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ABSTRACT

The paper is concerned with nonlinear two-point boundary value pro-
blems of the singular perturbation type. Besides giving existence and uni-
queness statements we investigate two kinds of stability properties of the
boundary problems, namely the stability with respect to time-evolution and
the stability with respect to small perturbations. Both kinds of stability
are essentially obtained by invgrseﬁonotonicity properties of classues of
linear boundary value problems.

1. INTRODUCTION

This paper is concerned with boundary value problems
(PE) of the form

T u =-eu" +a(x,u)u” +8(x,u) =0, xe[0,1] ,

(P¢) Ru = (u{0), u(l))= (a,B),

where £ >0 is small. Among others we shall give conditions im-
plying the existence of a unique solution u of (Pg) for 0<€f_€0.
Iif (PE) is treated numerically, let us say with a difference
method on a grid G ={xo,. . .,xn}, then the operator equation
(Pe) is replaced by a finite dimensional system of equations

_ e
Te’Gu = Ygr ueR™ ,
with a solution U o e-]RG, let us say. The truncation error is
r
Te,G = Tc,GuelG - Tf-:,Gue.G ’
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where u denotes the restriction of u, to the grid G. Thus

e|G
it is the question of the stability of TE G to estimate the
- 14
error ueiG - uEIG by TE,G' The stability of Te,G can be stated

in the form of a stability inequality |5].

I} u-v]| < cEIIT u-T for all u,v e R® ,

K4

e,G e,Gv”

where || ||, ]| || © are suitable norms and c_ is the stabili-

ty constant. It cannot be expected that T, &
r '

bility properties than Te itself, and the stability properties

of T_can be very bad for small ¢ . It follows from 1,19 |

has better sta -

that even in some linear cases of (Pe) the stability constants
for T with rispect to the maximum norm grow like ec’/E with

o0>0 for ¢ 0 ., It is a purpose of this paper to separate ca-
ses with better stability behaviour: we shall give conditions
under which the stability constants are 0(1) or O(e !/?)
O(E—l) for €-+0+. These cases should be treatable by suitable

or

numerical methods for fairly small values of ¢ (cf.]2,6,11,13-
15,20-24; 29-31|) though standard methods may fail.

Throughout the paper we shall work with monotonicity
methods - with respect to the natural ordering, and there are
some relations of our techniques to the method of differenti-
. But the intention of the
present paper is different. In |[16,17| the essential assumpti-

al inequalities as used in [9,16,17

on is that the reduced differential equation (¢ =0) has one or
more solutions with certain properties, and then it is investi-
gated whether there is a solution of the ¢ -dependent problem
in a neighbourhood of these solutions. These valuable techni-
ques might lead to a priori estimates for u_. In the present
paper we shall investigate the inverse of (TE,R) without refer-
ring to a reduced problem, and we are motivated by the stabili-
ty question as mentioned above. Actually, if a priori estima-
tes for u, are known - for exaﬁple obtained by the methods of
|9,16,17], then it is more likely that our conditions can be
fulfilled by altering the coefficients a(x,u) and B(x,u) out-
side the a priori domain. In this way the two techniques might
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be used together. Nevertheless, we always take global assum—
ptions for a(x,u) and Rf(x,u) , and if these are met, then an
a priori analysis is not necessary.

The solutions u. of (Pe) describe the stationary sta-
tes of the evolution equation

ut—euxx+a(x,u)ux+6(x,u) =0, xef0,1] , t>0 ,
(1) u(0,t) = A, u(l,t) =B, t>0
u(x,0) = u_(x), xel0,1],

which arises among others in convective-diffusion type flow
problems (cf. |10|). Under our conditions (to be described be-
low) the solution u. of (P.) 1is always a stable state of the evolu-
tion equation. Concerning (1) it is of great interest whethet
Te is monotone in the sense of Minty |25|. However, it turns
out that T  is never Minty-monotone if ¢ actually depends on

u and £ is sufficiently small. This is one reason for us to
investigate T  with monotonicity concepts as induced by the na-
tural ordering.

