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ABSTRACT
In this paper we consider the equation f(x) =0 on the Interval
0=[a,b], for a real - valued function f. We use the iterative method

X1 -¢(x ), n=0,1,..., with a suitably chosen ¢{x) and )'terD'. We

accept x as a sufficiently accurate approximation of the exact soluti-

n+1

on ¢ of the given equation, if we have |x -xn| <g, where ¢>0 is the

n+1

pre-assinged tolerance, and if the stopping inequality |x -xn] >

]xn+1-a[ is valid. For the special functions ¢ we give ::lficient coTrdi-
tions for the stopping inequality. As special cases we obtain both New-
ton’s iterative method and the classical regula falsi method. Moreover,
we prove the stopping inequality for n=0,1,..., for the class of ite-

rative methods which are generated by inverse interpolation.

INTRODUCTION

In this paper we shall consider some iterative meth-
ods for determining the unique solution o €D of the equation
f(x) =0, where £ is a real - valued function defined on. an in-
terval D= [a,b] . Most of the iterative methods can be writen
in the form

(1) X = ¢(xn) '

for some suitable function ¢ and an initial approximation X,

Under certain conditions the iteration defined by (1) conver-

ges to the solution o of £(x) =0, i.e. a = lim xn. In many
n--o
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automated numerical algorithms, the calculations of interates
xn'of (1) are stopped when the difference between two successi-
ve approximations is less than a pre-assigned tolerance. So,

one evaluates X;,X,,..-, and accepts x as a sufficiently

n+l
accurate approximation of o when

(2) lx, - xn+1¢ < e,

where € is the pre-assinged tolerance. Such a procedure may
be justified in terms of a stopping inequality.

DEFINITION The inequality

{x - of

n xn+1' 2 lxn+1

will be referred to as the stopping inequality.

The validity of the stopping inequality is sufficient

to insure that the value x accepted as the final result,

n+tl’
by the above exit criterion (2), will be within the tolerance
€ 4 i.e.
(3) |xn+1 - ai < g.

, We shall give sufficient conditions for the stopping
inequality for some iterative methods of (1), for the soluti-
on of the equation f(x) =0.

As special cases are obtained Newton s method and the
secant iterative method (the <¢lassical requla falsi method) .
The stopping inequality for Newton’s method is proved in |[1].

1. SOME SUFFICIENT CONDITIONS FOR THE STOPPING INEQUALITY

In this section we shall consider the equation f(x) =0
on the interval D= [a,b] and the equation x =¢(x) which has
roots which coincide with those of f(x) =0 in the interval D
and no others. First we shall give some notations and assum-
ptions.

Let the function f satisfy the following conditions.

(F1) f(a) <0, f(b) >0, (F2) £°(x) >0, xeD.
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The'_'co_ndition (F1) implies that f €C(D) has a root
a € (a,b), and (F2) implies that f € C(D) has only one root in
{a,b). bet ’

- . + - i +
D =£a*,b) I} D = (O. ,b] ’ Do = [a,co] ’ Do = [a,b] .

and
u(x) = £ (x) ’ xeD .,
£ (x)
Then, under the assumptions (Fl), (F2) for f eC{(D) it
holds

£(x) <0, wu(x) <0, xeD , £(x) >0, u(x) >0, xeDd' .

If f(x) =0 has a solution a €D and if g is any function such
that

0 <|g(x)| <=, xeD
then a is a solutionof f(x) =0 if and only if a is a solution

x =¢(x), where

(4) $(x) = x - ulx)gx) .

