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ABSTRACT

In this paper, which is a sequel to |[1]|, we give the
construction of all non-isomorphic C-families. This completes
the construction of all non-isomorphic rank 4 paving matroids

on 8 elements,
PRELIMINARLIES

The reader should primarily read the preliminaries and
the introduction to paper |1|; these will be used without
reference.

A C-family is a family F of distinct 4-subsets of
s =1{1,2,3,4,5,6,7,8} satisfying:

(@) (X, ,X,€F A X, 7 X,) = |x,nx%,1¢2

1
(b) (3X;) (8Xy) (X; € F A X,€F A [X;nX,]= 1)
A D-family is a C-family F in which the condition (b)
can be replaced by the stronger
() (¥X}) (X;eF =>(3X,) (X,€F A[X)nX,] = 1))

We shall give the construction of all 184 non-isomorphir:
C-families. We shall primarily construct 36 non-isomoprhic D-
families, after which the construction of the remaining hon-

isomorphic C-families is considerably simplified.
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FURTHER DEFINITIONS

A C-family F arises from a D-family F~ if F“ is the
(unigque) maximal D-subfamily of F.
A 4-set X is permitted for a C-family F, which does not

contain'X, if FUX} is a C~family.

A 4-set X is 2-permitted for a D-family ¥, which does
not contain X, if X is permitted for F, but FU{X} is NOT a
D~family.

A D-graph of a D-family F is a graph G sﬁch that

(1) the vertices of G are 4-sets of F

(i1) there is an edge {X,Y} in ¢ if and onlv if |XNY| =1

We define a binary relation, denoted by "+", on the set
of edges of a D-graph G, as follows:

If a = {Al'AZ} and b = {Bl'BZ} are two edges of G, then
def

a+b <«

A marked D-graph is a graph G with a given binary

relation ¢ on its edges, such that there existsa D-family with
the D-graph G,, which satisfies the following condition:

"There is an isomorphism of G onto G;, which maps ¢ to
+" ., The relation ¢ determines a markation of G.

Let F be a C-family, which satisfies the foliowing
condition: "The D-graph of the (unigue) maximal D-subfamily of
F is a star". Let the central vertex of the star (if the star
is just an edge, then an arbitrary vertex) be the 4-set
denoted as {a,b,c,d}. '

We define the C-graph G of F as follows:

(i) the vertices of G are a,b,c,d’

{(ii) there is an edge {x,y} in G if and only if there is
a 4-set in F, which contains {x,y} and which is different from
{a,b,c,d}.

We define a 2-colouring of the defined C-graph G as
follows: A vertex x of G is black if and only if there exists
a 4-set X in F such that Xnfa,b,c,d} = {x}. The vertex x is

white otherwise.
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A coloured C-graph is a graph G on four vertices, each

of which is coloured either white or black, satisfying the
condition that there exists at least one black vertex. The
colours of the vertices determine a colouring of G.

In is easy to prove that the coloured C-graphs are actually
C-graphs of some C-families.

CONSTRUCTION OF NON-1SOMORPHIC D-FAMILIES

We begin with a number of easy lemmas describing some
properties of D-graphs and marked D-graphs, Some of them will
be used in our construction of D-families. They may offer a
better insight into the D-graphs which we construct and may
be used for another approach to the construction as well.
These lemmas are denoted by apostrophes, for they do not
relate to any particular theorem by this time.

LEMMA 17, Fach element of S corresponds to at most one
edge of a D-graph, in the sense that it i8 the intersection
of the two end-vertices of that edge.

REMARK: In the figures of D-graphs the edges will be

denoted by the corresponding intersection elements.

Proof. Suppose that the same element of S
corresponds to two edges of a D-graph. It is easy to check
that at least 9 different elements are needed for their
vertices, regardless of whether these two edges have a common
vertex or not.

LEMMA 2°, A D-graph eannot have more than 8§ edges.

Proof. Immediate consequence of Lemma 1°~.

LEMMA 3°. The maximal degree of a vertexof aD-graph is 4.

Proof. Imnediate consequence of Lemma 1°. .

LEMMA 4-. Each element of S corresponds to at most one
edge of a D-graph, %in the sense that it ie the complement
(with respect to Sl of the union of the two end-vertices of
that edge.
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Pr oo f. Seven elements are not sufficient for the
end-vertices of two edges in any case.

LEMMA 57, For each edge x of a D-graph there exists at
most one edge y such that xz+y and at most one edge z such that
2+,

Proof., The two statements follow immediately from
Lemmas 4 and 1 respectively.

LEMMA 6", If A,AgAzA, i8 a 3-path of a D-graph, then it
holds that at least one of A;Ag »AzAy and AzA, +A14y i true.

Pr oo f. Suppose that A\A, *A3A, is not true, that
is, S\(A3UA4) # AlﬂAZ‘ ANA)£A3 by Lemma 17and so we have
A)NASA,. This implies that S\(a,UA,) =A, (otherwise A,
would have a 3-intersection with some of A,,A;). Since [A3NAj|=
= 1 and [4,;04,{< 2, ‘we have also S\(A;UA,)=A4, which gives

Agdy >Azh,

LEMMA 7" .No two vertices of a D-graph may have the empty
intersection.

Pr oo f. Otherwise one of them would have a 3-inter-
section with any vertex incident to the other.

LEMMA 8-, If XK and L are two incident vertices of a D-
graph and KNL = {p}, S\(KUL) = {q}, then L = {p} + ((S\KJU{q}).

Pr oo f. Trivial. ‘

LEMMA 9°. If z=A4,4, and y=B,By are two edges of a D-graph
such that x+y, then there exists an edge adjacent to both z
and Y.

Proof. BlnB2 does not belong to both A; and A, by
Lemma 1°. Suppose that B,fl B,#A, (similarly if BjNBg#Aj).
B,UB,7A 1A, by the assumption. Lemma 7~ combined with |a;\A,|=3
gives that either |A;NB,|=1 or [A;NBy| =1 , i.e., there exists
one of the edges A;B; and A;B,. ,

LEMMA 10”. If a D-graph containa the edges A;Ay and BBy,
such that A,A,*B By, and does not contain any of the edges
A;B, and Ale, then AjDBlnBz.