Conceptually this paper owes to |6| where the same co-
ncepts of a stability inequality and of monotohicity are used,
and where stability and inverse monotonicity for TE and for
discrete analogues was proved under the special assumption
a(x,u) =a(x) >a, 70. I thank ProfIDrE.Bohl for his encouraging

interest and for discussions about these problems.
2. PRELIMINARIES AND STATEMENT OF THE MAIN RESULTS

The problem (P.) is considered under the assumptions
A,B,e eR, €>0, a,0,,8,8 €C([0,1] xIR)
where o =g—g etc. In cases II and IV below also o eC([0,1]xR)
is required. R always denotes the boundary operator

Ru = (u(0), u(l))
and we use the pointwise ordering, i.e.
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u<v «> u(x) <v(x) for all xe€[0,1] ,
u<v <=>u(x) <v(x) for all xe [0,1] ,
Ru <Rv <=> u(0) <v(0) . and u(l) <v(1)

where u,v eC[0,1]:. For any u ec? [0,1] the linearization of T,
at u is
(2) (DT _u)w=-ew" +a(x,u)w” +{au(x,u-)u’ +8, (x,u) lw,we c? [o,1] .

Concerning the evolution equation (1) the following definiti-
on is in common use,.

DEFINITION 1. A solution ue of (Pe) 78 called stable,
if the smallest eigenvalue of the eigeﬁvalue problem

_(DTeuelw = Aw, “Rw = (0,0)
i8 positive.

Because of the following Lemma the stability of u. in

the sense of Definition 1 is equivalent to the inverse monoto-
nicity of (DTeue’ R).

LEMMA 1 (|35,ch.1|) Let p,qecf[0,1], €>0 ,
(3) Lw = —sw"-;-pw’+qw, weCZEO,lj. |
The following conditione are equivalent:
(i) (L€, R) i8 inverse monotone, i.e.
Lw>0, Rw>(0,0) => w30 for all wec[0,1] .
(ii) The smallest eigenvalue of the eigenvalue problem
Lw=)w, Rw= (0,0)

ig positive.

(111) There exists e €C2[0,1]  with

e>0, Le>0, (LRe)#(0,0,0) .

(iv ) Green ‘s function G (x,y) corresponding to (Le’R)
and the solutions g _,h ec? [0,1] of
(4) Legs = Lehe =0, Rge = (1,0), Rhe = (0,1)

exist and are nonnegative.
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The following Theorem describes the sufficient condi-
tions for the following properties of (Pe) , which can depend
on e .

PI: (P,) - has a solution u_ ec? [o0,1] .
PII: (Te’R) is inverse monotone, i.e.

Tu<Tv, Ru<Rv =>uc<v for all u,v ec2[0,1] .
Especially, (Pe) has at most one solution.
PIII: The smallest eigenvalue of any eigenvalue problem
(5} (DT . u)w =Aw, Rw = (0,0) ,

where u eC2 [0,1] is arbitrary, is positive. Especially, any
solution of (Pe) is stable. In some cases all eigenvalues of
(5) have a common lower bound independent of u. This lower bo-
und then is denoted by )\l(e) .

THEQREM 1 Let the conditions of one of the follow-
ing cases hold for all (x,u) ¢ [0,1] xR where “o'so’Yo elR:
Case I: a(x,u) = a(x) _>_ao>0, Bu(x,u) _>_Bo ’

2 )
ao+4eBo>0, >0 .
Case II: a(x,u) >a >0, (B -a.)(x,u) >y, ,

ag + 4eyo>0, e >0

Case IIT: a(x,u) = a(x), Bu(x,u) >0, e >0.

case IV: (B, -a ) (x,u) 20, €>0
Then P II and P III hold. In cases I,I,TIII also P I holds.

In the following Theorems we give the stability inequ-
alities for cases I-IV separately, partly under further condi-
tions. In some cases we also give lower bounds for ll(e) whe-
re )\l(s) is defined in P III. The norms 1

I} u)] o = max{lux)|: 0 <x <1}, Jjull; = [ fulx)fax

o

are used.
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THtOREH 2. Agsume case I with Bo _<_0. For all
u,v ec2[0,1] holds

-28_/a
Ju(x) -v(x)| <e °o° {He”Tgu'TE" Hl
(x-l)ao/s
+ [u(0)} -v(0)] +ju(1) -v(1)fe }, xef0,1]
with H_ = (a2 + ge8 )71/2

2
Furthermore A, (e) >a_ /4e +8 .

THEOREM 3. Agsume case II with yoio . For all
u,veC2[0,1] with u(0) =v(0) holds

“2yy/ay .
[u(x) -vix)]| <e , { Hell Teu—TEvh 1
(6) (x-1)a /e
+ |u(1) -v(1)]e } » xef0,1)
with H_ = (a2 + tey )12

2
Furthermore X, (e) >a_ / 4e +Yg -

Assume Case IIa: the conditions of case II and ay >ox,u).
Then for all u,v eC2|:0,1:] holds

2y, /e -
[u(x) —v(x)]ise+e Ju(0y-v(0)| (1 +H (0 —a))

where S¢ is the right hand side of (6).

