Zbornik radova Prirodno-matematičkog fakulteta-Univerzitet u Novom Sadu knjiga 12 (1982)

Review of Research Faculty of Science-University of Novi Sad, Volume 12(1982)

EXIT CRITERIA FOR SOME ITERATIVE METHODS

Dragoslav Herceg

Prirodno-matematički fakultet. Institut za matematiku 21000 Novi Sad. ul. dr Ilije Djuričića 4. Jugoslavija

ABSTRACT

In this paper we consider the equation f(x)=0 on the interval D=[a,b], for a real - valued function f. We use the iterative method $x_{n+1}=\phi(x_n)$, $n=0,1,\ldots$, with a suitably chosen $\phi(x)$ and $x_0\in D$. We accept x_{n+1} as a sufficiently accurate approximation of the exact solution α of the given equation, if we have $|x_{n+1}-x_n|<\varepsilon$, where $\varepsilon>0$ is the pre-assinged tolerance, and if the stopping inequality $|x_{n+1}-x_n|\geq 1$

 $|\mathbf{x}_{n+1}^{-\alpha}|$ is valid. For the special functions ϕ we give sufficient conditions for the stopping inequality. As special cases we obtain both Newton's iterative method and the classical <u>regula falsi</u> method. Moreover, we prove the stopping inequality for $n=0,1,\ldots$, for the class of iterative methods which are generated by inverse interpolation.

INTRODUCTION

In this paper we shall consider some iterative methods for determining the unique solution α eD of the equation f(x) = 0, where f is a real - valued function defined on an interval D = [a,b]. Most of the iterative methods can be writen in the form

$$(1) x_{n+1} = \phi(x_n) ,$$

for some suitable function ϕ and an initial approximation \mathbf{x}_{O} . Under certain conditions the iteration defined by (1) converges to the solution α of $f(\mathbf{x}) = 0$, i.e. $\alpha = \lim_{n \to \infty} \mathbf{x}_{n}$. In many

automated numerical algorithms, the calculations of interates \mathbf{x}_n of (1) are stopped when the difference between two successive approximations is less than a pre-assigned tolerance. So, one evaluates $\mathbf{x}_1, \mathbf{x}_2, \ldots$, and accepts \mathbf{x}_{n+1} as a sufficiently accurate approximation of α when

$$|x_n - x_{n+1}| < \varepsilon ,$$

where ϵ is the pre-assinged tolerance. Such a procedure may be justified in terms of a stopping inequality.

DEFINITION The inequality
$$|\mathbf{x}_n - \mathbf{x}_{n+1}| \ge |\mathbf{x}_{n+1}| - \alpha|$$

will be referred to as the stopping inequality.

The validity of the stopping inequality is sufficient to insure that the value \mathbf{x}_{n+1} , accepted as the final result, by the above exit criterion (2), will be within the tolerance ϵ , i.e.

$$|x_{n+1} - \alpha| < \varepsilon.$$

We shall give sufficient conditions for the stopping inequality for some iterative methods of (1), for the solution of the equation f(x) = 0.

As special cases are obtained Newton's method and the secant iterative method (the classical regula falsi method). The stopping inequality for Newton's method is proved in |1|.

1. SOME SUFFICIENT CONDITIONS FOR THE STOPPING INEQUALITY

In this section we shall consider the equation f(x) = 0 on the interval D = [a,b] and the equation $x = \phi(x)$ which has roots which coincide with those of f(x) = 0 in the interval D and no others. First we shall give some notations and assumptions.

Let the function f satisfy the following conditions.

(F1)
$$f(a) < 0$$
, $f(b) > 0$, (F2) $f'(x) > 0$, $x \in D$.

The condition (F1) implies that $f \in C(D)$ has a root $a \in (a,b)$, and (F2) implies that $f \in C(D)$ has only one root in (a,b). Let

$$D^{-} = \begin{bmatrix} a, b \end{bmatrix}, D^{+} = (\alpha, b], D^{-}_{0} = \begin{bmatrix} a, \alpha \end{bmatrix}, D^{+}_{0} = \begin{bmatrix} \alpha, b \end{bmatrix},$$

and

$$u(x) = \frac{f(x)}{f'(x)}, x \in D.$$

Then, under the assumptions (F1), (F2) for $f \in C(D)$ it holds

$$f(x) < 0$$
, $u(x) < 0$, $x \in D^{-}$, $f(x) > 0$, $u(x) > 0$, $x \in D^{+}$.

