}^{a}u_{a}^{p} + v_{i}^{A}u_{A}^{p} = \delta_{i}^{p}$.

We can easily prove that

(2.2)
$$\ell_{i}^{p} \mathbf{v}_{p}^{a} = \mathbf{v}_{i}^{a}, \quad \ell_{i}^{p} \mathbf{v}_{p}^{a} = 0, \quad \mathbf{m}_{i}^{p} \mathbf{v}_{p}^{\ell} = 0$$

$$\mathbf{m}_{i}^{p} \mathbf{v}_{p}^{A} = \mathbf{v}_{i}^{A} .$$

From mf = 0, we find $f_i^p v_p^A = 0$. From $\ell_i^p u_a^i = u_a^p$, we find $\ell_i^p = v_i^a u_a^p$. From (2.1) and (2.2), we also find $m_i^p = v_i^A u_a^p$.

If we put $a_{ij} = v_j^a v_i^a + v_j^A v_i^A$, then a_{ij} is a globally positive definite Riemannian metric with respect to which (u_b^p) , u_b^p forms an orthogonal frame such that $v_j^a = a_{ij} u_A^i$ and $v_j^A = a_{ij} u_A^i$.

If we put $l_{ij} = l_{ja_{ti}}^{ta}$, $m_{ij} = m_{ja_{ti}}^{ta}$, we find $l_{ji} = v_{j}^{a}v_{i}^{a}$, $m_{ii} = v_{i}^{a}v_{i}^{a}$. Consequently $l_{ji} + m_{ji} = a_{ji}$.

We can easily verify the following relations:

$$\ell_{j}^{t}\ell_{i}^{s}$$
 = ℓ_{ji} , $\ell_{j}^{t}m_{i}^{s}$ = 0, $m_{j}^{t}m_{i}^{s}$ = m_{ji} .

For any two vectors x,y with components x^{1} , y^{1} , let us put

$$m^*(x,y) = m_{st}x^{s}y^{t}$$
, $a(x,y) = a_{st}x^{s}y^{t}$,
 $g(x,y) = \frac{1}{k} (a(x,y) + (\sum_{z=1}^{2k-1} (f^{z}x, f^{z}y))a + m^*(x,y))$.

Then we have

$$m*(u_A, u_a) = a(u_A, u_a) = a(fu_A, fu_a) = a(f^2u_A, f^2u_a) =$$
=...= $a(f^{2k-1}u_A, f^{2k-1}u_a) = 0$, $g(u_A, u_a) = 0$.

Thus L and M are orthogonal with respect to g. We also have

$$m*(u_a, u_b) = 0$$
, $a(f^{2k}u_a, f^{2k}u_b) = a(u_a, u_b)$.

Hence

$$\begin{split} g(u_{a}, u_{b}) &= \frac{1}{k} (a(u_{a}, u_{b}) + (\sum_{z=1}^{2k-1} (f^{z}u_{a}, f^{z}u_{b}))a) , \\ g(fu_{a}, fu_{b}) &= \frac{1}{k} (a(\sum_{z=1}^{2k} (f^{z}u_{a}, f^{z}u_{b}))) = \\ &= \frac{1}{k} (a(\sum_{z=1}^{2k-1} (f^{z}u_{a}, f^{z}u_{b})) + a(u_{a}, u_{b}), \end{split}$$

That is

$$g(x,y) = g(fx, fy)$$

for all vectors x,y in L.

We assume that $f_L^i = f^i \ell / L$ (i < 2k) is not the identity operator of L. Then f_L is a linear transformation of L with minimal polynominal $x^{2k} - 1 = 0$. (We know that $f^{2k} = 1$ on L). The polynominal $(x^k - 1)(x^k + 1) = 0$ has simple roots

$$\frac{2\pi \mathbf{i}}{\mathbf{k}}, \mathbf{e}^{3} \frac{2\pi \mathbf{i}}{\mathbf{k}}, \dots, \mathbf{e}^{(2k-1)} \frac{2\pi \mathbf{i}}{\mathbf{k}}, \mathbf{e}^{2} \frac{2\pi \mathbf{i}}{\mathbf{k}}, \mathbf{e}^{4} \frac{2\pi \mathbf{i}}{\mathbf{k}}, \dots, \mathbf{e}^{2k} \frac{2\pi \mathbf{i}}{\mathbf{k}}$$

The maigen vectors which correspond to these eigenvalues are e_1 , e_3 ,..., e_{2k-1} , e_2 , e_4 ,..., e_{2k} , respectively. Let us denote by e_2 the vector space generazed by vectors e_1 , e_3 ,..., e_{2k-1} and by e_1 , the vector space generized by vectors e_2 , e_4 ,..., e_{2k} .

$$f^k = -1$$
 on L_2 , $f^k = 1$ on L_1 .