REMARK 1.
a) The stability inequality of Theorem 2 was proved in
[6| for all u,v with Ru =Rv.

= +
b) Since H‘e' He +1/0_<eo for ¢ +0 we have stability

o (x~1)ag/e

uniformly in € . Notice that is a boundary layer

function tending to zero for x e [0,1) and ¢ »07,

c) Since Al(e) +o for e->0+ the solutions u. as stati-
onary states of (1) become’more stable’ if ¢ gets smaller.

d) Similar results as stated in Theorems 2 and 3 hold if
o(x,u) = a(x) <-o, <0 or af{x,u) <- ag <0. Just use the trans-
formations x +1 - x. ’
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Theorems 2 and 3 are only applicable to problems wit-
hout turning points. The following Theorems will allow for tur-
ning point problems. First consider case III, and let

Gpax ~Max{a (x):x e [0,1]}, o, =minfa(x):xe[0,1]} .

If O >0 or amax<o then Theorem 2 is applicable. Thus in

in
the next Theorem assume amaxzo >a min
THEOREM 4. Assume case III and let
= i n -
%o m {amax’ o‘min} 20 .

For all u,veC2|:0,1] holds

[lu-v]| , <c. 1T u-T v|| | +max{|u(0)-v(0)|,|u(1)-v(1)]}
with

{7) CE=_1/€ for a =0, c, = (e

ao/e

-1)/a, for a, >0.

Simple linear examples show that the stability consta-
o/e (0 >0) for e »>0% under the
general conditions of Theorem 4 (cf. |1|). The next two Theo-

nts c_ can actually grow as e

rems describe subcases of case III where better stability ine-
qualities hold.

THEOREM 5. Assume
Case III a: o(x,u) =o(x), Bu(x,u) 3Bo>0.

For all u,ve€ c? [0,1]kolds

lu-v]], <max {z= [T u=-T v]] _, [w(0)-v(0)]|, |u()-v(1)]}.
o

Furthermore i, (e) > Bo > 0.

THEOREM 6. Assume
Case IIT b: al(x,u) = a(x), a(x) >0 for Oixixo
a(x) <0 for xoixf_l, su(x,u) >0.

For all u,veC2 [0,1] Zolds
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1 .
”u—va <z max{xo,l-xo} ’-ITEU-TEVH 1

+ max{ |u(0)-v(0)|, |u(l)-v(1)]|} .

2

. Y _2 -—
Furthermore Xl(e) 3“—1- € mln{x0 ‘ (l—xo)

Now consider subcases of case IV where o(x,u) can ac-
tually depend on u. Also, the conditions allow for a(x,u) =0
for some (x,u) € [0,1]x IR, thus turning points can occur.

THEOREM 7. Assume
Case IV a: (Bu—ax) (x,u) >0 and alx,u) >- ao or

ax,ua) <a, with ozo_>_0.

For all a,v eC2[0,1] with Ru =Rv holds
lhe=vll, < e llTu-1,v(f
with ¢, as in (7).

The problem (Pe) has a unique solution
u. for all € >0.

THEOREM 8. Aggume
.Case IV b:
Z(Bu-ax) (:f,u) 2Y, 0.
For all u,v eC“[0,1] with Ru=Rv holds

1
[Ju-v]] ;| < Y [T u-T vl -
Furthermore X (e} >y, >0.

THEOREM 9. Assume
: - -a < <
Case IV c: (B -a, ) (x,u) >y, >0 and @y Salx,u) <a .
For all u,v602[0,1] with Ru =Rv holds

1 1/2

2
) m (ao+(ao + 4EY0)

Tu~v|] < ) )T u-T vl
Case IV ¢ 8 a subcase of IV aand IV b, thue u. exists and

Ay () >y, >0,
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REMARK 2. a)  Theorems 2-9 state stability inequali-
ties for the nonlinear operator T . The rssults can be stated
in terms of stability for all linearized problems

(8) (DT w)w = £, Rw = (a,b), f£ eé[b 1, - a,b e'm"

where u € C> [0,1]. E g., let the. conditions of Theorem 2 hold.:
Then for all u ec2[o, 1] the solutions w of the linear problem
(8) exists and

woo | <o 2" 0t |11l +Jal+Ible” ”°°/'€}. x ¢ [0,1]
b) For simplicity we have always assumed global condi-
tions for the functions o« and B. But it is apparent from the
proofs below that all stability inequalities hold, if the assu-
mptions on a and B are valid ohly between the chosen functions
u and v occurring in the inequality.