If f(x) = 0 has a solution $\alpha \in D$ and if g is any function such that

$$0 < |g(x)| < \infty$$
, $x \in D$

then α is a solution of f(x) = 0 if and only if α is a solution $x = \phi(x)$, where

$$\phi(x) = x - u(x)g(x) .$$

THEOREM 1. Let $f \in C^2(D)$ satisfy condition (F2) and let $\alpha \in D$ be a solution of f(x) = 0. Let ϕ be of the form (4), where (G) $g \in C^1(D)$, $g(\alpha) = 1$.

Then there exists the interval $D_{\rho}(\alpha) = \{x \mid |x-\alpha| \leq \rho\} \subset D, \rho > 0$, such that for any $x_0 \in D_{\rho}(\alpha)$ the iterates $x_n = \phi(x_{n-1})$, n=1,2, ..., converge to α and the stopping inequality is valid for all $n=0,1,\ldots$

Proof. From (4) we obtain

$$\phi'(x) = 1 - g(x) + u(x) \left(\frac{f''(x)}{f'(x)} g(x) - g'(x) \right) ,$$

and $\varphi \in C^1\left(D\right)$, $\varphi^*(\alpha)=0$. Thus, there exists $D_{\rho}\left(\alpha\right)$ such that

$$|\phi^{\prime}(\mathbf{x})| \leq L \leq 0.5$$
, $\mathbf{x} \in D_{o}(\alpha)$,

and

$$0 < g(x)$$
, $x \in D_{\rho}(\alpha)$.

Now, from

$$|\phi(\mathbf{x}) - \alpha| = |\phi(\mathbf{x}) - \phi(\alpha)| \le \mathbf{L} |\mathbf{x} - \alpha| < \rho, \quad \mathbf{x} \in D_{\rho}(\alpha)$$

we conclude that ϕ is a contraction type mapping of $D_{\rho}\left(\alpha\right)$ into itself. Thus, φ has a fixed point in $D_{\rho}\left(\alpha\right)$, and this point is α . It is, also, well known that iterates x_{n} converge to α and that it,

$$|x_{n+1} - \alpha| \le \frac{L}{1-L} |x_{n+1} - x_n|, \quad n = 0, 1, 2, \dots,$$

holds.

Since Le[0,0.5], from this inequality follows the stopping inequality for all $n=0,1,\ldots$.

REMARK 1. The conditions (G) for g(x) are not too strong. For example, the condition $g(\alpha)=1$ is satisfied for all eight one-point iteration functions ϕ from |2|, and for all iteration functions generated by the inverse interpolation, paragraph 3. As a special case for g(x)=1, $x \in D$ we have Newton's method, for $g(x)=1+u(x)+\frac{f''(x)}{2f'(x)}$, $x \in D$, Chebyshev's method of degree 3 and for

$$g(x) = 1 / (1-u(x) \frac{f''(x)}{2f'(x)})$$
, x eD, Halley's method.

THEOREM 2. Let feC2(D) satisfy (F1), (F2) and

(F3)
$$f''(x) > 0, x \in D$$
.

Le t

(F4)
$$f'(b) < 2f'(a)$$
,

(5)
$$g \in C^{1}(D_{0}^{+}), g(x) \geq 1, x \in D_{0}^{+}$$

(6)
$$\phi'(x) \ge 0$$
, $x \in D_0^+$.

Then for any $\mathbf{x_0} \in D^+$ the iterates $\mathbf{x_n} = \phi(\mathbf{x_{n-1}})$, $n=1,2,\ldots$, converge to the unique solution α of $\mathbf{f}(\mathbf{x}) = 0$ in D, and the stopping inequality is valid for all $n=0,1,\ldots$.

Proof. The conditions (F1) and (F2) assure us of the existence and uniqueness of a solution a of the equation f(x) = 0. From (6) it follows that for $x \in D^+$ we have

$$\alpha < x_n < x_{n-1} \le b$$

either for all n=1,2,..., or for n=1,2,...,k with some fixed $k \in \mathbb{N}$ and $\alpha = x_{k+1}$, $i=1,2,\ldots$ Thus $x_n \in D_0^+$, $n=1,2,\ldots$, and we can conclude that the limit of the sequence defined by $x_n = \phi(x_{n-1})$, n=1,2,..., exists and that this limit is a solution of the equation f(x) = 0. Thus, $\alpha = \lim_{n \to \infty} x_n$. From $x_{n+1} = \phi(x_n)$, $n=0,1,\ldots$, we obtain for all $n=0,1,\ldots$