THEOREM 1. Let feCZ(D) satisfy condition (F2) and
let o €D be a solution of£(x) =0. Let ¢ be of the form (4),where

1
(G) geC (D), g(a) = 1.
Then there exists the interval Dp(a) ={x||x-al <pleD,p>0 ,
1_1_1), n=1,2,
..., converge to a and the stopping inequality is valid for
all n=0,1,....

such that for any xoer(a) the iterates xn=¢(x

Proof. From (4) we obtain
£n {x)
£ (x)
and ¢ eclp) , $”(a) =0. Thus, there exists Dp(a) such that

b7 (x) =1 -g(x) +u(x) ( gx) ~g"(x)) ,

l¢7(x) [ <L<C.5, xeD (a),

and
0 <g(x), x er(a)
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Now, from
Jo-a| = |s(x)-¢(a)]| <L|x-a! <p, x€D_ (o)

we conclude that ¢ is a contraction type mapplngv.of-Dp(a)'into
itself. Thus, ¢ has a fixed point in Dp(a) » and this point is
o« It is, also, well known that ._iterates X, converge to o and
that it ,

L

1-L x

-a| < | x n=0,1,2,... ,

o+l - n! ’
holds.
Since L e [0,0.5], from this inequality follows the sto-

pping inequality for all n=0,1,... .

REMARK 1. The conditions (G) for g(x) are not too
strong. For example, the condition g(a) =1 is satisfied for
all eight one-point iteration functions ¢ from |2!, and for
all iteration functions generated by the inverse interpolation,
paragraph 3. As a special case for g(x) =1, x €D we have New-

ton “s method, for g(x) =1+ u(x) - £7(x) , X €D, Chebyshev’s
2f 7 (x)
method of degree 3 and for
- " (x) .
g(x) =1/ (1-u(x) =———), x eD, Halley s method.
2f 7 (x)

THEOREM 2, Let feCz(D) satisfy (Fl), (F2) and

(F3) . f"(x) >0, xeD .

Let

(F4) £f7(b) <2f7(a) ,

(5) gecl(D;), g(x) >1, x eD;
(6) ¢ (x) >0, xeD; .

+ 5
Then for any X, €D the iterates xn=¢(xn_1), n=1,2,..., con-
verge to the unique solution o of £(x) =0 Zn D , and the stop-

ping inequality is valid for all n=0,1,... .
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Proof. The c0nditions (F1) and (F2) assure us
of the existence and uniqueness of ‘a solution o’ of the equa-
tion f(x) =0. From (6) it follows that for X ep’ we have .

'(’<xn<xner:b5\f‘j: '
either for all'nsl;z,..;, ‘or_for: n=1, 2,...,k with ‘some fixed
kel and a = Xypy? i=1,2,. ..‘._Thus x eD , -n=1,2, Ry and
we can conclude that the limit of the sequence defined by
—¢(x 1)¢r n=1,2,..., exists and that this 1imit is a solu-
tioncfthEequatlon ‘f(x) =0. Thus, o —lim x ._From Xop1 = ¢(xn),

n—m
n=0,1,..., we obtain for all n=0 1, e,

. flxn)-f(d); SR
X -0 = X_ - a4 - g(x ), Lol
nt+l n. f (x ) R .
(xma) (1 e (u") 1k ), o € ax,)
= (x -a) (1= ————— g(x )), o € (a,x. ),
n B (%, ¥ R n
and ~ f’(ai) S
X . -x_ = (x_-a) ——-—'——-g(x) .
n+l n n - (x ) : -
Now we have
£7(x)) N o .
xn+l—a=(1 - )(xm;-’_‘n)’ ;Vr>17'=0»,1»,... , o

£ (ap) g (xp)

and the stopping inequality is valid if

f‘(xn) i R
f1 = ——————— | <1, n=0,1,...,
£ (an)g(xn)
i.e.,if

£7(x )
(7) 0 < —2
£ (ap) g (x))

| A

2, =0,1,.¢. .