2. THE PROOFS OF THEOREMS 1-9

Let the general conditions as stated in section 2 hold.
For u,v €c2[0,1] define the linear operator '

1 L
AT (u,v) = f DT, (v+s (u-v))ds,

o
i.e. AT (u,v)w=-ew"” +pw” +qw, wecz[o,lj, where
1
(9) p(x) = [ o (x,z_(x)ds, xe [0,1]
o
1
(10) atx) =f {e (x,z_(x))z](x) +8 (x,z (x))}ds, xe[0,]]
o

with z_ =v+s (u-v).
1f axec[o,lj x IR) note that

AT (u,v}*w = -ew" -pw” +rw, we Cz[o,l:] ,
where 1
(11) r(x) = (g - p7)(x) =[(B, =) (x,z_(x))ds.
o
By the mean value theorem it holds that

Teu —Tev =AT€ (u,v) (u -v)
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and thus the following Lemma follows:

LEMMA 2, Let Lo = TE(u,v) and assume
(12) Lw=20, Rw=(0,0) =>w =0.
Let Gg,g9, ,h, bDe deffned as in Lemma 1. Then
(u-v) (x) = [ G_(x,y) (T -T_v) (y)dy
: o

+ (u-v) (0)g (x) +(u=v) (Dh_(x), xe [o,1] .

Now the proofs of the,stability inequalities proceed as
follows: The assumptions on a and B ledd to estimates for the
coefficients p, g, ¥ of L_ or L* uniformly for all u,V'eCZBLIJ.
Thus we study linear operators Le and we estimate Ge’ 9. and
h€ only using inequalities for the coeffmcigntg of Le’ Apart
from Le other differential operators like Le etc. Yill occur.
Then G denotes Green”’s function corresponding to_(LE,R) and
QE, ﬁs are defided similarly as g.r hE (see 4)) with‘LE repla-
ced by Le' The following three Lemmas are elementary and only sta-
ted for convenience of later use,

LEMMA 3., Let
(13) LW = - ew" +pw” +qw, weC2[0,1:[

with pecl[0,1], qec[0,1] and let

R X
(14) - p_(x) = exp( = [ p(s)ds).
€ (o]
Then
. _ * ‘ 2
(i) L (p,w) = p L.w for all weC [o,1].
. - _ * R
(ii) G (x,y) = p_(x)G_ (x,¥)/p_(¥) = G_(v,x).
.. _ * _ *
(ii1) g, =p.9. . b, =ph_/p Q1) .
In (ii1) and (11i) we aegumed (12).
LEMMA 4.  Let L_ be given ae in (13) with p,qeC[0,1] .

For 0 €IR let
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Le ¥ =" ew" + (p ~2e0)w” + (-ec2 +po +q)w .
r

Then

. ox ox 2

(1) L(e"w) =e L. w, weC [0,1].

- _ o(x-y)

(ii) Ge(x,y) = e Ge'c(x,y).

_ _ox _ .0(x-1)

(iii) ge = e ge,c’he = e he,c .

In (ii) and (iii) we assumed (12).

LEMMA 5. Let L_ be given as in (13) with p,q ecfo,1] ,
and let L w=-ew" +pw” +qw with aeC]:G,IJ, d<q. If (L_/R) Zs

inverge monotone, then (LE,R) 18 inverse monotone as well and

0 26 ZGey Oige Z9¢r Oihe iht—: ‘

After these general preliminaries we first prove P II
under the conditions of Theorem 1. Let u,v ec? [0,1] and set

- 2
Lw =AT_(u,v)w=-ew" +pw” +qw, weC [0,1].
It holds

: 2
in case I: p=a>a_ >0, quo, a°+4eBo>0 R

o

: - 2
in case II: p_>_a°>0, r=q-p >V, a°+4ey°>0 R

in case III: g >0 ,

in case IV: r=q-p~ >0,

If we show that (LE,R) is inverse monotone, then P II follows.

