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ABSTRACT

In the paper, the sets Q and ¢ are defined nthe following way:
a) Q is the set of the lists of the form:
[el,ez,...,en,..;], n = o
Each element of the list can be:
an atom, a finite list, an element of the set ¢ and an element of
the set w .
blw is the set of lists which satisfy one of the following conditions:

- they are the elements of the set Q

- some of its sublist is the element of the set @

- they contain an infinite number of sublist.
The functions length and len are defined in the following way:

length Lj =0

length (a:x) =1 + length x

len [ ] =0

len a = 0; atom a

len (a:x) =1 + len a + len x .
The main results are:

length x = <=> xe{ and

len x=>ow <=> x€Ww .

The functions lenght(len) is used for the examination: the value of

the function, whose arguments are the elements of the set Q(w), is the ele-
ment of the set Q(w).
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LISTS

Lists are ordered collection of arbitrary many elements
which can be accessed by position. The elements of lists may be
of any type including numbers, strings (atoms) or other lists
(sublists). Mixed type of elements and duplicating are permitted
too.

The finite lists is a list which contains a finite num-
ber of elements. The finite list is written in this way:

Eé1'92'-~-'eﬁﬂ , where n is the number of elements.
The (-1list is a lists which contains an infinite number of ele-
ments. The {Q-list is written in this way:

[el,ez,...,en] , N
The set of all Q-lists is denoted by 9 (}2,3,4]). The
w—-list is a list which contains an infinite number of atoms and/
or an infinite number of sublists.
The set of all w-lists is denote by w .
The list which contains no elements(an empty lists) is
written in this way:

I

SOME ELEMENTARY FUNCTI(ONS ON LISTS

Lists may be the arguments and results of functions.

The basic construction operator on lists is ":". It makes a list
one unit longer by prefixing an element to it. For example:
1:[2,3]
has the value [1,2,3] .
The "cons" function may be defined as follows:
cons a X = a:zx

vwhere:

a 1is an atom or a list,

x 1is a list.

The formal parameters need not be simple variables but can
also the expressions built out of the variables and constants
using the ":" operator.

This use of expressions reduces the need for explicit
quards, and makes the definitions of functions, by the system of
equations, ‘more readable.
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A way for decomposing a list is by using functions that
yield the head or the tail of a given list.

The selector functions on the lists are the "hd" and
"tl"™ functions.

-The "hd" function yield the first element of the list.
It may be defined as follows: )

hd(a:x) = a
For example:

hda([1,2,3]) = Hd1:[2,3]) = 1.
The "tl" function yields the list which remains when the head
element of the argument Iist is removed. It may be defined as
follows: '

tl(a:x) = x
For example:

t1([1,2,3)) = t1(1:[2,3]) = [2,3] .

Notice the :differences between the results of the fun-
ctions: "hd" yeilds an element of the same type as the first ele-
ment of the list whereas "tl" yields a list.

Both functions have a restricted domain in that they may
be only applied to non-empty lists. Thus:

hd [ ] and

t1 []
are both undefined.

Let us consider some basic functions.

The "lenght" function yields the number of elements in
a list. The "length" function may be defined as follows:

length[ ] =0 ... length.1l
length (a:x)=1+length x = ..... length.2
For example:

length([1,2,3]) = 3 .

The length of a list is the number of elements (inclu-
ding duplicates) in the list to which the function is applied.

An (infix) cocnatenation operator can be used to create
a list which contains all the elements of its first operand,fol-
lowed by all the elements of the second operand. The concatenat -
on operator "++" may be defined as follows:
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[J++y =y ve. ++.1

(a:x)++ y = a : (x++y) eee ++.2
For example:

[1,2] ++ 3,4 = 1,2,3,4 .

The "reverse@” function yields the list whose elements fo-
llow the reverse order in respect to the argument list. The "re-
verse" function may be defined as follows:

reverse [ ] = [] ... reverse.l

reverse a:x = (reverse x)++ [a] ... reverse.?2
For example:

reverse [1,2,3,4] = [4,3,2,1] .

The "sort" function, on lists whose elements are nume-
ric atoms, yields the list whose elements do not follow in dec-
reasing order,

The "sort" function may be defined as follows:

sort [ ] =[] ... sort.l
sort(a:x) = insert a (sort x) ... sort.2
insert a [ ]= [&] ... insert.1

insert a (b:x) = if a_§b1then a:b:x

else b: insert a x ... insert.2

In |6] a wrong definition of the "sort" function is given. The
algorithm used is a particular method of sorting, usually called
"insert-sort".

STRUCTURAL INDUCTION

To make formal proofs about list-like objects, which can
be described by abstract rules, requireg the use of structural
induction. This is a technique proposed by R.M. Burstall (|1]).
for dealing with trees of unbounded size.

