ON SPECTRAL TYPE OF NONLINEAR AND NONANTICIPATIVE TRANSFORMATION OF THE WIENER PROCESS

Zoran A. Ivković

Prirodno-matematički fakultet. Institut za matematiku 21000 Novi Sad, ul. dr Ilije Djuričića 4, Jugoslavija

ABSTRACT

Let H(W) be a Hilbert space of the square integrable functions of the Wiener proces W(T), $t \ge 0$. It is shown that there exists a process $\eta(t) = T\{W(u), \ 0 \le u \le t\}$, $t \ge 0$ which has any given spectral type.

Let $\{E_t, t \ge t_0\}$ be a resolution of the identity in a separable Hilbert space H. According to the well-known Stone theorem the spectral type

(1)
$$R_1(t) \ge R_2(t) \ge ... \ge R_N(t), t \ge t_0$$

(the spectral multiplicity N may be $+\infty$) of $\{E_t\}$ is the complete system of the unitary invariants of $\{E_t\}$.

The Stone theorem is applied to a time-domain analysis of stochastic processes in a classical paper |1| in the following way: Let the second order process $\{\xi(t), t \geq t_0\}$ be continuous and purely nondeterministic. Let $H^{(1)}(\xi)$ ($H^{(1)}_{\xi}(t)$) be a Hilbert space - the linear closure over $\xi(t)$, $t \geq t_0$ ($\xi(u)$, $t_0 \leq u \leq t$). The scalar product is $(\xi_1, \xi_2) = \mathrm{E}\xi_1 \xi_2, \xi_1 \in H^{(1)}(\xi)$, E is the expectation. So the family $\{P_t, t \geq t_0\}$ of the projection operators P_t onto $H^{(1)}_{t}(\xi)$ is the resolution of the identity.

Then there exist N and the mutually orthogonal wide sense martingals $\{\zeta_n(t), t \ge t_0\}$, $n = \overline{1,N}$ such that

(2) 1.
$$H_{t}^{(1)}(\xi) = \sum_{n=1}^{N} e H_{t}^{(1)}(\zeta_{n}), \quad t \ge t_{0}$$

2. The measure dF $_{\zeta_n}$ with the distribution function $\mathbf{F}_{\zeta_n}(\mathsf{t}) = ||\ \zeta_n(\mathsf{t})\ ||^2,\ \mathsf{t} \geq \mathsf{t}_o, \text{ belongs to the class of the equivalent measure } \mathsf{R}_n^\xi(\mathsf{t}).$ The spectral type of $\{\xi(\mathsf{t})\}$

$$\mathtt{R}_{1}^{\xi}\left(\mathtt{t}\right) \geq \mathtt{R}_{2}^{\xi}\left(\mathtt{t}\right) \geq \ldots \geq \mathtt{R}_{N}^{\xi}\left(\mathtt{t}\right), \quad \mathtt{t} \geq \mathtt{t}_{o}$$

is the spectral type of $\{P_+\}$.

The main result of |1| is that for the arbitrary spectral type (1) there exists a continuous process $\{\xi(t), t \ge t_0\}$ with this spectral type.

Let $\{W(t), t \ge t_0\}$ be a Wiener process and $\xi(t) = L\{W(u), 0 \le u \le t\}$ be a linear nonanticipative transformation of $\{W(t)\}$ i.e. the process

$$\xi(t) = \int_{0}^{t} g(t,u) dW(u), t \ge 0, ge L_{2}(dt).$$

In |8| it is noted that there exists L such that the process has any spectral type (1) for $t \ge \varepsilon$ where $\varepsilon > 0$ is arbitrary but fixed. The idea of the proof of this statement in |4| is to in space $\mathcal{H}_{\varepsilon}^{(1)}(W)$ the mutually orthogonal wide-sense martingals $\{\zeta_n(t),\ t \ge t_0\}$, $n=\overline{1,N}$, such that (2) holds. We do not see the way to remove the restriction $t \ge \varepsilon > 0$.

Now let H(W) ($H_t(W)$) be Hilbert space of all random variables η , $E\eta^2 < +\infty$, $E\eta = 0$, measurable with respect to the σ -algebra $F(F_t)$ generated by $\{W(u): u \geq 0\}(\{W(u), 0 \leq u \leq t\})$. It is well-known that, $\{W(t)\}$ being a Gaussian process:

- 1. the conditional expectation $E(.|F_t)$ is the projection operator E_+ onto $H_+(W)$,
- 2. the subspace $H_{t}^{(1)}(W)$, of $H_{t}(W)$ reduces $\{E_{t}\}$ to $\{P_{t}\}$. In this way, $\{E_{t}, t \geq 0\}$ is the resolution of the identity and it has its spectral type. The "part" $\{P_{t}\}$ of $\{E_{t}\}$ in $H_{t}^{(1)}(W)$

has the spectral type R_1 to which all measures equivalent to the measure $d \|W(t)\|^2 = dt$ belong.

In this paper we shall show that it is possible to remove the restriction $t \ge \varepsilon > 0$ in |8| if we extend the space $H^{(1)}(W)$ to H(W). We find the justification for this extension in the fact that $H^{(1)}(W)$ reduces $\{E_+\}$ to $\{P_+\}$.