In case I set

_ 1 2 1/2
0 = 3c (a°+(a°+4880) ) >0
and aplly Lemma 4:
L (%% = ecx(-ec2 +po +q) >ecx(--+:c2 +a o0 +B ) =0.
£ e o o
In case II set
I 1/2
o= 3 ( aq (ao+4eyo) ) <0

and notice

L;(ecx) =ecx(-ec2 -po +1) _>_e°x(-ec12 ~a,0 +yo) =0,
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let e(x) =1 for all x € [0,1]. Then in case III holds LEE >0 and
in case IV holds ‘LEE >0. Thus in all cases (L_,R) is inverse mo-
notone by Lemma 1, and P II follows.
To prove P IIT under the conditions of Theorem 1 we just
notice that for any linearization (see (2))
(DT u)w = - ew” +pw” +qw

the coefficients p,'q and r =g -p’ satisfy the same inequalities
as above. Thus with Lemma 1, (ii) the property P III follows.

Pr oo f of Theorem 2. Let L, =AT_(u,v). Because of

Lemma 2 we have to show that
. -28 /a
o’ %
Gs(x,y)_ie He,

~ -28 /o -28 /o +(x-1lla /e
(15) g, (x) <e ° °,h€(x).ie o o o

a) First assume Bo=0, i,e. g>0. If i€w=-ew" +pw”, then
elementary calculation shows (with p, as in (14)):

X -1
, , fpas [ pas, x<v,
(16) &, (x,y) = (ep, (y)[p ds) " s 3
- ° fpedsfpds, y<x ,
o X
Since p >a >0 we have
A A 1 y
G_(x,y) <6_(y,y) < | pds
spe(y) o
Y Yy - Y (u-
= 1 [ exp (- 1 [ pdo)ds <L [ e (y-slag/esq
£ o € & —& o
'ao/e
< (1-e )/a°<1/ao.

Because of Lemma 5 we thus have G_(x,y) <1 /°‘o'

_1 _ a2 172
b) Let B°<0, 0=5z (ao (ao+4eso) ) >0.

Use the transformation described in Lemma 4 and.notice

that the proved part a) is applicable to Le with

'o
%y, 0 =% 2e0 (ozo +4eBO) .
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Lemma 4 yields

_ -28 /a
G (x,y) 5e°(a2+4eso) 1/2 o 7o CH_

where the last estimate follows from

1 _ 2,1/2
o= 5= (c:co ao(l +4eeo/a°) )
<--L (o -a (1 +4cp /a2)) = ~28 /a
- 2€ o) o o) o o) o °
c) Since eoio, both roots )
= _1 2 1/2
9,2 = % (ao i(a°+4sB°) )

of -ecz +aoc +B°=O are nonnegative, and thus pzao, quo
o;X 0% ‘
implies Ls(e )30. Since R(e )3(1,0), R(e

o X Ul(x-l)
it follows that ge(x) <e ’ hE (x)<e , which leads to

°1{x=1) 5 (9,1

to (15) since o, <=28, /ao, o, =cx°/e -0, 20, /e +ZB°~/a.°.

d) To show Al(s) 30‘2 / 4e +B°, just consider e (x) =exp(a°x/2€)
and notice

(DT,w)e > (a2 /4e +8 )e .

Thus (DTEu - (acz’ / 4e + Bo) + R) in inverse monotone, and

by Lemma 1 the assertion follows.

Pr oo f of Theorem 3. Let L. =ATE (u,v), L;w=-ew" -

- pw” +rw with r >y,- We have to show that -

-2y_/a

o -
Ge(x,y) <e ° e !
-2y /o + (x=1)a_ je
he(X) <e o o ° '

and in case II a

—zYo/ao

g, (x) <e (L +A_(a; =ag)) .
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a) By the proof of Theorem 2 it follows that
-2y /o
o’ "o ﬂ

G;(x,y) <e , which proves (17).

b) To show (18) and (19) first assume Yo=0" with P, de-
fined by (14) consider

1
- _ ds
ge (x) = p_(x) ){ p_(5) / f D (s) ’
_ p_ (x) x ds
h_(x) = == | / j .
€ p. (1) o p.(8) pe(s)
With Lemma 3, (i) it follows that L g_>0 and L.h_>0. Since
RgE =(1,0), Rl'-xE (0,1) we thus have 9. <§E, heiﬁe' Now p3u0>0
implies
1 .
R (x) <p_(x) /p (1) =exp(- = | p(s)ds) ce*"1)%0/e
X
If Oiaoip_{al, then
1 1 8 -a_ /e
ds _ -1 - o
Pe(x) fp—-(—sT— | exp( P S p(o)do)ds <e(l -e )/ao '
x Fe x X
anda
1§ —sal/e
1 /p_(s) =exp(~ g / plo)do) >e ’
o
1 -a_/¢c
ds 1
IPE()>€(13 ) /oy

If follows that gE <o, /ov. . and (18), (19) are proved for Y°=O.

c) Let yo<0, c1=-i (ao-(ao+4ey°)l/2

>e ) >C .