The principle of structural induction for lists can be
stated as follows. To prove that all lists have the property P,

we show:
(a) P([]) and
(b) P(a:x) under the assumption P(x).

To say it differently,
(a) Prove the required property for the basic elements
(empty list)
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(bl) assume the required property as an induction hypothe-
sis for elements of the non-basic éleménts(th_e non émpty list)
(b2) prove the required _prbper.éy for objects which contain
previous elements. . - ,
Of course, this can be explained by an inductién to the
length of the list. ] i
Let us prove by the structﬁral ‘induction the following

lemma:
LEMMA 1. A funetion length x i{g defined for every li-
st x . : '
Proof by. induction on x
case [ ]

_-_length [1 =0 by length:l
case (a:x)
length(a:x) =1l+length x by length.2 . ,
Since length x isex hypothesi defined, then length (a:x)
is defined too, and the lemma is proved.
Analogously, we can prove, by induction on x, that the
functions cons a x, reverse'x, insert a x and sort x are.defi-

ned for every list x.

SOME PROPERTIES OF THE FUNCTION LENGTH .

LEMMA 2. length [ai,...,an'_Jl =n (n>1),

Proof.

length]:al,...,ari] length(al:[az,...,argj by :
1+length [az, ceeral by length.?2
l+length (a,: [a3, e ,an] )by
1+1+length [a3, . ,an'] by length.2

n-1+length[a 1

= n—1+lenqth,(an:[j) by :
= n-1+l+length 7] by length.2
= n+0 by length.l
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LEMMA 3.  ‘length x>0.

_Pfrr oo f . by induction on x

case []
lepgth [ ] =0 .+ by length.l
ggs__e'('ra.:x) | . .
. length(a:x) = l+length x by length.2
- Co>1w0 ex hypothesi
, _>_ 0 ‘
as reqﬁii:ed.
- THEOREM 1., length x+» <ff xeQ.

‘P' r o o f. Let x = ['_'al,az,...,,al;l be an Q-list. Then:
length x

- length ['_al,az,...,an,»... ]
1ength(a'1:[a2;...,an,... ] by
1+1ength([a.2,...,an,...]) by length.2

. & =

]

I

=n+lengt:h]:an+l,...,:] o .
Let length x +« , By lemma 2 x can not be a finite 1list,
then x¢ Q. '
Notice that, according to Theorem 1, the functicn length

characterizes all the Q-lists, i.e. lists which contain an infi-
nite number of elements.

LEMMA &. length x++y = length x + length y .

Proof by induction on x.
case
length ([ ]++y) = length y by ++.1
= O+length y _
= length[ ]+length y by length.l
case (a:x)
T length ((a:x)++y) = length(a: (x++y)) by ++.2
= l+length (x++y) by length.2

=l+length x + length y ex hypothesi
= length(a:x) +leagth y by length.2
as required,
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LEMMA §. length (x++y) > length x,
length (x++y) > length y.

ProofE. Immediately follows from Lemma 3 and Lemma 4.

STRUCTURAL [NDUCTION AND Q-L{STS

We can formulate the following induction principle: to
prove that a property P holds for all Q-lists it is enough to
prove: L

(1) P(R), and .
(2) P(a:x) under the assumption P(x).

This is an extension of the idea of struevtural inducti-
on, originally suggested in |6|, and is calles the partial ob-
ject induction.

THEOREMA 2. x++y =x for any Q-1liet x (and arbitra-
ryy J.

Proof by a partial object induction on x:
case o
Q+ty = @
Let us prove that the concatenation of an Q-list x and arbitrary
list y is an Q -list. By Theorem 1, it suffices to prove that
length (Q++y) =+ . ' .
Let x = [bl,az,..{] be an Q-list, i.e. xeQ.
length (x++y) = length([él,az,...] ++y)

= length((aI:[éz,...])++y) by :
= length ( alz([éz,..{]++y)) by ++.2
= 1+1ength([a2,..:]++y) by length.2

= n+length ( [an+lr~ co]HHY) v
case (a:x)

(a:x)}++y = a: (x++y) by ++.2
= a:x ex hxgothes;

as required.
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COROLLARY 1. The concatenation of the two liste 18 a
finite ligt iff both lists are finite lists.

Proof. Follows from Lemma 5 and Theorem 2.

SOME PROPERTIES OF Q-LISTS

By applying the function lemgth 1t is possible to find
out whether the value: a function, one of whose arguments is
an Q-list, is an Q-list itself. ‘

THEOREM 3.  length (reverse x) = length x.