$$\begin{aligned} \mathbf{x}_{n+1} - \alpha &= \mathbf{x}_n - \alpha - \frac{\mathbf{f}(\mathbf{x}_n) - \mathbf{f}(\alpha)}{\mathbf{f}'(\mathbf{x}_n)} \mathbf{g}(\mathbf{x}_n), \\ &= (\mathbf{x}_n - \alpha) \left(1 - \frac{\mathbf{f}'(\alpha_n)}{\mathbf{f}'(\mathbf{x}_n)} \mathbf{g}(\mathbf{x}_n)\right), \quad \alpha_n \in (\alpha, \mathbf{x}_n), \end{aligned}$$

and

$$x_{n+1} - x_n = (x_n - \alpha) \frac{f'(\alpha_n)}{f'(x_n)} g(x_n) .$$

Now we have

$$x_{n+1}^{-\alpha} = (1 - \frac{f'(x_n)}{f'(\alpha_n)g(x_n)})(x_{n+1}^{-\alpha} - x_n), \quad n = 0, 1, \dots$$

and the stopping inequality is valid if

$$\left|1 - \frac{f'(x_n)}{f'(\alpha_n)g(x_n)}\right| \le 1$$
, n=0,1,...,

i.e., if

(7)
$$0 \le \frac{f'(x_n)}{f'(\alpha_n)g(x_n)} \le 2 , \quad n=0,1,....$$

By the assumption x_0 is in D^{\dagger} and so x_1, x_2, \ldots , are also. So we have $g(x_n) \ge 1$, $n=0,1,\ldots$ Now, from (F3) and (7) we conc-

lude that
$$0 < \frac{f'(x_n)}{f'(\alpha_n)g(x_n)} \le \frac{f'(x_n)}{f'(\alpha_n)} < \frac{f'(b)}{f'(a)} \le 2, \quad n=0,1,\ldots,$$
 which completes the proof.

which completes the proof.

REMARK 2. For Newton's method we have g(x) = 1, $x \in D$ and $\phi'(x) = u(x)f''(x)$. Under the assumptions $f \in C^2(D)$ and (F1)-(F4) we have $\phi'(x) \geq 0$, $x \in D_O^+$ and Theorem 2 shows that for Newton's method the stopping inequality is valid. This is the result of |1|.

THEOREM 3. Let $f \in \mathbb{C}^2(D)$ satisfy the conditions (F1)-(F3) and let

$$g \in C^{1}(D_{O}^{-}), \quad g(x) \geq 0.5, \quad x \in D_{O}^{-}$$

 $\phi'(x) \geq 0, \quad x \in D_{O}^{-}$

Then for any $x_0 \in D^-$ the iterates $x_n = \phi(x_{n-1})$, $n = 1, 2, \ldots$, converge to the unique solution acD of f(x) = 0 and the stopping inequality is valid for all $n = 0, 1, \ldots$

Proof. One can easily show that for $x_0 \in D^ a \le x_{n-1} < x_n < \alpha$

holds either for all $n=1,2,\ldots$, or for $n=1,2,\ldots$, k with some fixed $k\in \mathbb{N}$ and $x_{k+1}=\alpha$, $i=1,2,\ldots$. Thus $x_n\in D_0^-$, $n=1,2,\ldots$ and $\alpha=\lim_{n\to\infty}x_n$.

As in the proof of Theorem 2, the stopping inequality is valid if (7) holds, where α_n e (x_n,α) , n=0,1,... From (F3) we have $0 < f^*(x_n) < f^*(\alpha_n)$, n=0,1,... Then, since $g(x_n) \ge 0.5$, n=0,1,..., we obtain

$$0 < \frac{f'(x_n)}{f'(\alpha_n)g(x_n)} < \frac{1}{g(x_n)} \le 2, \quad n=0,1,...,$$

which implies the stopping inequality.