The proved part b) is applicable to L, as defined in
r
Lemma 4, and we get
e o (X) < (a) - 2e0) / (ag - 2e0) =1 +H€ (@ ~a))

14

(x~1) (ao-2r-:0) /€

hE,U(X) <e ’

a -
ge(x) <e (1 +H€(a1 —ao)) ’

he (x) < eo+(x-1) ao/e
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and (18), (19) follow o < -2y_/a_.

d) The assertion Al(e) 23(2) / 4¢ +Y, follows as in the pro-
of of Theorem 2 since DT, and (DTeu)*“ have the same ei-

genvalues.

Proof of Theorem 4. Let L, =AT€ (u,v), isw =
= -ew" +pw”. By Lemma 5 holds G (x,y) iGE (x,y), and as in the
proof Theorem 2 it follows that as(x,y) <c.. Since LEE >0, Re =

= (1,1) we have = +hE ie-z. With Lemma 1 the Theorem is proved.

Proof of Theorem 5. Let L€w=ATE (u,v)w ==cw"” +
+ pw” +gqw with p=a, quO>0 . Set

fu(@) ~v(0) |, Ju@) -v(n) |} ,

o ¥

1
c =max {B: [ T u -T vl
then L_(ce * (u-v)) >cB e £ (T_u~T.v) >0 ,
R(ce *(u-v)) >(0,0) ,
thus # (u-v) f_cé. The inequality )\1(6) 380 is . obvious since

((DTeu) -BO,R) is inverse-monotone.

Pr oo £ of Theorem 6.
a) We have to show that as (x,y) i% max{xo,l —xo} where és

is given in (16) and

~ ~ Yy 1 1
G, (x,¥) <G _(y,y) = g p.ds }f, p.ds / (ep_(y) (f)psds) .

Since pE(s) is monotonically increasing for 0 <s xg and decre-

asing for xoisil we have for 0 <y 2%y

Y
jay 1
G (y,y) <= (!) P_(s)ds /p_(y) <y /e <x /e ,
and similarly for X, <Y <1

1
G (y,y) _j% }f, p (s)ds /p_(y) < (1-y)/e < (1-x ) /e .
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b) To prove the statement about Al(e) first assume

1

= < X <1 and let
2 - "0o—

(20) e(x) = sin( ~21'x—"- )
(o]

Since e >0, e”(x) >0 in [0,x_], e”(x) <0 in [x_,1] it holds that

-2 1r2 2

- ecen="_ = -2 -x )"
(DT_u)e > - ce T EX,e=7 ¢ min{xo , (1-x ) }e .
In case that 0 <x Sxge consider instead of (20) the .function

T (l=-Xx)

e(x) = sin ('2—(—1—_—{-)-).
°

Pr oo f of Theorem 7. Let Le =A'I_‘€(u,v) R L:w =-gw" -
~ pw” +rw with r >0. As in the proof of Theorem 2 it follows
that G; (x,y) <C.s which proves the stability inequality. The ex-
istence result follows from Theorem 10 below.

Pr oo f of Theorem 8. Let L; be defined as above,
Since r >y_ >0 we have with e(x) =1:

1 ,
L*e >y & , thus G*e <L e, i.e. [ G _(x,y)dx < 1,
e 270 € =Yo 5 € - Yo

and the stability inequality follows. The smallest eigenvalue
of the eigenvalue problem

(DT _u) *w = Aw, Rw=(0,0)
is > Yo! thus Al(e) 2,
Pr oo f£f of Theorem 9. Let LE =ATE (u,v), L:w=—sw" -

-~ pw’ +rw. It holds that r >y, >0 and -a, <p <a,, and we have to

show the estimate

Lk 1 2 1/2

(21) G_ (x,y) ~<-4€Y° (ag+ (a5 +4dev ) )
Now G: has a representation

1 ¢, (XI_(¥), =x<¥y

* — . L]
Gs(x,y) - EW_ (v)
o (Y _(x), y<x
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* * . .
where Li#. =Lib =0, $_(0) =¥ (1) =0, $_(0).==¥ (1) =1,
We =9k ~¥che - Since 9.>0>37 , W 20 we have
L _
Gl (x,y) <G (y,y) =h—EE — () ,
| 3 L SO
€ € € E

and thus for 0 <y <1:

P

A}

-

. " .
* -1 _ _ :

Gyn™ = el gE - gErw .