Pr oo £f. Immediately follows from the previous proof.

LEMMA 117, There are no odd cycles in any D-graph.
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Pr oo f. We have to exclude just the 3~-, 5~ and 7-
cycles, by Lemma 2°,3-cycles: A 3-cycle A)A A3 of a D-graph
yields

A3N(A\NA,) = @ and |A3N(ANA,) | = [a3l(aNA) | =1,
which implies |A3|«3, a contradiction.
edges AiA1+1, 1gig5, A5+1 = Aj;) in a D-graph. We may assume by
Lemmas 6°and 5%, without a loss of generality, that A,A;+AjA,
and AjAg>A)A,. The first assumption gives Ag5A NA,, while the
second, combined with Lemma 10 and the non-existence of edges
A)A4 and AjA, gives A A NA,, a contradiction.
7—cycles: Let A1A2A3A4A5A6A7 (edges AiAi+l, l\<i\<7, A7+l = Al)
be a 7-cycle in a D-graph. Similarly as in the previous case,
assume that A;A,+AjA, and AgA4*A A,. Then Ag#A NA), while
Lemma 10° gives Ag”Aj1A,, Now Ag™A,lA; contradicts Lemma 17,
while AgtA NA, contradicts Lemma 47,

LEMMA 127, If A;A,AzA, t8 a 3-path of a D-graph G and
both AjAg+AzA, and AzA4*A149 are satisfied, then G contains
the edge AjA4 and both AjA4+AgAz and Ay Az>A A, also hold.

Pr oo f. We have a = A)lAy = S\{(A3UA,) and b=Aj3NA4 =
S\(AjUA,) by the assumption. Lemmas 7~ and 11~ provide that
|ajNA3|= |ANAg) |= 2. As a §A3UA, and bFA UA,, we have that
none of the sets AlnA3, A20A4 contains a or b. The assumption
combined with Lemma 1~ gives that the sets AlﬂA3, AoNAy,

A NA3 and A1A, are mutually disjoint. It follows that

ANAy = s\({a,b} + (a;0A3) + (AyNA,) + (A,NA3)), which
gives |AjlA4|= 1. Since the sum in the brackets coincides
with AjUA;, we have A;A,>AjA3. The relation AoA3>A1A, follows
from A UA, = (AfiA,) + {a,b} + (a;NA3) + (AyNA,)

our construction of non-isomorphic D-families will be
somewhat similar to that of B-families(|1l|).We shall start
with examples of "small" D-families and in each case look for
the non-isomorphic possibilities for the addition of the
permitted, but not 2-permitted 4-sets (that is, those 4-sets,
the addition of which gives a new D-family). We must, how=zver,
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also take care about 2-permitted 4-sets for a D-family, because
they may be vertices of a new connected component of an
augmented D-graph. These 4-sets necessarily appear in the
complementary pairs, which are denoted by a short line between
their two 4-sets,

The main nbvelty in the construction of non-isomorphic
D-families will be in that we shall mostly look for non-
isamorphic possibilities for augmentation of the corresponding
marked D-graphs, instead of the D-families themselves. Such an
approach will be justified by the later Theorem 2.

The constructed non-isomorphic D-families will be given
by means of their marked D-graphs in the table which follows
the construction. The types of marked D-graphs given in the
table will be denoted by the numbers in brackets. (We shall
mention all these numbers during the construction). The same
denotation will be often used for the types of non-isomorphic
D-families, which correspond to the examples of the marked

D-graphs given in .the table.

CONSTRUCTION OF ALL THE NON~I1SOMOPRHIC MARKED D-GRAPHS
AND ONE MORE

We start with an example of the simplest D-graph,
1234 - 1567

We may assume, without any loss of generality, that each
example (=representative), of the non-isomorphic marked D-
graphs that we construct, contains this edge.

There are (with respect to this edge) 36 permitted
4-sets: 9 contain {1,8},9 are contained in {2,3,4,5,6,7},9
have l-intersections with {1,2,3,4} and 9 with {1,5,6,7}.

REMARK: An alternative proof that D-graphs have not
3-cycles follows from the fact that none of the permitted
4-sets has l-intersections with both of 1234 and 1567.
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Adding any of the last 18 permitted 4-sets we obtain a
D-graph of type (2). Adding any two 4-sets, such that they
have exactly one element in common, we obtain a D-graph of
type (3).

The following theorem refers to the remaining (types of)
D~graphs:

THEOREM 1. Each D-graph with at least three edges belongs
to exactly one of the following four classes:

a) graphs with at least one 4-cycle

b) graphs with at least one pertex of degree > 3

c) graphe with at least one 3-path , which do not

belong to any of the classes a) and b)

d) disconnected graphs without 3-paths

Proof. Will be implicit in what follows.

We give separate constructions for each of these four
classes of D-graphs: (all the here mentioned graphs are D-
graphs, even if it is not explicitly stated)

Class a) A 4-cycle contains a subgraph of type (2). Starting
with the family Fg = {1234,1567,2568}, it is easy to check

that the only 4-set, which gives rise to a 4-cycle (type (4)),is
3478. The only permitted 4-sets for the family F; = {1234,
1567,2568,3478} are 1278,1358,1368,1458,1468 and their
complements. None of them has a l-intersection with any set

of F;,i.e., a 4-cycle in a D-graph is always a connected
component., However, some pairs of the permitted 4-sets have
l-intersections. We choose 1358,2457 and so obtain (a D-graph
of) type (5) with the permitted 4-sets just 1278-3456,1468,
2367. Adding further one (respectively both) of 1468,2367 we
obtain type (6) (respectively tvpe (7)).