For $x \in L_1$ and $y \in L_2$, we have

$$g(x,y) = g(fx,fy) = g(f^kx,f^ky) = g(x,-y) = -g(x,y)$$

Hence L_1 , L_2 are orthogonal with respect to the metric g. We assume that $f^j \neq 1$ on L_1 , j < k and $f^j \neq -1$ on L_2 , j < k.

Then f is a linear transformation of L_2 with the minimal polynomial $x^k+1=0$, with the eigenvalue $\sqrt[k]{-1}$, to which correspond the eigen vector \mathbf{e}_1 , \mathbf{e}_2 ,..., \mathbf{e}_k and $\mathbf{L}_2=\mathbf{L}_2^1+\mathbf{L}_2^2+\ldots+\mathbf{L}_2^k$ where \mathbf{L}_2^s are subspaces of \mathbf{L}_2 generized by the vectors \mathbf{e}_3^* .

It is also an f linear transformation on L_1 with the minimal polynomial $x^k-1=0$, with the eigenvalue $\sqrt[k]{1}$, to which correspond the eigen vectors $\mathbf{e}_{k+1}^{'}, \mathbf{e}_{k+2}^{'}, \ldots, \mathbf{e}_{2k}^{'}$. Now, $L_1=L_1^{k+1}+L_1^{k+2}+\ldots+L_1^{2k}$, where L_1^{k+1} are subspaces of L_1 generized by the vectors $\mathbf{e}_{k+2}^{'}$.

 L_1^{k+p} and L_1^{k+r} are orthogonal with respect to g only if $k=2^q$, $q\in N$, which is then shown by induction. In the following text $k=2^q$, $q\in N$.

Let $x \in L_2$. Then $f(x) \in L_2$. We have

$$g(x,fx) = g(fx,f^2x) = ... = g(f^kx,f^{k+1}x) = g(-x,fx) = -g(x,fx)$$
,

Hence $L_2 = \overline{L}_2 \oplus f(\overline{L}_2)$ and \overline{L}_2 and fL_2 are orthogonal spaces with respect to g.

We assume that $\dim L_2 = d$, $\dim \tilde{L}_2 = s$, then

 $\dim L_2 = d+s = 2p$, $\dim L_1 = r - d - s = r - 2p$. Let r = (q+2)2p. In |4| the following Theorem is proved:

THEOREM. If

$$\mathbf{f}^{\mathbf{\bar{k}}} = \begin{bmatrix} 0 & \mathbf{E}_{\mathbf{p}} \\ -\mathbf{E}_{\mathbf{p}} & 0 \end{bmatrix}$$

then $\bar{k} < p$ and p is divisible by \bar{k} , $(p = s\bar{k})$.

In our case, there is such a state in the space L_2 . (d+s = 2p).

Let u_1, \ldots, u_{2p} be an orthogonal basis of L_2 (p=s·2^{q-1}), and $u_{2p+1}, u_{2p+2}, \ldots, u_{r-2p}$ be an orthogonal basis of L_1 , both with respect to g, then $u_1, \ldots, u_{2p}, u_{2p+1}, \ldots, u_{r-2p}$ is an orthogonal basis of L such that

for:
$$L_2:f(u_i) = u_{i+p_1} f(u_{i+2p-p_2}) = -u_i, i=1,2,...,p$$

for
$$L_1$$
:
$$\begin{cases} f(u_{2p+1}) = u \\ 2p+i + \frac{p}{2^{q-1}} f(u_{4p+1}) = \frac{p}{2^{q-1}} \end{cases} = u_{2p+i}, i=1,2,...,p \\ f(u_{4p+i}) = u \\ 4p+i + \frac{p}{2^{q-2}} f(u_{4p+i}) = u_{4p+i}, i=1,2,...,p \\ f(u_{2qp+i}) = u_{2pq+i}, f(u_{2(q+1)p-i}) = -u_{2p(q+1)-i} \end{cases} = u_{2p(q+1)-i}$$

Next, we choose in M an orthogobal basis u_{r+1}, \dots, u_{n}

with respect to g. Then with respect to the orthogonal frame u_1, \ldots, u_n the tensors g_{ij} and f_i^j have the components

We call such a frame an adapted frame of f(2k+1,-1) structure.