Proof by induction on x:
case []
length (revetse[ ]) =.length [} by reverse.l

case (a:x)
length (reverse (a:x))=length (reverse x++[a]) by reverse.2
"=length (reverse x)+length [a] by Lemma 4
=lengthx+length (a: [ ]) ex hypothesi;by:
=lengthx+l+length [ | by length.2

=lengthx+1+0 by length.1
=lengthx+1
=length (a:x) by length.2
as required.
COROLLARY 2. reverse Q = Q.

Let %€ . If reverse x is a finite list then the wvalue
of the length (reverse x) is a finite number, which is impos-
sible by Theorem 3.

LEMMA 6. length (insert a x) = 1 + length x .

Proof€f by induction on x

case [ ]

length (insert a [ ]) = length[a] by insert.l
length (a:[]) by:

l+length [ ] by length.]
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case (b:x)"
I- let a<b
length (insert a(b:x))

length (a:b:x) by insert.2
= l+length(b:x} by length.2

II Let a>b

length (insert a(b:x)) = length(b:insert a x) by insert.2

= l+length (insert ax) by length.2
= l+l+length x ex hypothesi
= l+length (b:x) -.‘_E; lengzh.z
as required. ‘

THEOREM 4. length (sort x) = length x .

ProotéE by induction on x
case [ ]
length (sort[ ]) = length [ ] by sort.1l

case (a:x)

length (sort(a:x)) length (insert a(sort x)} by sort.2

= l+length (sort x) by Lemma 6
= l+length x ex hypothesi
= length (a:x) by length.2

as regquired.

COROLLARY 3. Sort @ = 0 .
The list obtained by sorting an Q-list is also an Q -
list.

w- LISTS

A sublist is a non-empty tail of a non-empty
a) start list or
b) sublist.
For example:
the list [1[2[3[4]]]] has theree sublists:
[2[3[4]7]
[374]] and
4]
The start list and empty list are not sublists.
The number of sublists of a list is equal to the num-
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ber of [, in the notation of the list, minus one.

An w-list is the list whose notation is infinite, i.e.
the list itself or some of its sublists has an infinite number
of elements, or tﬁé'number of sublists is infinite.

OCbvious, ? is a subset of w.

For example:
wu =L [a;s--~sap,...] 7,
v =v:[a] =[[[ ... ala]a]
are w-lists, i.e. they are elements of the set w . v is a cir-
cular list and satisfies the following equations:
hd v=v and tlv = [a].

Lists v is an example ofy -lists , which can be implemented.
In the general case the infinite lists can not be impleemented.
For lists u and v holds:

length u = 1, and
length v = 2.~
This shows that the function "length”can not characterize w-1li-
sts.
Let us define the function len x in the following ori-
ginal way:
len [] =0 ... len.1
len a = 0; atom a «e. len.2
len (a:x)=14+len a + len x ... len.3

The function atom x is a basic function. The value of the func-
tion atom x is "true" iff x is not a list, otherwise it is
"false".

LEMMA 7. lenfa,,...,a ] =n if a,,...,a are atoms.

Proof by induction on n
case n = 0
len[] =0 by 1len.1
case n >0
lenfhl,...,aﬂj=1en(a1:[?2,...,aﬁ]) by:
=l+len a1+1en[§2,...,a5] by len.3

=1+0+1en'[a2,... ,ar:_f by len.2
=1+0+n-1 ex hypothesi
=N

as required.



Some proofs by structural ... 245

LEMMA 8. The value of the function len x ts equal to
the sum of the number of atoms of the list x and the number of

sublists of the list x .

Proof by induction on the number of sublists of

list x

case n=0

_Since there is no sublist, the proof immediately follo-
ws by Lemma 7.

case n >0
Let x = [al,...,ak]

len x = len [al,...,ak'_'[ .
= len(a]_:[az,...,ak]) by:
= 1l+len al+1en[a2,...,a);] by 1len.3
= (l+len al)+(l+1en a,)+...+(1+len ak) .
If a; (1<i<k}) is an atom then the value of the expression l+len a;

is equal to 1. ‘

If a; (l<i<k) is a sublist then a unity in the expression
1+1enai corresponds the sublist a;, (1 <ic<k). The number of sub-
lists of the list a; (1 <i<k) is less than n, so len a; is equ-
al to the total number of atqms and sublists of a; (ex hypothesi),
Since a, was an arbitrary sublist, Lemma 8 holds.

THEOREM 5. len x +o iff X €&w ,

Proof. Let len x +«» ., If the number of sublists
of list x i1s infinite then x €w by definition of w. If the num-
ber of sublists of a list is finite then by Lemma 8 there is a
sublist which is an Q-1list, so x ew.

Let x €w. Then the number of sublists or the number of
elements>of some sublist is infinite. In both cases by Lemma &
len x +o

Between functions length and len there exists a simple
rel&tion.