REMARK 3. Let $f \in C^2(D)$. Under the assumptions (F1) - (F4) the classical regula falsi method can be written as

$$x_{n+1} = x_n - \frac{x_n - b}{f(x_n) - f(b)} f(x_n), n=0,1,...,$$

with

$$g(x) = \frac{f'(x)}{f(x)-f(b)} (x-b) , x \in D.$$

This method is of the from $x_{n+1} = \phi(x_n)$, $n=0,1,\ldots$, where $\phi(x) = x-u(x)g(x)$. For some $\beta \in (x,b)$, $x \in D^-$, by the mean value theorem we have $g(x) = f'(x) / f'(\beta)$. Now from (F3), (F4) and $x < \beta$ we conclude

$$g(x) = \frac{f'(x)}{f'(\beta)} > \frac{f'(a)}{f'(b)} \ge 0.5, x \in D_0$$

In this case we have

$$\phi^{-}(x) = 1 + \frac{1}{f(b) - f(x)} (f(x) - f(b) \frac{f^{-}(x)}{f^{-}(\beta)}) > 0, x \in D_{0}^{-}.$$

Now from Theorem 3 it follows that for the classical regula falsi method the stopping inequality is valid.

REMARK 4. If we replace (F3) and (F4) by

$$(F4')$$
 f'(a) < 2f'(b),

and D^+ , D_0^+ , by D^- , D_0^- Theorems 2 is also valid.

If we replace, in Theorem 3, the condition (F3) by (F3'), and D^- , D^-_O by D^+ , D^+_O Theorem 3 is true.

THE ORDER OF ITERATION FUNCTIONS GENERATED BY INVERSE IN-TERPOLATION

In this section we shall study the iteration functions generated by inverse interpolation which are given in |2|.

Let $\alpha \in D$ be a solution of f(x) = 0. Let f' be non-zero in a neighbourhood D of α and let $f^{(s)}$ be continuous in this neighbourhood. Then f has an inverse F and $F^{(s)}$ is continuous in a neighbourhood of zero. Let Q_s be the polinomial whose first s-1 derivative agree with F at the point y = f(x). Then

$$F(t) = Q_S(t) + \frac{F(s)(z(t))}{s!} (t - y)^s$$

and

$$Q_{\mathbf{S}}(t) = \sum_{j=0}^{\mathbf{S}-1} \frac{F(j)}{j!} (t-y)^{j},$$

where z(t) lies in the interval determined by y and t. Define

$$\mathbf{E_{s}} = \mathbf{Q_{s}}(0)$$

Hence

$$E_s = \sum_{j=0}^{s-1} \frac{(-1)^j}{j!} F^{(j)} f^j$$
,

or

$$E_{\mathbf{g}} = \mathbf{x} - \sum_{j=1}^{\mathbf{g}-1} \frac{(-1)^{j-1} \mathbf{F}^{(j)}}{j! (\mathbf{F}^{\prime})^{j}} \mathbf{u}^{j}$$
.

With the definition

$$Y_{j}(x) = \frac{(-1)^{j-1}F^{(j)}(y)}{j! (F'(y))^{j}} |_{y = f(x)}$$

we can write

$$E_s = x - \sum_{j=1}^{s-1} Y_j u^j,$$

and

$$\alpha = E_s + \frac{(-1)^s F^{(s)}(z(o))}{s! (F')^s} u^s$$
.

Now we can write $E_{s}(x)$ in the form (4):

$$E_{s}(x) = x - u(x)g(x) ,$$

where

(8)
$$g(x) = \sum_{j=1}^{s-1} Y_j u^{j-1}$$
.

If $x \in D$ is some initial estimate of α , we form the sequence

(9)
$$x_{n+1} = E_s(x_n), n=0,1,...$$

Under certain conditions these iterates converge to a. We shall give a sufficient condition for the stopping inequality for the iterative method (9). First we shall give some assumptions.

In this section let α be the unique solution of f(x) = 0 in D = [a,b] and let D^- , D^-_0 , D^+ , D^+_0 be defined as before. Let $s \in \mathbb{N}$, s > 2.

THEOREM 4. Let $f \in C^S(D)$ satisfy (F1), (F2), (F4) and $sgn(f^{(j)}(x)) = (-1)^j$, $x \in D$, j = 2, 3, ..., s.

Then for any $x_0 \in D^+$ the iterates x_n , defined by (9), converge to the unique solution $\alpha \in D$ of f(x) = 0 and the stopping inequality is valid for all $n = 0, 1, \ldots$.