Let $\bar{u}_1, \ldots, \bar{u}_n$ be another adapted frame with respect to which the metric tensor g and the tensor f have the same components as (2.3). We put $\bar{u}_i = \gamma_i^j u_j$ then we can find that γ has the form

where S $(\frac{2p}{i})$, i=2,4,..., 2^q is a matrix of format 2p and has the form

where each matrix A_t , t=1,...,i has a format $(\frac{2p}{i}) \times (\frac{2p}{i})$, i.e. s xs.

Let $\frac{5}{(\frac{2p}{1})}$ be the tangent group defined by $\frac{5}{(\frac{2p}{1})}$.

Then we can say that the group of the tangent bundle of the manifold can be reduced to

$$\bar{\mathbf{S}}_{(\frac{2p}{2^q})} \times \bar{\mathbf{S}}_{(\frac{2p}{2^{q-1}})} \times \dots \times \bar{\mathbf{S}}_{(\frac{2p}{4})} \times \mathbf{U}_p \times \mathbf{O}_{2p} \times \mathbf{O}_{n-r}$$

THEOREM 2.1. A necessary and sufficient condition for an n-dimensional manifold ${\tt M}^n$ to admit a tensor field ${\tt f} \neq 0$ of the type (1,1) and of rank r , such ${\tt f}^{2\cdot 2q+1} = {\tt f} = 0$, is that

i) r = (q+1)2p, ii) $p = s \cdot 2^q = s \cdot k$ and iii) the group of the tangent bundle of the manifild be reduced to the group

$$\bar{s}_{(\frac{2p}{2^q})} \times \bar{s}_{2^{\frac{2p}{q-1}}} \times \dots \times \bar{s}_{(\frac{2p}{4})} \times U_p \times O_{2p} \times O_{n-r}$$
.

REFERENCES

- | I | Florence Gouli-Andreou, On a structure f of type (1,1) satisfying $f^5-f=0$, Tensor, N.S. Vol. 36. No 2(1982),180-184.
- [2] I.Sato, On a structure similar to the almost contact structure, Tensor N.S. 30, (1976), 219-224.
- [3] K.Yano, On a structure defined by a tensor field f of type (1,1) satisfying $f^3+f=0$, Tensor, N.S. 14, (1963), 99-109.
- [4] Jin Bai Kim, Notes on f-manifolds, Tensor, N.S. Vol. 29 (1975), 299-302.
- [5] K.Yano, C.S.Houh and B.Y.Chen, Structures defined by a tensor field ϕ of type (1,1) satisfying $\phi^4 \pm \phi^2 = 0$, Tensor, N.S. 23, (1972),81-87.

Received by the editors June 8,1983.

REZIME

O STRUKTURI KOJA JE DEFINISANA TENZORSKIM POLJEM f TIPA (1,1) KOJE ISPUNJAVA USLOV $f^{2\cdot 2^{q}+1} - f = 0$

U radu je definisana f(2k+1,-1) struktura, izabran adaptirani reper za tu strukturu, nadjene su martice za tenzore g_{ij} i f_i^j u odnosu na taj adaptirani reper. Dat je potreban i dovoljan uslov da se n-dimenzionalna mnogostrukost može snabdeti tenzorskim poljem f tipa (1,1) i ranga r da je $f^{2\cdot 2q+1}-f=0$, $f^{2i+1}-f\neq 0$ za $1\leq i\leq 2^q$, $q\in N$.

TEOREMA 2.1. Potreban i dovoljan uslov da se n-dimensionalna mnogostrukost \mathbf{M}^n može snabdeti tenzorskim poljem $\mathbf{f} \neq \mathbf{0}$ tipa (1,1) i ranga \mathbf{r} , tako da je $\mathbf{f}^{2 \cdot 2\mathbf{q}+1} - \mathbf{f} = \mathbf{0}$ je

$$i$$
) $r = (q+1)2p$

ii)
$$p = s \cdot 2^q = sk$$

iii) grupa tangentnog bandla mnogostrukosti se reducira do

$$\bar{s}_{(\frac{2p}{2^q})} \times \bar{s}_{(\frac{2p}{2^{q-1}})} \times \dots \times \bar{s}_{(\frac{2p}{4})} \times U_{(p)} \times O_{(2p)} \times O_{(n-r)}$$

gde je $\frac{1}{5}$ tangentna grupa definisana sa $\frac{2p}{1}$ čiji je oblik dat formulom (2.5).