Zbornik radova Prirodno-matematičkog fakulteta-Univerzitet u Novom Sadu knjiga 11 (1981)

Review of Research Faculty of Science-University of Novi Sad, Volume 11(1981)

NOTE ON THE SPANNING TREES OF A CONNECTED DIGRAPH

Dănut Marcu

Faculty of Mathematics University of Bucharest Academiei 14 70109 Bucharest - Romania

ABSTRACT

Our aim in this paper is to give some relations between the spanning trees and some determinants obtained from the incidence matrix of a connected digraph. The spanning trees that differ by one edge are also investigated.

Let D = (V,E) be a connected digraph (directed graph) with V = $\{v_1, v_2, \dots, v_p\}$ the set of vertices, E = $\{e_1, e_2, \dots, e_q\}$ the set of edges, and S = (s_{ij}) , $i=1,2,\dots,p$; $j=1,2,\dots,q$, the incidence martix, where

$$s_{ij} = \begin{cases} 1, & \text{if } v_i \text{ is the initial vertex of } e_j, \\ -1, & \text{if } v_i \text{ is the terminal vertex of } e_j, \\ 0, & \text{otherwise.} \end{cases}$$

Let \bar{S} be the matrix obtained from S by deleting the line corresponding to the vertex v_p . If $T = \{e_{j_1}, e_{j_2}, \dots, e_{j_m}\}$ (m = p-1) is a spanning tree of D, we shall denote by $\bar{S}(T)$ the square submatrix of \bar{S} obtained with the lines of \bar{S} and the columns j_1, j_2, \dots, j_m . Because T is a spanning tree, there exists a unique chain connecting any two vertices in the graph (V,T). Let $c_i(v_i, v_p)$ such a chain connecting v_i with v_p , $i=1,2,\ldots,m$, and $E(c_i)$ the

edge-set of c_i . Let $e_{\alpha(i)}$, $\alpha(i) \in \{j_1, j_2, \ldots, j_m\}$ the unique edge incident with the vertex v_i , $i=1,2,\ldots,m$, for which $e_{\alpha(i)} \in E(c_i) \cap T$, and $\varepsilon(i) \in \{1,2,\ldots,m\}$ such that $\alpha(i) = j_{\varepsilon(i)}$.

We consider the matrix $\overline{\overline{S}}(T) = [\overline{\overline{S}}(T)]_{1\beta}$, i, $\beta = 1, 2, ..., m$, where

$$\left[\overline{\overline{S}}\left(T\right)\right]_{\mathbf{i}\beta} \; = \; \begin{cases} 0 \;\; , \;\; \text{if} \;\; \beta \neq \varepsilon\left(\mathbf{i}\right), \\ \\ \left[\overline{S}\left(T\right)\right]_{\mathbf{i},\varepsilon\left(\mathbf{i}\right)}, \;\; \text{if} \;\; \beta = \varepsilon\left(\mathbf{i}\right). \end{cases}$$

THEOREM 1. $det[\overline{S}(T)] = det[\overline{\overline{S}}(T)]$.

Proof. We denote by S(T) the submatrix of S obtained with the lines od S and the columns j_1, j_2, \ldots, j_m .

Let $v_{t_1} \neq v_p$ a terminal vertex of $T^{(1)} = T$. Adding the line t_1 of the matrix S(T) to the line corresponding to the other vertex of $e_{\alpha(t_1)}$ we obtain the matrix $S_1(T)$. We consider now the tree $T^{(2)}$ obtained from $T^{(1)}$ by deleting the vertex v_{t_1} and the edge $e_{\alpha(t_1)}$. Let $v_{t_2} \neq v_p$ a terminal vertex of $T^{(2)}$. Adding the line t_2 of the matrix $S_1(T)$ to the line corresponding to the other vertex of $e_{\alpha(t_2)}$ we obtain the matrix $S_2(T)$. Repeating the above thus give rise to the matrix $S_m(T)$. For this matrix the p-th line is null.

Denoting by $\bar{S}_k(T)$, $k=1,2,\ldots,m$, the matrix obtained from $S_k(T)$ by deleting the p-th line, then $\bar{\bar{S}}(T) = \bar{\bar{S}}_{n-1}(T)$.