THEOREM 1. There exists a continuous second order process $\{\eta(t), t > 0\}$ in H(W) such that:

- 1. $\eta(t)$ is the nonanticipative transformation of $\{W(u), 0 \le u \le t\}$ i.e. $\eta(t) = T\{W(u), 0 \le u \le t\}$ $\in H_t(W)$ and
- 2. the spectral type of $\{n(t)\}$ is any given spectral type (1).

P r o o f. For the sake of simplicity, it is not the restriction if we suppose that the spectral types $R_n(t)$, $\bullet n = \overline{1,N}$ are equivalent to an ordinary Lebesgue measure dt.

The existence of the process $\{n(t)\}$ essentially depends on the existence of the mutually orthogonal martingals $\{\zeta_n(t),t\geq 0\}$, $n=\overline{1,N}$ for which $\zeta_n(t)\in\mathcal{H}_t(W)$ and $dF_{\zeta_n}(t)=f_n(t)dt$, $f_n(t)>0$, a.e. .For the construction of the martingals $\{\zeta_n(t)\}$, $n=\overline{1,N}$, we shall use the Hermite polynomials of the Gaussian process. The explicit formulae for these polynomials and some of their properties are given in |5|. We consider the Hermite polynomial of degree n of the random variable W(t):

(3)
$$H_n(W(t)) = W^n(t) + \sum_{k=1}^{\lfloor \frac{n}{2} \rfloor} (-1)^k (2k-1)!! {n \choose 2k} t^k W^{n-2k}(t)$$

It is proved in |5| that $E_sH_n(W(t)) = H_n(W(s))$, s < t. It follows from this relation that $\{H_n(W(t)), t \ge 0\}$ is the martingal and that the subspace $H^{(1)}(H_n)$ reduces $\{E_s\}$. As $H_m(W(t))$ and $H_n(W(s))$ are orthogonal for $m \ne n$ we conclude that the space $H = \sum_{n=1}^{N} \bigoplus H^{(1)}(H_n)$ is the subspace of H(W) and that $H_n(W(s)) = \sum_{n=1}^{N} \bigoplus H^{(1)}(H_n)$ is $H_n(W(s)) = \prod_{n=1}^{N} \bigoplus H^{(1)}(H_n)$.

Now we can find, following the construction in $\begin{bmatrix} 1 \end{bmatrix}$, the continuous process $\{\eta(t), t \ge 0\}$ for which $H_s^{(1)}(\eta) = E_s^H$, $s \ge 0$.

There remains to show that the spectral type of $\{\eta(t)\}$ is the given type (1). From

$$H_{s}^{(1)}(\eta) = \sum_{n=1}^{N} \bullet H_{s}^{(1)}(H_{n}), s \ge 0,$$

it follows that the spectral multiplicity of $\{n(t)\}$ is N. We have $F_{H_n}(t) = EH_n^2(W(t)) = n!t^n$, $t \ge 0$. It means that the spectral type of $\{H_n(W(t)), t > 0\}$, is equivalent to dt.

COROLLARY 1. There exosts a second order continuous N-ple Markov process (in the sense of |2|) $\{\eta(t), t \ge 0\}$ such that:

- 1. $\eta(t)$ is the random variable measurable with respect to the σ -algebra generated by W(t) i.e. $\eta(t) = T_t(W(t))$ for each t>0 and
 - 2. $\{\eta(t)\}$ has the finite spectral multiplicity N.

We may take

$$\eta(t) = H_1(W(t)) \oplus \phi(t)H_2(W(t)) \oplus \dots \oplus \phi^{N-1}(t)H_N(W(t))$$

where ϕ is a continuous function not absolutely continuous in any interval ([3],[7],[6]).

REFERENCES

- |1| Cramér, H., Stochastic Processes as Curves in Hilbert Space, Teop.
 вероятн. и ее примен., 9(1964), 169-179.
- |2| Hida, T., Canonical Representation of Gaussian Processes and Their Applications, Mem. Coll. Sci., Univ. Kyoto, Ser. A, 33(1960). 109-155.
- |3| Hitsuda, M., Multiplicity of some Classes of Gaussian process, Nagoya Math. J. 52 (1973), 39-46.

- |4| Ivković, Z., On spectral type of nonanticipative transformation of Wiener process, Matematički vesnik 11 (1974), 121-124.
- |5| Ivković, Z. and Lozanov, Z., On Hermite Polynomials of Gaussian Process, Zbornik radova PMF Novi Sad, 12 (1982).
- |6| Ivković, Z. and Vukmirović, J., Example of a continuous second-order stochastic process with a prescribed finite multi-plicity, Matematički Vesnik, 13 (1976), 269-272.
- |7| Pitt, L., D., Hida Cramer, Multiplicity theory for multiple Markov processes and Goursar representation, Nagoya Math.

 J. 57(1975), 199-228.
- |8| Rozanov, Yu.A., Innovation and non-anticipative processes, Multivariate Analysis - III Proceeding, Dayton, Ohio, (1972) New York, 1973.
- 19 Розанов, Ю.А., Марковские случаиные поля, М., 1981.

Received by the editors April 14,1983.

REZ IME

O SPEKTRALNOM TIPU NELINEARNE I NEANTICIPIRAJUĆE TRANSFORMACIJE VINEROVOG PROCESA

Neka je H(W) Hilbertov prostor kvadrat integrabilnih funkcionela Vinerovog procesa W(t), $t \ge 0$. U radu se pokazuje da postoji proces

$$\eta(t) = T\{W(u), 0 < u < t\}, t > 0$$

koji ima unapred zadani proizvoljni spektralni tip.