Class b) Adding any of the 4-sets 3578,3678,4578,4678 to the
family Fg = {1234,1567,2568}, we obtain a star (type (8)), with
the centre 1234. Suppose that 3578 is chosen. The permitted
4-sets of the family F = {1234,1567,2568,3578} are
4678,1468,1478,2467,2478,3467,3468,1278-3456,1368-2457,1458-2357.
As there are no l-intersections among the last six permitted

(= 2-permitted) 4-sets, we conclude that all the graphs in
class b) are connected.
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The only possibility to obtain a star with four legs
(type (9)) is to add 4678 to F. It is a maximal D-graph, for
none of its permitted 4-sets (the last six of the list above)
has l-intersections with any of 1234,1567,2568,3578,4678.
Adding any of 1468,1478,2467,2478,3467,3468 to F, we
obtain a D-graph of type (10). If 1468 is chosen, then the
~remaining permitted 4-sets are 2367,2457,2467,2478,3467,1278~
3456. If we add 2467 to the family G = {1234,1567,2568,3578,
1468}, then we obtain a D-graph of type (11), which is easily
seen to be a maximal one. If we add 2478 or 3467 to G, then we
obtain two isomorphic (marked) D-graphs of type (12). However,
if we add 2367, respectively 2457, to G, then we obtain two
isomoprhic graphs, which have a different markation (types
(13) and (14)).
In the next step we explore the possibilities for the
augmentation of D-graphs corresponding to the families
G, =G U{2478}, G, = GUI{2367}, Gy = GU{2457}, with the families
of the permitted “4-sets {2367,3456,34671}, {2457,2478,1278-3456}
and {2367,3467,1278-3456} respectively.
Adding 3467 to G; we obtain a maximal D~graph of type
(15) . Adding 2457 to G, (identically, 2367 to G3), we obtain
a maximal D-graph of type (16). Adding 2367 to G, or 2478 to
G, we obtain two isomorphic marked D-graphs of type (17).
Adding 3456 to G, or 3467 to G3, we obtain two isamorphic
marked D-graphs of type (18) (isomorphic to the graphs of type
(17), but with a different markation). Finally, adding {(the
only possible) 3456 to GyU{2367} (identically, 2367 to
G1U{3456}), we obtain a maximal D-graph of type (19).
Class ¢) We start for the third time from the family
Fo = {1234,1567,2568}. This time we add some of the remaining
permitted 4-~sets having l-intersections with 1567 or 2568,i.e.,
some of 1378,1478,2378,2478,3457,3458,3467,3468 and obtain a
D-graph of type (20). If we choose the family
H = {1234,1567,2568,1378}, then the permitted 4-sets are
2457,2467,2478,3456,3457,3458,3467,3468,4578,4678,1458-2367,
1468-2357, The addition of any of»3457,3467,4578,4678 to H
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gives rise to a D-g;aph/bfitype (10). The addition of 2478,
respectively 3456, (to H) yields marked D-graphs of tYpes (21),
respectiVely (22) , while the addition of any of 2457,2467,3458,
3468 gives a 4-path marked in a third style (type (23)). We
have here also one (up to an isomoprhism) possibility to obtain
an edge of another component of a D-graph, by the addition of
both of, for example, 1458,2357 to H, Thus we obtain the type
(24).

We denote the families HU{2478}, HU{3456}, HU{2457} by
Hy ,H,,H; respectively. Their families of permitted 4-sets are

{3456,3457,3458,3467,3468,1458-2367,1468-2357},
{2457,2467,2478,4578,4678,1458-2367,1468~-2357} and
{1468,3456,3458,3467,3468,4678,1458-2367} respectively.

We omit all those possibilities for the augmentation of
the D-graphs of types (21)-(23), in which a vertex of degree
3 is produced.

If we add 3456 to H,y (identically, 2478 to Hz), then we
obtain the marked D-graph of type (25). Note, however, that
we can here also obtain three types of disconnected marked
D-graphs (types (26), (27) and (28)) by adding, for example,
1458 and 2357 to H, ,H, and H)U {3456} respectively. If we add
3468 to H;, then we obtain a maximal marked D-graph of type
(29) , which differs only by markation from the D-graph of
type (25). If we add 1468 or 3458 to H;, then we obtain a
D-graph of type (30). The only permitted 4-sets for the family
H4U{1468} are 2367,3458,3456,3467. We neglect the last two,
because they yield a vertex of degree 3. If any of 2367,3458
is added to H3U{1468}, then we obtain a D-graph of type (31);.
if both are added, then we have a maximal D-graph of type (32).
g}ésg Q}.If we start again with F,, then we should add only
some of those permitted 4-sets, which have no l-intersections
with any of the first three, that is, some of

1278-3456, 1358-2467, 1368-2457, 1458-2367, 1468-2357

Note that 1278 and 3456 have not l-intersections with
any of these 4-sets, so they cannot be the vertices of a
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D-graph. Adding any of {1358,2367}, {1368,2357}, {1458,2467},
{1468,2457}, respectively any of {1358,2457},{1368,2467},
{1458,2357), {1468,2367}, to the family F,, we obtain D-graphs
of types (33), respectively (34). The D-graphs of these two
types are isomorphic and without markation, but observe the
following‘difference\between them: The intersection element,
which corresponds to the one-edge component, is contained in
the vertex of degree 2 with the type (33), which is not the
case with the type (34).

The only permitted 4-sets, apart from 1278-3456, for
Fo U{1358,2367}, respectively FOU{1358,2457}, which do not
augment the component of F,, are 1468,2457, respectively
1468,2367. By adding any, but just one, of these 4-sets, we
obtain a D-graph of type (35), while the addition of both
permitted 4-sets in both cases yiélds a 4-cycle (type (6)).

The only remaining case is when each component of a
D-graph has just one edge. We start with the D-family
J = {1234,1567,1258,2367} (corresponding to the D-graph of
type (3)). The only permitted 4-sets, which do not give rise
to a component with (at least) two edges, are 1368-2457 and
1378-2456. We obtain a D-graph of type'(36) by the adding of
any of {1368,2456}, {1378,2457} to J.

We give (on the next two pages) the table of (examples
of) D-graphs corresponding to non-isomorphic D-families. This
last notion coincides with "non-isomorphic marked D-graphs"f)
except for the types (33) and (34), where two isomorphic
(marked) D-graphs correspond to non-isomorphic D-families.