On the other hand, according to the properties of determints we have

 $\det[\bar{\bar{S}}(T)] = \det[\bar{\bar{S}}_{p-1}(T)] = \det[\bar{\bar{S}}_{p+2}(T)] = \dots = \det[\bar{\bar{S}}_{1}(T)] = \det[\bar{\bar{S}}_{1}(T)] = \det[\bar{\bar{S}}_{1}(T)]$ $\det[\bar{\bar{S}}(T)], \text{ and the theorem is proved.}$

Let \mathbf{T}_1 and \mathbf{T}_2 two spanning trees of D. By $|\mathbf{1}|$ and theorem 1 it follows that

$$\det \left[\overline{\overline{S}} \left(\mathbf{T}_{1} \right) \right] = \pm 1 ,$$

$$\det \left[\overline{\overline{S}} \left(\mathbf{T}_{2} \right) \right] = \pm 1 .$$

Obviously, in $\overline{\mathbb{S}}(T_1)$ and $\overline{\mathbb{S}}(T_2)$ each line and each column contains a single nonull element (equal to ±1). For an arbitrary column, if we want to have on the same place the nonull element of $\overline{\mathbb{S}}(T_2)$ as in $\overline{\mathbb{S}}(T_1)$, we must permute two columns in $\overline{\mathbb{S}}(T_2)$. Let π the total number of permutations necessary for all nonull elements of $\overline{\mathbb{S}}(T_2)$.

Let σ the total number of exchanges of sing such that each nonull element of $\overline{\overline{S}}(T_2)$ in the same place as in $\overline{\overline{S}}(T_1)$, to have the same sign

But, every permutation and every exchange of sing multiplies the value of $\det[\overline{\overline{S}}(T_2)]$ by -1. Hence, by (1) we have

(2)
$$\det[\overline{S}(T_2)] = (-1)^{\pi+\sigma} \det[\overline{S}(T_1)]$$
.

By (2) and theorem 1 it follows that

(3)
$$\det[\overline{S}(T_1)] \det[\overline{S}(T_2)] = (-1)^{\pi+\sigma}.$$

Let T_1 and T_2 two spanning trees of D such that $|T_1 - T_2| = k$. Deleting the k distinct edges, every spanning tree becomes a graph containing k+1 connected components. Moreover, the k+1 connected components in T_1 and T_2 are identical, and only one of them contains the vertex v_p . The k components that do not contain v_p are called principal.

Obviously, every vertex of a principal component is connected by a unique chain with v_p in (V,T_i) , i=1,2, and every chain (one of T_1 and other of T_2) contains an unique edge (one of $T_1^{-T}_2$ and other of $T_2^{-T}_1$) incident with the principal component. We call these edges principal.

If the principal edges have the same orientation related to the principal component, then this component is <u>positive</u> and negative otherwise.

We consider the graph having as vertices the k+1 components and as edges the principal edges (from \mathbf{T}_1 and \mathbf{T}_2) incident to the above components. We denote by $\sigma(\mathbf{T}_1,\mathbf{T}_2)$ the number of positive components from which we subtract the number of cycles in the graph above considered. By |2| we have

(4)
$$\det[\overline{S}(T_1)] \det[\overline{S}(T_2)] = (-1)^{\sigma(T_1,T_2)}$$
.

Let T_1, T_2 two spanning trees of D for which $T_1-T_2=\{a\}$ and $T_2-T_1=\{b\}$, $a \neq b$.

We denote by $_{\omega}\left(T_{1},b\right)$ the unique cycle contained in $(V,T_{1}U\cup\{b\})$.

THEOREM 2.
$$\det[\bar{S}(T_1)]\det[\bar{S}(T_2)] = \begin{cases} -1, & \text{if a and b have the same} \\ & \text{orientation in } \omega(T_1,b), \\ 1, & \text{otherwise.} \end{cases}$$

P r o o f. Deleting the edge a from T_1 we obtain a graph that contains two connected components; one of them contains the vertex $v_{_{\rm D}}$ and the other is principal.

Obviously, a and b are principal edges. If a and b have the same orientation in $\omega(T_1,b)$, then the principal component is negative, i.e., $\sigma(T_1,T_2)=-1$. This, by (4), it follows that

$$det[\overline{S}(T_1)]det[\overline{S}(T_2)] = -1$$
.

If a and b have not the same orientation in $\omega(T_1,b)$, then the principal component is negative, i.e., $\sigma(T_1,T_2)=0$. Then by (4) it follows that $\det[\overline{S}(T_1)]\det[\overline{S}(T_2)]=1$, and the theorem is proved. Let $T=\{e_{j_1},e_{j_2},\ldots,e_{j_m}\}$, (m=p-1) a spanning tree of D. Deleting from T the edge e_{j_h} $(1\leq h\leq m)$ we obtain two connected components V_b and \overline{V}_b .