THEOREM 6. length x <len x.
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Proaof b y induction on x

case [ ] ,
length[J=len [] =0 by length.l and len.1
case (a:x)
length (a:x) = l+length x by length.2

< l+len x ex hypothesi
< 1l+len x + len a

len (a:x) by 1len.3
as required.

THEQREM 7. XEeEN => X ew.

Proof directly follows by Theorem 6, 5_ and 1.

SOME PROPERTIES OF w-LISTS

Let us see for example function hd x. Let x = a:y

LEMMA 9. len x > len(hd x)

Proof. len x len (a:y)

l1+len a + len y by len.3
len a
len(hd x) .

\

fl

LEMMA 10. hd x¢1w =>x ew ,

Proof is obvious. What can we conclude about Q ?
Let a, ¢ and u = [[a;,...,a,,...J] . Then:

hd[[al,...,an,_...j]
= [al,...,an,..._] e
hd hd u = hd[a,,...,a ,...]
=a, g,
Let w =[[a;,... ,Jb,,...] . Then:
wel
hd w = hd[fa,,...]/,b;,...]
= [a;s.. e .

hd u
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Consequently, all four cases, depending on whether the
argument and the value of the function be1th to Q . are pos'—
sible. .

Let us see the fﬁncvtion cons x y. It makes it easier
to prove the following:

LEMMA 11. length(cons x y) = l+length y ;
len(cons x y) = l+len x + len y.

Consequently, function cons x y is an eiement of Q(w) 1iff the
least one of the arguments x and y is an element 0 (w).

LEMMA 12. len(x++4y) = len x + len y.

Proof by induction on x
case [ ] :
len ([ J++y) = leny by ++.1

len[ ] + leny by len.1
case (a:x) o
len(a: (x++y)) by ++.2

len{(a:x)++y) =
= 1l+4len a +len(x++y) by len.3
= l+len a +len x+1leny by Lemma 12
= len(a:x) + leny . by len.3

as required.

THEOREM 8. w ++y = w

Proof. et x €w. If x e then x++y € 2 and x++yew.

Otherwise x = [a ,...,a ] and len x»=
By Lemma 12 follows:
len(x++y) = len x + len y +=

then x++y € w.
Remark that from x eéw, it is not possible to prove- by
structural induction that x++y = x.

LEMMA 13, len(reverse x ) = len x

Proof by induction on x
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case []

len(reverse[ ]) = len [ ] by reverse.l
case (a:x)
_len(reverse a:x) = len(reverse x++[a]) by reverse.2
= len(reverse x)+ len[a] by Lemma 12
= len x + len[a] ex hypothesi
= len(a:x) -

as réquired;

THEOREM 9. - reverse w = w .
Proof  immediately follows from Lemma 13 and The-
orema 5.
LEMMA 14, len(insert a x) =1 +1len a +1len x
Proof by induction on x
case [ ]

len(insert al ])

case (b:x)

I a<b
len(insert
II a>b

len(insert a b:x)

= len[a] by insert.l
= len(a:[ ]) by:

= l+len a + len[ ] by len.3

a b:x) = len(a:b:x) by insert.2

1+len a + len(b:x) by len.3

len(b:insert a x) by insert.3
l1+len b +len(insert ax) by len.3
l+len btl+lena + len x ex hypothesi
1+len a + len(b:x) by len.3 -
as required.

won

LEMMA 15, len(sort x) = len x
Proofét by induction on x
case [ ]
len(sort[]) = len[ ] by sort.l

case (a:x)
len(sort a:x)

it

len(insert a(sort x)) by sort.2
l+len a + len(sort x) by Lemma 14
l1+len a + len x ex hypothesi
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= len(a:x)
as required.

THEOREM 10. sort(w) = w’

Proof immediately follows from Lemma 15 and
Theorem 5. ’
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REZIME

DOKAZIVANJE RAZNIH OSOBINA LISTI POMOCU
STRUKTURNE INDUKCIJE

U radu su definisani skupovi Q@ i w .
a) Q je skup listi oblika
]:el,ez,...,en,... e
Svaki element e, moZe biti:
- atom
- kona&na lista
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- element skupa 2
- element skupa w

b) w je skué'listi koje ispunjavaju jedan od sledeéih
uslovas L
- pripadaju skupu Q
.- neka njena podlista pripada skupu Q
- sadrZe beskonaéno'ﬁnogo podlista.
Definisane su funkcije length i len na sledeéi nalin:
length [J] =0
len (a:x) = 1+ length x
len [] =0
len a = 0; atom a
len (a:x) =1 + len a + len x
Dokazano je da vaZi:
length x»» =>xeQ 1
len x +» <=> x euw.
Funkcije length i len se koriste za ispitivanje da 1li je vred-
nost funkcije ¢€iji su elementi argumenti skupa  odnosno
w , element skupa { odnosno w