+ )
By the assumption Xq is in D" and so Xy s1Xpre.., are also. So

we have g(x ) >1, n=C,1,... . Now, from (F3) and (7) we conc-
lude that
£7(x)) f'(xn) £°(b)
0 < < < < 2, n=0,1,... ,
£ (o, )9 (xy) £7la,) £ (a)

which completes the proof.
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REMARK 2 For Newton s method we have g(x) -1, xeD
cand ¢ 7(x) =u(x)f"(x) /£° (x). Under the assumptions f eC2 (D)
and (Fl)-(FA) we have ¢‘(x) >0, xeD and Theorem 2 shows
that for Newton s’ method the st:opping 1nequality is valid. This
is the result of lll
THEOREM 3. Letﬂf»@CL(dy ~gat¢afg the conditions (F1)-(F3)
and let B s S
geCI(D.;), q(x) >O 5, x eD,
6 (x) >0, xeD

Then féz-' a’ny' x5 eD. the -.‘r_;tezndtes x, =3 (xn_l), n=1,2,..., con~
verge to the unique golution a€D of f£(x) =0 and the stopping inequa-
ity ig valid for all n=0,1,,.. . - :

Pro o £.  One can easily show that for x eD”

<X <o
~"n=1 n

holds either for'ali n=1,2,...~, or for n=1,2,...,k with some

fixed kK € N and x i=1,2,... . Thus xneD;, n=1,2,...

and o =1im X, -
n-ce

k+i %

As in the proof of Theorem 2, the stopping inequality
is valid if (7) holds, where o, € (xb,a), n=0,1,... . From (F3)
we have 0 < £~ (xn)> <f” (an), n=0, 1,... . Then, since g(x ) >¢0.5,
n=0,1,..., we obtain

£(x_)

0 < — 01 ¢ —— <2, n=0,1,...,
£7a)g(x,)  gxp)

which implies the stopping inequality.

REMARK 3. Let °f eCZ(D) . Under the assumptions (F1)-
-{(F4) the classical regula falsi method can be written as

XoeD ’
x,n-b
X =X - —— f(x_}, n=0C,1,... ,
f(xn)-f(b)

with
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£f7(x)
£(x)~£(b)

g(x) = (x=b) , x'e.p-f

This method is of the from Xpe1 =¢(;€n) , ‘n_'=6,'1, .+., where

¢(x) = x-u(x)g(x) . For some Be(x,by, xeD , 'by the mean va-
lue theorem we have g(x) =£°(x) /£°(B) . Now from (F3),(F4) and
x < B we conclude o .
g{x) =£ il > £7(a)
£°(B) - f£° (b)

In this case wé have

> 0. 5, xgp_;.

67(X) = 1 + —— 2 (£(x)-£(b) L (")

) > 0, xeD .
f(b)-f(x) C£(B) o

Now from Theorem 3 it follows that for the classical regula
falsi method the stopping inequality is valid.

REMARK 4. If we replace (F3) and (F4) by

(F3°) £"(x) <0, x€D, T A
(F4°) £°(a) <2£°(b) ,

and D', D;, by D, D; Theorems 2 .is also valid

If we replace, in Theoreni 3, the condltion (F3) bv
(F3°), and D", D byD ’ D ‘Theorem 3 is true. -

3. THE ORDER OF ITERATION FUNCTIONS GENERATED BY INVERSE IN-
TERPOLATION .

In this section we shall study the iteration functions

generated by inverse interpolacion which are given in

Let o €D be a solution of f(x) =C. Let f° be non-zero in

a neighbourhood D of o and let f(-s) be continucus in this ne-
(s)

ighbourhood. Then f has an inverse F and F is continuous in
a neighbourhood of zero. Let Q be the polinomial whose first

s-1 derivative agree with F at the proint v -F(x) Then

r(8) ()

s!

F(t) = 0 (t) + (t-v)°%
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and - . P T o
TR e ey ¢ ) FE
. Q A(_t) =.-z CES _(t,-y_)_l,

320 T

where z(t) 1ies ln the interval determined by y and t.
Define T , : ; iy

o E = QS"(O"‘)-.; G
. Hence -

o =1 'L:J
D LY
R (jEo
or

>E~~_: ;x;“s_-{l,; '(_'L)J’f-‘ll.-:(j) o
=L 31 (F))

‘*ith the definifion o

R 3- 1 (j)
- Y. (x) - ( 1) (g)
; 3 3 {(F7y))” ly =f(x)
we can write :
o - | 3
.= - Y ’
»7 EF_ x le 50
and ;
P ek + ( 0% (a0)) 8
s s!(F')S
Now we c&n write»Eé(xl‘in the form (4):
Es(x) = x —ulx)gix) ,
where ) .
. s-1 in1
(8) gtx) = 7 v,ul ;
=1

If,xo,eD'is some initial estimate of a, we form the sequence

1l - Es(xn),_ n=0,1,...