To the bipartition $(v_h^{},\bar{v}_h^{})$ we can associate a cocycle C(e $_{j_h}^{},^T)$ that contains the edge e $_{j_h}^{}.$

Obviously, if T_1 and T_2 are two spanning trees for which $T_2-T_1=\{b\}$ and $T_1-T_2=\{a\}$, then $b\in C(a,T_1)$. Moreover, if $c\in C(a,T_1)$, then $(T_1-\{a\})$ $U\{c\}$ is a spanning tree.

Let T_o a spanning tree and T_1, T_2, \ldots, T_r all spanning trees for which $T_o - T_k = \{a_o\}$ and $T_k - T_o = \{a^{(k)}\}, k=1,2,\ldots,r$. Thus $C(a_o, T_o) = \{a_o, a^{(1)}, \ldots, a^{(r)}\}$.

Moreover, if b \in C(a_o,T_o), then (T_o-{a_o}) U {b} is one of T₁,T₂,...,T_r.

Let $A(T_0, a_0) = \{T_1, T_2, \dots, T_r\}$. Obviously, we have

$$A(T_{o}, a_{o}) = \bigcup_{\substack{b \in C(a_{o}, T_{o}) \\ b \neq a_{o}}} \{(T_{o} - \{a_{o}\}) \cup \{b\}\} \}$$

If $T_0 = \{e_{j_1}, e_{j_2}, \dots, e_{j_m}\}$, then every spanning tree T with $|T_0 - T| = 1$ belongs to one of $A(T_0, e_{j_h})$, $h = 1, 2, \dots, m$. Also, all spanning trees of $A(T_0, e_{j_h})$ are distinct. Indeed, each $T \in A(T_0, e_{j_t})$ does not contain the edge e_{j_t} .

On the other hand, for every $T \in A(T_0, e_j)$ holds $|T_0 - T| = 1$, i.e., all edges of T_0 (except for e_j) belong to T. Hence, T does not belong to $A(T_0, e_j)$ with $t \neq s$.

Let $v_o \in V$ and $e_o \in E$ arbitrary choosen, such that e_o is incident with the vertex v_o . We denote by $C(v_o)$ the cocycle associated to the bipartition $(\{v_o\}, V - \{v_o\})$.

Let A(e_0) the set of spanning trees that contain the edge e_0 and $\bar{\rm A}(\rm e_0)$ the set of spanning trees that do not contain e_0.

THEOREM 3.

(5)
$$\overline{A}(e_{o}) = \bigcup_{\substack{T \in A(e_{o}) \\ b \in C(e_{o},T) \cap C(v_{o})}} \{(T-\{e_{o}\}) \cup \{b\}\}\}$$
.

Proof. Obviously, every spanning tree obtained by (5) belongs to $\bar{A}(e_0)$. Suppose now there exists $T \in \bar{A}(e_0)$ such that it cannot be obtained by (5).

Let $\omega(T,e_O)$ the unique cycle contained in the graph $(V,TU\{e_O\})$. If $b(b\neq e_O)$ is an edge of $\omega(T,e_O)$ incident with the vertex v_O , then the spanning tree $T'=(T-\{b\})U\{e_O\}$ belongs to $A(e_O)$. But $b\in C(e_O,T')\cap C(v_O)$, i.e., T can be obtained from T' by (5); contradiction. Hence each spanning tree of $\overline{A}(e_O)$ can be obtained by (5) and the theorem is proved.

THEOREM 4. Every element of $\overline{A}(e_0)$ is obtained only once by (5).

Proof. Suppose that T is a spanning tree of $\overline{A}(e_0)$ often generated by (5). In this case there exist at least two distinct edges c and d in T incident with the vertex v_0 such that $(T-\{c\})$ $U\{e_0\}$ and $(T-\{d\})$ $U\{e_0\}$ are distinct elements of $A(e_0)$, i.e., c and d belong to the unique cycle $\omega(T,e_0)$. This is impossible. Hence the theorem is true.

REFERENCES

- | 1 | Berge C., Théorie des graphes et ses applications, Dunod, Paris, 1967.
- |2| Preda M., A simplified way of determining the sign of common trees values in current and voltage graphs, Rev. Rown. Sci. Tech. Electrotechn. et Énerg., 19, 49-62, (1974).

REZIME

NOTA O POKRIVAJUĆIM STABLIMA ORIJENTISANOG DIGRAFA

U ovom radu se ispituju odnosi izmedju pokrivajućih stabala orijentisanog digrafa i determinanata nekih podmatrica matrice incidencije toga digrafa. Takodje su ispitivani parovi pokrivajućih stabala digrafa koja se razlikuju u orijentaciji samo jedne grane.