Apart from the explained designations, we give, beside
the number of the type, for each D-graph of the table, the
number of non-isomorphic c-families having the maximal
D-subfamily of the corresponding type. The production of these
numbers will be explained in the last section.

The markation (the edges related by +) will be denoted
only in the cases when it is necessary for distinguishing two
isomorphic graphs corresponding to two non-isomorphic D-families.

*) Two marked D-graphs Gy and G, are isomorphiC if there is a graph-isomorphism
which maps G1 onto 62 and préserves the markation.
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THE TABLE OF (EXAMPLES OF) D-GRAPHS CORREQPONDING TO NON-
ISOMORPHIC D-FAMILIES
1234 1234 1254 1234 5 1258 1234 5 2568 1358
1 i 1 3 1 8 5
1567 2367 1567 7 3478 1567 7 3478 2457
(3)-3 (u)-28 (5)-u
- e )
1234 5 2568 1358 3 2367 1567 2568
1 8 5 6 ! 4
4 2
1567 7 478 2u57 2367 1567 7 78 oub7 M 1u637 U678 3578
(6)-4 (7)-3 (9-11
1567 1567 3578

234 3578

1468

2478 2568 1068
25
(10)-4 (12)-1
478
1567 1567 o~
.}\\‘ 3 8 % .}\\L 3 8 4 1468
— , AT o TR
< 234 1468 £ 3578 2uh7
g7y 1488 937 -///q ’ 7
V560 o6
(13)-4
1507 2367

3578 1458

1750

2568

2uh7

163

(150-1

2078

3ubb

2367
(18)-1
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THE TABLE OF D-GRAPHS (CONTINUED)
1234
1234 2 2568 1
7 1567 /:><:; 2568
1 8 ; o
1567 1378 w78 1578 1557 356
(20)-Y4 (21)-3 (22)-3
1234, 7568 1458 1234 , 2568 1458
1 8 5 .
1567 1378 2357 7357
2478 1378
(24)-1 (26)-1
. 1453 2568 1375
: 7
378 {5 [123u 2457
2357 2357 1 4
2478 U4 3u56 1567 6 3468
(28)-1 (29)-3
2568 § 1378 1378 2457
2 7 2568 1468
1234 o457
1 f 123y 2367
1567 1463 1567 3458
(30)-1 e =
tegt 1731
1,771\ 1 1 2
1567 ' 2568 1567 265 | 1567~ 2568
| \
N /
| \ /
, | . Y _ ) »
1358 emae 2367 1453 om0 21,57 1358'\/ 1468
: 3 3
(33)-u (3u)-4 38T (35)-3
1234 1258 1368
1 l 2 l 6 l
1567 2367  24b6

(36)-1
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It might be inQeresting to mention that the unique (up to an
isomorphism) matroid with the corresponding D-graph of type
(32) (8-cycle) is, in fact, Piff°s cyclic (= with a cyclic
automorphism group) matroid on 8 elements (/3|,p. 330). It is
guite natural that such a matroid has the marked D-graph with
the cyclic automorphism group Cg-

We observe that five pailrs of non-isomoprhic D-families,
which have isomoprhic D-graphs, give 1isomorphic D-families in
the next step of augmentation, Thus (13) and (14) give (16),
(17) and (18) give (19), (22) and (23) give (25) (although
they could also give non-isomorphic (26) and (27)), (26) and
(27) give (28), and (33) and (34) give (35). This process
looks like same kind of symmetrization.

It is obvious that two iscmorphic D-families must have
isomorphic marked D-graphs (family isomorphisms preserve
l-intersections). However, we shall prove that the converse
is also true, with one single exception. This justifies our
construction of all non-isomorphic D-families by the
exhaustion of possibilities for non-isamorphic marked D-graphs,
because this does not allow some new non-isomorphic D-families
to appear, in addition to the constructed.

THEOREM 2. Any two D-families (having the marked D-
graphe) of the same type ((1)-(36)) are isomorphic.

This theorem may be reformulated as follows:

THEOREM 2°., If two marked D-graphs aye tsomorphic and
have not exactly three edges in two connected components each,
then their corresponding D-families are also isomorphic. In
other words, the types (33) and (34) are the only exception
to the rule that non-isomorphic marked D-graphs correspond
exactly to non-isomorphic D-families. Each of the types (33)
and (34) of D—graphs uniquely (up to an tsomorphism) determines
the corresponding D-family.

LEMMA 1. If two marked D-graphs G, and G, are tsomorphic
and G; contains a 3-path, which is not included in a 4-cycle,

then their corresponding D-families (Fy and Fy respectively)



290 Dragan Acketa

are also tsomorphic.

Proof of Lemma l. Let y:G,*G, be the given
isomorphism and let X;Y,2;T, be a 3-path in G;, such that X;T)
is not an edge of G;. The image of X;Y;2)T) under Y (in G2) is
derncted by X2Y¥222T,. Lemmas 6~ and 12° give that either
X1Y;+2,T; or 2;T;*X3Y;. We suppose the first, the other case
is treated quite similarly. We have X;Y,+Z,T2 and denote for
ie{1l,2}:

XiN¥y = ay, Y3N2; = by, 20Ty = cj, S\(XUY;) = d;,
5\(YjUZy) = ej, (XiﬂZi)\Ti = £y, Y,NT; = {gy,hy}

We claim that at least one of the permutations

arbjcjdje;figih; aybyeidye;fy9:1h
= lagbyerazesfagan; B = lagbyeadgertn oo
induces an isomorphism of F; onto Fj, which would complete the
proof.

For i€{1,2} we have:

Xj={aj,cqy,ey,£5}s Yy={a;,bi,95,h3}5 25={bj,ci,d5,£4,};
Ti={Ci,ei,gi,hi}

Namely, Xj obviously contains aj and f;, X; contains
e; by Lemma 47, and contains c;, for we have not ZiT;+X3Y;.
The other three pairs of sets are easily deduced by applying
Lemma 8°.

Thus both o and B map the sets Xl,Yl,Zl,Tl to the sets
X2,Y2,ZZ,T2 respectively.