%) x
Under certain conditions these iterates converge to a. We shall
give a sufficient condition for the stopping inequality for

the iterative method (9). First we shall give some assumptions.
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In this section let a be the uniqﬁe solution of £(x) =0
in D=[a,b] and let D, D;, p*, D;- be defined as before. Let
s eN, s>2.

THEOREM 4. Let £ eC (D) satisfy (Fl), (F2), (F4) and

(F5) sgn(f(j)(x)) =(-—1)j, x€ebh, j=2,3,...,8 .

Then for any xoeD+ the iterates X5 defined by (9), converge
to the unique solution o €D of f(x) =0 and the stopping ine-
quality 18 valid for all n=0,1,... .

Proof. From (F2) we have £°(x) >0, x €D, and f

has an inverse F. In a neighbourhood of zero F(S) 1s continuo-

us. In |2| the formula for the derivative of the inverse fun-

ction is given. We have

, . 3
P e e fenTaee-nr T 22—, 5=1,2,00008
i=2 B,!

with the sum taken over all non-negative integers Bi such
that

and where

For j=1, Bi=0 for all i.

Now (F2) and (F5) imply

sgn(ll\j (x)) =sgn(f(j)(x)) =(—1)j, 31=2,...,8 ,

and Bi
r J (ay) r 3 By
sgn((-1)" (j+r-1)! [ | ——— ) = (-1)" [ ] sgn(d; ) =
3 .
- iB
= -1nF M (- 1

i=2
Observe that
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i
iBi

; iB, z
DT P 1 e (e T(en 2 =
i=2

fl

0T EnITtEn® - @it
Thus
(10) sgn (@I (£x))) = (-1I7Y, 3=1,2,...,8
This implies
sgn (¥, (0) = 13 legnE I (g0 =1, j=1,2,...,s .

From (8) and F”(f(x)) = (£7(x)) ™" we have ¥, =1, gec'(p) and

s-1 .

(11) g(x) =1+ J ¥y,ul 1, 1, x ept
L j - o
j=2

In |2] it is proved that

= -2 g-
Es+1 Es s Es
Thus
(-1)5"1p(8) o4

E- == - 3
& (s-1)1(F)°®

Now for x ebz us_l(x)_zo holds and

sam(E;(x) = (-1)% legn®®) (£(0)) =1, xep ,
. +
i.e. Es(x)_io, xveD° .
From (F5) we have f"(x) >0, x eD and from (11) follows
(5) . Now we can apply Theorem 2.

REMARK 5. For s =2 the iterates X defined by (9),
are Newton’s iterates, and for s =3 Chebyshev~’s.
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REZ IME

IZLAZNI KRITERIJWM ZA NEKE
ITERATIVNE METODE

U radu se posmatra re3avanje jednafine f(x) =0 u in-
tervalu D =[a,b], pri %emu je £ realna funkcija realne pro-
menljive, itarativnim postupkom i1 =¢(xn), n=0,1,..., sa
pogodno izabranim ¢ (x) i xg €D. Kao dobra aproksimacija ta&-
ako va¥i |x

nog refenja o date jednadine uzima se x —xJ<e '

n+1l n+1l
sa unapred izabranim ¢ >0 i ako vaZi nejednadina zaustavlja-
nja
(1) x| :Ix al .

Ixn+1 - ntl -

Za posebno izabrane funkcije ¢ dati su dovoljni uslovi za ne-
jedna&inu (1), a kao specijalne sludajeve dobijamo Njutnov ite-
rativni postupak i klasiZan postupak regula falsi. Takodje je

za klasu iterativnih postupaka generisanih inverznom interpola-

cijom dokazana nejedna&ina (1) za n=0,1,... .