Proof. From (F2) we have f'(x) > 0, $x \in D$, and f has an inverse F. In a neighbourhood of zero $F^{(s)}$ is continuous. In |2| the formula for the derivative of the inverse function is given. We have

$$F^{(j)} = (f^{(j)})^{j} \sum_{i=2}^{j} (-1)^{i} (j+r-1)! \prod_{i=2}^{j} \frac{(A_{i})^{B_{i}}}{B_{i}!}, j=1,2,...,s$$

with the sum taken over all non-negative integers $\mathbf{B}_{\mathbf{i}}$ such that

$$\sum_{i=2}^{j} (i-1)B_{i} = j-1 ,$$

and where

(F5)

$$r = \sum_{i=2}^{j} B_{i}, A_{j}(x) = \frac{f^{(j)}(x)}{j!f'(x)}, j = 1,2,...,s$$

For j = 1, $B_i = 0$ for all i.

Now (F2) and (F5) imply

$$sgn(A_{j}(x)) = sgn(f^{(j)}(x)) = (-1)^{j}, j = 2,...,s,$$

and

$$sgn((-1)^{r}(j+r-1)! \prod_{i=2}^{j} \frac{(A_{i})^{B_{i}}}{B_{i}!}) = (-1)^{r} \prod_{i=2}^{j} sgn(A_{i}^{B_{i}}) =$$

$$= (-1)^{r} \prod_{i=2}^{j} (-1)^{iB_{i}}.$$

Observe that

$$(-1)^{r} \prod_{i=2}^{j} (-1)^{iB_{i}} = (-1)^{r} (-1)^{i = 2}^{j} \prod_{i=2}^{iB_{i}} =$$

$$= (-1)^{r} (-1)^{j-1} (-1)^{r} = (-1)^{j-1}.$$

Thus

(10)
$$\operatorname{sgn}(F^{(j)}(f(x))) = (-1)^{j-1}, j = 1, 2, ..., s$$

This implies

$$sgn(Y_{j}(x)) = (-1)^{j-1}sgn(F^{(j)}(f(x))) = 1, j=1,2,...,s$$
.

From (8) and $F'(f(x)) = (f'(x))^{-1}$ we have $Y_1 = 1$, $g \in C^1(D)$ and

(11)
$$g(x) = 1 + \sum_{j=2}^{s-1} Y_j u^{j-1} \ge 1, \quad x \in D_0^+$$

In |2| it is proved that

$$E_{s+1} = E_s - \frac{u}{s} E_s' .$$

Thus

$$E_{s}' = \frac{(-1)^{s-1}F^{(s)}}{(s-1)!(F')^{s}}u^{s-1}$$
.

Now for $x \in D_0^+$ $u^{s-1}(x) \ge 0$ holds and

$$sgn(E_S(x)) = (-1)^{S-1}sgn(F(s)(f(x))) = 1, x eD,$$

i.e. $E_S(x) \ge 0$, $x \in D_O^+$.

From (F5) we have f''(x) > 0, $x \in D$ and from (11) follows (5). Now we can apply Theorem 2.

REMARK 5. For s=2 the iterates x_n , defined by (9), are Newton's iterates, and for s=3 Chebyshev's.

REFERENCES

- |1| Speck, G.P., Sufficient conditions for elementary Newton-Raphson con vergence, New Zealand, Math. Mag. 14,pp. 34-36 (1977).
- |2| Traub, J.F., Iterative methods for the solution of equations, Englewood Cliffs, N.J.: Prentice Hall, 1974.

Received by the editors December 5, 1982.

REZ IME

IZLAZNI KRITERIJUM ZA NEKE ITERATIVNE METODE

U radu se posmatra rešavanje jednačine f(x) = 0 u intervalu D = [a,b], pri čemu je f realna funkcija realne promenljive, itarativnim postupkom $x_{n+1} = \phi(x_n)$, $n=0,1,\ldots$, sa pogodno izabranim $\phi(x)$ i $x_0 \in D$. Kao dobra aproksimacija tačnog rešenja α date jednačine uzima se x_{n+1} ako važi $|x_{n+1}-x_n| < \varepsilon$ sa unapred izabranim $\varepsilon > 0$ i ako važi nejednačina zaustavljanja

(1)
$$|\mathbf{x}_{n+1} - \mathbf{x}_n| \ge |\mathbf{x}_{n+1} - \alpha|$$
.

Za posebno izabrane funkcije ϕ dati su dovoljni uslovi za nejednačinu (1), a kao specijalne slučajeve dobijamo Njutnov iterativni postupak i klasičan postupak regula falsi. Takodje je za klasu iterativnih postupaka generisanih inverznom interpolacijom dokazana nejednačina (1) za $n=0,1,\ldots$.