The only 4-sets, which are permitted for X;,Y;,2;,T
are (i=1,2):

ill

1 3 5
Ai={ai,ci,di,gi}; Ai={bi,ei,fi,gi}; Ai={ai'bi'di'ei'}f
6_
Ai_{di'fi'gi'hi}
4_
Ai:{ai,ci,di,hi}; Ai_{bi'ei'fi'hi}

1

1
al={a;,d;,£5,9;} AJ=(b;,d5,e5,9;}; A j={a;,d;,e4,9;};

Alg={di'ei’fi'gi}
8 10 12
Al={ai’dl,f1,hl}; A i={bi'di'ei’hi}; A i={ai,di,ei,hi};

14 [
A i={di'ei'fl'hi}
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Let W;- belong to {Ai,...,Ai4}nFl. We shall primarily
prove that either @ (W;)eF, or B (W;)eF, or both (equivalently,
that holds at least one of a (W) )=Y(W;), B(W,) = v (W)).

If Wle{Ai3, Ai4}, then there exists the edge YW, in G;,
which implies the existence of the edge Y, Y(Wl) in G, and
gives Y(Wl)e{Aé3, A;4}, providing that either Y(Wl) = a(Wl) or
y(W;) = B(W;). We similarly derive, by keeping the incidence
with 7Z;,X;,T; respectively, that

wye {a', Aiz}:y(wl) e (a}', A;Z}

6 .9 .10, _ 6 .9 10

Wy e{a),A7,A]"} => vy (W) e{a,,A5,A,"}
Wy e{A§,A1,A$} = v e {AEZA_;,Ag}

As the inverse argument also holds, we have

> vy e (al,a2,a3,a)

1,2 4
W, e {A],n7,a3,a7)

However, since y preserves the markation, we cannot
have, for example, Y(Ag) = Ag, otherwise the subgraph of G,
with vertices A?,Xl, Yy,%2;,Ty; would not have the same
markation as its image under Yy . By a similar argunent we
derive:

W 5

L = A => y(W;) = A3 i W, = aS=y (W) = a5
W, e'{AZ,A?} => y(W)) € {1\;,Ag}
W, € {A?,Aio}=> y(W)) e {Ag,A;O}

Thus Y(Wl)r which is a set if F,, equals at least one
of (W), g(W) for W, e{a},...,al4}.

If the set W, € {Ai,Af,Ai,Af}, then the vertex W; is not
incident (in G;) to any of the vertices xl'Yl'leTl' Since Gl
does not contain isolated vertices, W, is joined to another
vertex V, of G;. It is easy to check that ordered pair (W,,V,)
must be one of the following twelve

1 4, 4 10 14
a1.a1), ad,ah), 2,2, al,ad ...,.., @al,a1%),@lalh.
@aZ,a)), a2,al?h, adah, adalh, alal), alalh

while Y(Wl,vl) must be one of the ordered pairs obtained from
the above pairs by replacing the lower indices 1 by 2.
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In the first four cases, we use that y preserves the edges and
maps {A},...,Af} to {A%,..q,Ag}. This gives, for example, that
either  v({a}l,a}} = (a},ad}= a({a],a}h)
or  v({a{,ah) = (ad,a}}= s({al,aiD)
Since Y(Aio)e{Ag,Aéo}, we have that
: 1 107y - rp} 107 - 1 ,10
either y({A7,A77)) {n3,a5°} = a{a},a "]
1 2104y _ a2 291 = 1,10
or \(({Al,A1 1) {AZ,AZ} B({Al,Al 1
The remaining seven cases are treated similarly.
Now we know that each set of Fy is mapped by at least
one of a,B to a set of F,. The only kind of counterexample to
our claim, which could possibly arise, should be of the

following form:
There exist two sets Pl,Q1 in Fq satisfying

a(Py) eF, ; B(P)) £F, ; a(Q)) £F, ; B(Q,)eF,

Since P; and Q, have different images under a and 8,

it follows that
[pyMg, ,h}| = [QN {g,,h1}]| =1
In any of the four possible cases we have
[Ipyfgy | = lotedneQ) ]! =1

The sets a (P;) and B (Q) are vertices of G,, which are
images of P;,Q; respectively under the D=graph isomorphism y.
So we must have

[Py | = 1<=>]a(P)nBlQ)) | =1
Since both |PyNQ; | and | a(P;) N B(Q,)| belong to {0,1,2},
we have a contradiction, which proves Lemma 1.

Pr oo f of Theorem 6. Due to Lemma 1, we just have to
prove the uniqueness (up to an isomorphism) of D-families
corresponding to D-graphs of the types (1)-(2) and (33)-(36)
inclusive. We construct some of the possible isomorphisms
between any two D-families (having D-graphs) of these types.
When defining the corresponding permutations of S, we shall
use some of the Lemmas 17,47,97,12” to prove that the required
conditions are uncontradictory, but we shall not state £his
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explicitly in most of the particular cases,

which are stars of the same type, we denote. their, centres

(arbitrarily chosen in case (1)) by X;,X; respectively and
i
2 .
upper bound for i varies fram 1 to 4, depending on the type).

other vertices of degree 1 by Yi,Y respectively (i€ N; the
Any permutation a of S, which satisfies the conditions:
alX1)=X, ;  alX;N¥7)=X;n Y% ; a(S\JXﬂJY}))=SKxx2UY§)

for each 1

establishes an isomorphism between the D-families F,,
F, corresponding to G;,G, respectively. Namely, o maps the sets
of F, onto the sets of F;, because all non-central vertices are
uniquely determined by Lemma 8°~,

disconnected edges of a D-graph has exactly one vertex
"containing the intersection element of the other edge"”

Let X;Y) and Z;T) be two (in the case of (36), arbitrary
two) disconnected edges of G; and let XY, and Z,T, be the
corresponding two edges of Gy, SO that the vertices denoted by
X and Z have the property described in the previous sentence.