The function P, =¢€/¢;' ecl[p,lj satisfies the Riccati ‘equation

m

(22) €p” -ep -pp +rp> =0, p(0) = 0.
Since the constant e(x) =c is an upper solution -of {22) for

1/2

_ 1 2
C = 53— (ao +(cxo +4eYo) Yy >0

2Y°

we conclude |33, ch. 2| that p. 2C. Similarly, -¥, /¢£ < ¢, thus

G2 (y,y)) " > 2¢ /¢
and (21) follows. '

Pr oo f of the existence statements

In many cases the existence of a solution of (PE) is
most easily established by the Nagumo-Lemma |18,26| which imp-
lies

LEMMA 6, Let a,8 €C([0,1] xIR), € >0, and assume for
two funetions u,v ecz[p,lj holds

u<v, Teuio iTgV' Ru < (A,B) <Rv .
Then (P_) has a solution u_ ecz[p,lj with w<u_ <v.

Also notice that in cases I and II, where a is indepen-
dent of u, the solvability of (P.) follows from |3, Th. 7.6

(The value of a(L,,K,) in |3, Th. 7.6)[is « under our conditi-
ons) . The existence statements for all our cases I, II, III, IVa

follow from the next Theorem where we Jjust require a stability
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inequality in the maximum norm.
THEOREM 10%  Let a,B €Cl[0,1] xR),
Tu =-u" +a(x,u)u” +8(x,u), u el ={v ec2[0,1] , Rv =0} .
Suppose for some k >0

(230 Jlu=v|l < kl|Ta-1v(|_ ¥ u,veu .

Then T i8 a homemorphism from (U, || || 2,0) ONTO (cfo, ], Il 11,9
with [lull, o =I[lull, + Hua’ll_+ Hu"ll,

Proof£f. a. Let Fu=a(-,u)u” +8(-,u) for u €U, and
let G denote Green’s function to (-u",R). Thus for all r eclo,1]
holds Tu =r, u €U <=>u +GFu =Gr, u €U. Since F is completely
continuous from U into C[0, 1] and since G is bounded from C[0,1]
into U the operator

=GF r U-~»U
is completely continuous.
Also, I +K is injective on U, since

u +GFu =v +GFv, u,veU => Tu=Tv => u=v by (23),
Now the Brouwer-Schauder Theorem of the invariance of
domain (cf. |34, Satz 15.3|) yields: (I +K)(U) is open in U and
(1 +K)" Y i (1 +K) (U) SU »U

is continuous.

b, It remains to show that (I+K) (U) is closed in U.

To prove this let
u €U, v, =u +Ku >V eU for n->e .
-y = + - - - + = -
Then Vo " Vm TUn Kun u. Kup, implies v v Tu Tum,

thus
[l Tu, -Ta [|,>0 for nmo>e .

%) | would like to thank Dr. W.-J. Beyn for helpful remarks and discus-
sions concerning this result.
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(23) yields u_ +u ec[0,1]- for n >« with respect to || || _ . De-
fine the linear operator '

Lw = -w" +a(-,u(-))w” , weU,
and solve Lw =-v" () -B(f.ﬁ'(-)}, weU. The linear operator L
satisfies a stability inequality on.U:
[ wi 2,0 < k|| wl|], for all weU,

and taking w=un'—v'.v we find

[luy =%l 5, < Il ay - 2]

k|| mu? +a (e, w)u” -Lu||

k|| -vh-al-u )u” -8 (+pup) +a(-,u)u’

+

vrag (e, <np +] (@(t,0) male,u)) @I =) ]

3

] tal,8) —al-u W] < (lus-w ], + 5

where N Hn' :n+0 for n +«. Thus un—»; in U, and thus

v =w +Kwe (I +K) (U).

c. I+K=I+GF 1is a homeomorphism from U onto itself, and the-
refore '
T =-D?(I +GF) :U ~c[o,1]

is also a homeomorphism.
L, APPLICATIONS AND FURTHER REMARKS
In this section we consider a class of examples and cha-

racterize the Minty-monotonicity of T¢.

EXAMPLE .