Any of the permutations 0y, 0y of S satisfying (for i=1,2)
ay X1)=Xy 5 03 (Z2))=Z; ;  a; (XNY))=X0Yy oy (Z0T))=Z,HAT,

ai(S\(XIUYl))=S\(32UY2) H ai(S\(ZIUTl))=S\(Z2UT2)
maps {X,,Y,%,,T)} to {Xz,Yz,Zz,Tz}, that is, it establishes an
isomorphism between the corresponding D-families of type (3).

As for the case (36), we denote the remaining pair of
edges in G, and G, by U,;V;, respectively UpV,. It is easy to
check that one of the permutations a; aj maps {u,,v;} to
{UZ,VZ}, that is, it establishes also an isomorphism between
the corresponding D-families of tipe (36).

Let X;Y;2;T; and X3Y,Z,T; be the two (in the case of (7,
arbitrary two) corresponding 4-cycles of the isomorphic
D-graphs G) and G,. Each of the permutations o of S, satisfying,
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for example:
Va(xlﬂY1)=X2ﬂY2 S a(Ylnz1)=Y2nz2 (*)
a(Z)NTy)=2NT, ; (T NX,)=TrNX; ; o(X;N2;)=X,NZ,
maps {Xl,Yl,Zl,TI}to {X2,Y2,22,T2}

that is, it establishes an isomorphism between the corresponding
D-families (in the case) of type (4).

As for the type (7), we denote the other two 4-cycles
of G; and G, by P1Q1R151\and P,Q,R,5; respectively. We require
additionally

a(Py1Q)) = PynQ, 5  alQlRy) = Q,NR,

This is not a contradiction with the previous conditions
on a. In particular, the following property is preserved with
such a: 2-intersections of non-incident vertices of one 4-cycle
exactly correspond to the (unordered) pairs of l-intersections
corresponding to the non-incident edges of the other.

The only permutation a, which satisfies all the above
conditions, establishes an isomorphism between the correspon-
ding D-families of type (7).
by U;V1 and U3V, respectively, then we require, in addition
to (*)
a(U,Nvy) = U,Nv, a(8\(UUVy)) = S\(UUV,) (**)

Observe that it might be necessary to'change the initial
mapping of the vertices of 4-cycles in order to make the
vertices contaiming U;NV; map to the vertices containing Uzﬂvz.
If none of the constructed two permutations g gives an
isomorphism between the corresponding two D-families of type
(5), then an isomorphism should be looked for among the two
permutations satisfing (**) and
a(XlﬂYl) = Y,NZ, ; olY,i12,) = Z,nT, (x*%)

a(z,NT)) = TNX, ;  a(TyNX;) = XaN¥, - ;  a(X;NZ;) = Y,0T,

Type (6): We denote the additional edges of G; and G,
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by UjV,,U; W, and U,Vy,U,W, respectively.

An isomorphism between the corresponding D-families
of type (6) should be realized by the permuﬁation a of §
satisfying o (U;) = U, and either the conditions (*) or the
conditions (***).

This. permutation maps Ul\(WﬁJUl) to U\(WoUVy) . The
elements of the last two sets correspond to two pairs of palrs
of opposite edges of the 4-cycles,-

Types (33) and (34): We denote (in both cases) the edges of
D-graphs G; (i=1,2) by Xy¥y,X;2Z;,UjVi. -

An isomorphism between the éorrespbnding D-families.

can be realized by a permutation o of S satisfying the following

conditions:

-

a (X, N¥))= XY, @ (8\(X;U¥1)) = S\(X,U¥,)

a (X N2;)= X,NZ, ; o (8\(X)UZ,)) = S\(XU2,)
(U V)= U,NV, 3 a(S\(UuV))) = S\(U,UV,)

Type (35): We notice that each vertex of degree 2 contains
exactly one intersection element, which corresponds to an edge
of the other connected component.

We denote the edges of D-graphs G; (i=1,2) by

124,03V, UjW, so that U;2X;0Y, , XUV

X, Yi’
The only permutation g of S, which satisfies the six
conditions from the previous case, and, in addition,

a(U)1W)) = UMW,  ;  a(S\(UuW;)) = S\(U,UW,)

induces an isomorphism between the corresponding D-
families.

This completes the proof of Theorem 2.

Theorem 2 ensures that all non-isomorphic D-families
are covered by’our "example construction". It gives that each
example F, represents one classFocﬁ isomorphic D-families. The
permitted 4-sets for F, represent the permitted 4-sets for an
arbitrary family of Fo‘ The non-isomorphic possibilities for
the augmentation of F, represent the non-isomorphic possibilities
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for the augmentation of Fo' that is, all the non-isamorphic
D-families, which contain a subfamily from F .

CONSTRUCTION OF THE REMAINING
NON-ISOMORPHIC C-FAMILIES

Given a D-family, we construct all the non-isomorphic
C-families having it as the (unique) maximal D-subfamily. We
shall apply this construction to the already constructed
examples ((1)-(36)) of D-families and so obtain all the non-
isomorphic C~families, because these examples represent all
the non-isomorphic D-families, ‘ ) ;

We shall primarily find the 2-permitted 4-sets for all
36 examples of D-~families. The 2-permitted sets necessarily
arise in complementary pairs (because the complement of a
2-permitted set is 2-permitted).

The D-families of types
(12),(15), (17), (18), (19}, (24), (26) , (27), (28), (30), (31), (32), (36)
have no 2-permitted 4-sets and they coincide with the only
corresponding C-families.

We denote the complementary pairs

1258-3467,1268-3457,1278-3456 a,b,c
1358-2467,1368-2457,1378-2456 by d,e,f respectively
1458-2367,1468-2357,1478-2356 g,h,i

The complementary pairs of 2-permitted 4-sets for the
given examples of the remaining types of D-families are given
in the following list (the types are denoted in the upper row):

(1) (2) (3) (4) (5) (6) (7) (8)

a,b,c,d,e,f,q9,h,1 c,d,e,q,h e,f c,d,e,q,h c c c c,e,g

(9)  (10) (11) (13) (14) (1r6) t20) (21) (22) (23) (25) (29) (33) 134)

c,e,9 c c c c c g,h g,h g,h g g,h g C c



Another construction of rank 4 ... ‘ 297

THEOREM 3. All the non-isomorphic C-familiea, which are
not D-families, can be constructed from the given examples of
D-families by the addition of some 2-permitted 4-sets from the
paire e,e and g. '

Pr oo f. Due to the above list, it suffices to give
proof for the types (1), (2),(3), (4),(20),(21),(22),(25).