(24) TEuE ~eu” +uu” +pyn =y (x) ,u(0) =3, u(l) =B

‘with ¢ >0, u, A,B€IR, vy ¢C[0,1]. These examples include the sta-
tionary Burgers equation ~cu"” +uu” =0 (cf. |4,7,28]) and Coch-
ran’s equation -eu" +uu” +u =0 (cf. |8,12,27|). With Lemma 6 it
follows that (24) has a solution u.. (Upper and lower solutions-
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even independent of € ~ of the form.
vix) =cx+d, ¢>-H, d‘em

are .easily computed. ) If. 11 >0, then Theorem 1, case IV shows

the uniqneness and monotone- dependence of u. upen Y , A and B.
For y <0 a solution of (24) will not be unique in general. Take
e.g. y=0, A=B=0. Then L =g :;.s a solution for all ¢, and bi-
furcation occurs at ¢ ==/ (n"1°) >0, neN, Assume | >0 and
mnxf{lyl]m » |a], |B{} <M. Then HueHm <M +1 since u(x) =x -M -1
is a lower solution and v(x) =x +M . is an upper solution for (24),

Thus it is sufficient to obtain stability inequalities for all

uy vec? f0,1] with ]]uHu'_ O,HV“ <0,. Because of Remark 2b,
Theorem 7 and Theorem 9 the following holds::
Let u,v ec?[0,1], |lull_ <o, |l v]l, ao, Ru =Rv, and
let Ts be given as in (24). Then
lu =vll, <5y, |l Tu -9l
zl— (cx +(a +4eu) /2) for yu >0,
where s = €
EM 1 a /€
- (e -1) for u =0.
%o

Actually, for y =0 the growth of the stability constants as

e’c/e(g >0) for e +0+ cannot be improved. To see this, consider

Burgers equation
(25) 7 -eu” +uu =0, u(0) =1, u(l) ==-1+n .

{25) can be solved analytically (cf. |28, pp. 9-12|), and it
“9/€ 4ith suitable g >0 dif-
fers from the solution for n =0 by at least one. A transforma-

follows that the solution for n =e

tion of (25) to homogeneous boundary conditions then proves our
statement,
The following Theorem concerns the monotonicity of Te

in the sense of Minty |25|. Here T 1is considered as an opera~
o B
tor mapping U =W [0,1] into L, [0,1], and

-

(a,v) = é uvdx for u,v eLz[O,l:]
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THEOREM 11. Asgume
a,a, aurB,BuGC([O,lj xIR) and € >0,
(1) If

(26)  aGe,u) =a(x),B, (x,u) =3 a, (x) >0
then )
(TEu -Tev, u=-v) Zenz(u-v, u-v) ¥Vu, veu,

t.e. T 18 uniformly Min'l:y-monotoné for eaech € >0,

(i1) If (26) is violated then T_ is not Minty-monotone for
0 <e S€q"
Proof. a) let Lew =—ew"” +pw” +qw, w eU with
p€C1[0,1], gec[0,1]. Since ‘

(pw’,w) =(w, ~p™w-pw’), i.e. (pw~’,w) ='-;- (p‘w,w),-

we have
(27) (Low,w) =€(w”,w’) +((qg=% pIw,m) .
If qQ% p >0 then

(Lew,w) 3ew2(w,w) for ail weyu,
and taking L. =A'1‘E (u,v) we have proved (i).
b) First note that T  is Minty-monotone iff
((DTeu)w,w) >0 for all u,we€U,
Now (DT.u)w =-ew" +pw” +qw with
(28) px) =a(x,u(x)), q(x) =Bu(x, u(x)) +au(x,.vu(x))u'(x) ’
and if (q—% p.”) (x) <0 for some x € [0,1], then L, =DT_u is not

Minty-monotone for 0 <e <e, because of (27). Here it holds

that
(@-3 1) (x) =B, (x, ulx)) -3 a_(x,ulx}) +3 a, (x,u(x))u’(x).

if a, (xo,uo) #0 for some (xo,uo) € (0,1) xIR, then solve the ini-
tial value problem

Bu (x,u) ;-% ax(x;ﬁ) +% au(x,ﬁ)t-r’=-1, ﬁ(xo) =u,
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for x € (xo -0, X +0). A simple process of approximation and
extension thus leads to a function u €U, for which the functi-
ons p and q defined in (28) fulfill

1 .
@-5p )(xo) <0,
- 1
The case au =0, B (x_,u ) - 7 Oy (xo) <0 for some (xo,uo) is

u oo
treated similarly.
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REZIME

OSOBINE STABILNOSTI I MONOTONIJE ZA CVRST
KVAZILINEARAN GRANICNI PROBLEM

U ovom radu ispituju se osobine stabilnosti i monoto-
nije jedne klase kvazilinearnog grani&nog problema.