We observe that no two 4wsets, which belong to two
different complementary pairs, appearing in any of the
following 3-sets of complementary pairs

{a,b,c},{d,e,£f},{9,h,1},{a,d,9},{b,e,h},{c,£,1}
may be added to a D-family, otherwise either 3-intersections
or new l-intersections appear.

Equivalently, the only maximal sets of complementary
pairs of 4-sets, the 4-sets from which may be added simultaneously
to a D-family are

{a,e,i},{a,£f,h},{b,d4,i},{b,£f,q9},{c,d,h},{c,e,q}

Each of these six may appear with the D-family (1). Note,
however, that the following permutations of S, denoted just by
their non-trivial cycles

(57), (567), {(576), (67), (56) '
in this order, map the 4-sets appearing in {c,e,g} to the 4-
sets in the corresponding one of the first five 3-sets of pairs.
The elements 5,6,7 are in the equal position with respect to
the given example of type (1) (all the three appear in the same
set, 1567), Thus the addition of the 4-gets, contained in
anyone of the first five 3-sets of pairs to 1234,1567 gives the
isomorphic C-families with those obtained by addition to
1234,1567 just some of the 4-sets contained in c,e or g.

The transposition (56) maps {e,g} to {4,h} and {g} to
{h}. The elements 5 and 6 always appear together in the sets
of the given examples of D-families of types (2),(4),(20),(21),
(22), (25). Consequently, the 2-permitted 4-sets from the families
{d,h}, respectively {h}, can be always (when these six D-families
are considered and when only non-isomorphic C~families are looked
for) replaced by the 2-permitted 4-sets from the families {e,g},
respectively {g}.
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Similarly, the 2-permitted 4-sets from {f}, with respect
to the given example of D-family of type (3), can be always
replaced'by 2-permitted 4-sets from Ie}, due to the transposi-
tion (67).Q.E.D, L .

) The'given'exémples of foamilieS'of types (3),(5),(6),
(7r, (10),(11), (13), (14), (16), (20}, (21),(22), (23), (25), (29),
(33),(33), (35) have 2-permitted 4-gets in just one of the pairs
c,e,g9. There are at least three non-isomorphic C-families,
corresponding to each of theselD—families; the families obtained
by addition of none, one and two évpermitted 4-sets.

The 6n1y'question which should be answered here is:

"In which of these 18 cases does there exist the fourth non-
isomorphic C-family?", or, equivalently

"In which of these 18 cases are the two 2-permitted 4-sets not
in the equal position with respect to the D-family?"

It is not hard to check that the answer is:

"With D-families of types (5), (6),(10), (11),(13), (14), (20), (23),
(33),(34)". .

For example, we show that the 4-sets 1458 and 2367 are
in the equal position with respect to the given example H, of
the D-family of type (22), but not with respect to the given
example Hy of the D-family of type (23),

The permutation (; g i g 2 g Z g) maps HZU{1458} to

HZU{2367}.

The elements 1 and 7 have special, but different
positions in the family Hj. Both are the intersection elements
corresponding to the outer edges of the D~graph (4-path).
However, 7 is missing in two 4-sets, which determine an edge,
but 1 is not (equivalently, the elements 1 and 7 are in
different positions with respect to the markation). Consequently,
the 4-sets 1458 (containing 1) and 2367 (containing 7) are not
in the equal position with respect to the family Hy.

THEOREM 4. There ia a bijection between the non-igsomor-
phic C-families, arising from the given examples F, and F; of

the D-families of types (2) and (4) respectively.
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Proof. BAs 3478 = (1234N\(1567U2568))+
+ (((1567U2568)\(1567/12568))\1234)

and any isomorphism between two C-families arising from Fg
preserves both 1234 and {1567,2568}, we conclude that it
also preserves 3478, that is, it is also an isomorphism between
the two C-families arising from F; and having the same
2-permitted 4-sets as the first two C—-families (Note that the
existence of the later two C-families is guaranteed).

Conversely, any isomorphism between two C-families
arising from F; induces (as a restriction) an isomorphism
between their C-subfamilies, obtained by deleting the same
4-set of F,, from each of the first two C-families. These
C-subfamilies have the maximal D-subfamilies of type (2) and
hence each of them is isomorphic to a C-family arising from F,.

The only non-isomorphic C-families, which are not
covered by the discussion above, are those C-families, the
maximal D-subfamilies of which have stars as the corresponding
D-graphs (types (1), (2),(8),(9)).

The 4-set 1234 is the centre of the given examples of
stars corresponding to D-families of types (2), (8),(9) and we
adopt the convention that it is also the centre in the case of
type (1). Each of the 4-~sets from the pairs 1278~3456,1368-2457,
1458-2367 (that ié, from the pairs of c,e,qg ) has a 2-intersec-
tion with 1234 and no two of them have the same 2-intersection
with 1234. '

THEOREM 5. There i8 a bijection between the non—isohorphic
C-families arising from the given examples of D-families of
types (1),(2),(8),(3) and the non-isomorphic coloured C—graphs(*)
having one, two, three, four black vertices respectively.

Pr oo f. We adjoin C-graphs to these C-families as
follows:

The four vertices of the C-graphs are denoted by 1,2,3,4.
The vertex 1 (resp.2,resp.3,resp.4) is black 1f and only if the
corresponding C-family contains the set 1567 (resp.2568,resp.
3578, resp.4678) . The edge 12 (resp.l13,resp.l4,resp.23,resp.34,
resp.34) exists 1f and only if the corresponding C-family

{*) Two coloured C-graphs G, and G, are isomorphic:.

if there is a graph-isomorphism which maps G1 onto G2 and preserves
the colouring.
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contains the 4-set 1278 (resp.1368,resp.1458,resp.2367,resp.
2457 ,resp.3456)

Conversely, given a coloured C-~graph, the vertices of
which are denoted by 1,2,3,4 so that the black vertices are
denoted by smaller numbers, we simply read all the 4-sets of
the corresponding C-family (except for 1234, the existence of
which is assumed in advance), just by the use of the above
mentioned correspondence.

(I) Suppose that two C~graphs G; and Gy are isomorphic,
that is, there exists a colour and incidence-preserving
bijection between their vertices (which are denoted by 1,2,3,4).

We extend the corrésponding permutation B of {1,2,3,4}
to a permutation o« of S by postulating:

a (1) = B(1) ; a(9-1) = 9-86(1) , for 1i=1,2,3,4

We claim that the permutation o estabilishes an
isomorphism between the C-families F; and F,, corresponding to
the graphs G; and Gy respectively.

Both of the families F, and F, have 1234 and the same
sets from {1567,2568,3578,4678}, by the above given construction
of the C-families, corresponding to C~graphs. The permutation
a preserves 1234 and also preserves the later 4-sets (not
necessarily identically), since it preserves the black vertices.

There is an edge {k,f} in G; if and only if there exists
the edge {a(k),a(f)} in G,. The edges {k,£}, respectively
{a(k),a(f)}, imply the existence of the 4-sets (k,£,9 -f,9 -k}
respectively { a(k), a(f) ,9-a(f),9~a(k)} in the families Fyis
respectively FE.

(II) Conversely, suppose that two C-families K; and K,,
which arise from the same one of the given examples of
D-families of types (1), (2),(8),(9), are isomorphic, that is,
there is a permutation y of 5 which maps the set of K; onto the
sets of Ky The set 1234 is necessarily preserved under y in
the case of types (2),(8), (9), because of its special position
in the D~graph.

We claim that, in the case of types (2),(8),(9), the
restriction of the permutation y to the set {1,2,3,4} establi-
shes an isomorphism between the corresponding C-graphs (with
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vertices denoted by 1,2,3,4)

Proof of the claim:
vertex i is black in G) <=>K, contains {i}u({5,6,7,81\{9-1})<«=K,
contains {y(i)}U({5,6,7,8IN(9~ y(i)})=>vertex v(i) is black in
Gy 7

vertices i,j are incident in Gy<=»>
<=>K, contains {i,3j}U({5,6,7,8}-{9~1,9~ j} k=>
<=>K, contains {vy(1), v(3)Iu5,6,7,8}={9-y (1) ,9=Y(§) D<=>
<=> vertices y(i),y(j) are incident in G,

REMARK: We used the fact that all the sets of {1567,
2568,3578,4678}, respectively of {1278,3456,1368,2457,1453,
2367}, can be represented in the first, respectively in the
second, of the two forms above.

When the D-family {1234,1567)} (of type (1)) is considered,
it may happen that the given 1sombrphism vy between two
corresponding C~families K;,K,; maps 1234 to 1567 and conversely.
It necessarily has 1 and 8 as fixed points.

In this case we define another permutation § of S by

§(1) =1 ; 6(8) =8 ; §(1) = 9-v(1) for 2gig«7
' It is easy to check that
8(X) = v(X) for each X€{1278,3456,1368,2457,1458,2367}

and 6(1234) = 1234 §(1567) = 1567

It follows that there exists an isomorphism between K;
and Ky, which preserves 1234 and we may proceed as in the
'previous three cases. '

This completes the proof of Theorem 5.

CONSEQUENCE 1. There Zie a bijection between non-isomor-
phic C-families arising from (the given examples of ) D-families
of types (1) and (8).

Pr oo f. Follows immediately by interchanging the
black and white colour in the vertices of the corresponding
coloured C-graphs.

CONSEQUENCE 2. There are 11 non-isomorphic C-families
arising from (the given example of) D-family of type (Q).

Pr oo f. All the vertices in the corresponding
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coloured C-graphs are black. We simply use the well-known 11
non-isomorphic simple graphs on 4 vertices (e.g., in the
Appendix of |2])

In order to finish the construction of non-isomorphic
C-families, we have just to find all the non—iscmorphic'z-
colouring of vertices of the above-mentioned 11 graphs, for
the cases when exactly one and exactly two vertices are black.

We give the table of non-isomorphic coloured C-~graphs
with one or two black vertices, by stating their l-sets and
2-sets of black vertices under the corresponding non-iscomorphic
graphs on four vertices. If several non-isomorphic colourings
correspond to the same graph, then their denotations are

separated by commas.,

THE TABLE OF NON-ISOMORPHIC COLOURED C-GRAPHS
WITH 1 OR 2 BLACK VERTICES

1 2 1 2 1 2 1 2 1 2 1 2
[ ] .
y 3 4 3 ht 3 " 3 n 3 4 3
Ore black ;
vertex is 1 1,2 1 1,2,3 1,3 1,3
two black ;
vertices ard 12 12,13,14 12,13 12,13,23,34] 12,13,23, 34 12,13
1 1 A 1 1 7 1 2
Gr— [ ] o
a [ Y L) L) [ ] L]
n mn 3 u u 3 u 3
ore black
vertex is 1,2 1,2,3 1 1,3 1
two black .
vertices are 12,73 172,13,23,24 12,13 12,13,34 12
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We stress (somewhat similar as with the denoted A-
graphs (/1)) that the coloured C-graphs provide immediate
constructions of the corresponding, up to isomorphisms
determined, C~families with the maximal D-subfamilies of types
(1),(2),(4),(8) and (9)

Summing up the numbers of non-isomorphic C-families,
arising from all distrinct types of D-families, we obtain that
there are 184 non-isomorphic C-families.
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REZIME

NOVA KONSTRUKCIJA PEJVING MATROIDA RANGA 4
NA SKUPU OD 8 elemenata (II)

U ovom radu, koji je nastavak rada {1}, dajemo konstruk-
ciju svih neizomorfnih C-familija (familija 4-podskupova 8-sku-
pa, kod kojih ne postoje 3-preseci, a postoje l-preseci). Time
se kompletira konstrukcija svih neizomorfnih pejving matroida
ranga 4 na skupu od 8 elemenata.



