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Pickett [2! defines generalized egquivalence relations
and relates them to the partitions of type n, given by Hartma-
nis |1]. In this article several types of generalized reflexi-
ve, symmetric and also transitive relations are defined and pro-
perties and connections between some of these relations are gi-
ven. Finally, some characterization theorems for generalized
equivalence relations are proved.

*
1. (n+l)-ary relation R on the set S#§ is (i,j)-reflexive, i#¥73 ,
i,je{1l,...,n+1l}, iff

i-1 -1 n+1
a8 8 (@) v 385,835,

1
(val""'aj—l'aj+1""’ - )e R).)

R is reflexive iff it is (i,j)-reflexive for all i,j € {l,...,n+1}, i#3.2)

2. (n+l)-ary relation R on S is m—symmetric, m e{l,...,n+l }1, 3)
iff
n+1
(Valn.., a i eS)((a1 ) ER = (an(l)""’an(n+1)) € R).
% i q -
) Presented april, 27, 1981. 1) ap stands for ap,ap+],...,aq_],aq, and de

notes an empty syllable when q < p; consequently aP is a_, and instead of a,
a,...,a (n times),we write 2; 3 is, clearly, empty? g

2) tn 12| (np+1)-ary (1,n+1)-reflexive relation is called 'reflexive''; in
I3] the term "strongly reflexive'' is used for the reflexive relations.

3) If M finite, M! is a set of all permutations on M.
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(|2]) R is symmetric iff it is w-symmetric for all me {1,...

R R B

3. Let R be (n+l)-ary relation on S and lal""'lan+1'

ey kal,...,_ka.n+1, bl""'bn+l‘ variables. Let also
1) keN\{1};
2) a is the k-ary relation on the set R; and
3) (bn+l) is taken by the given nullary operation in

la 1 1 x k, yntl
l,..o, an+1,..-, al,-.., n+1

R now belongs to the class of transitive relations iff

the following implication is satisfied:

Fa™ 1y ern ... n (KA er 1
(1) 1 1
petath L Ka ) ea = o] er

1 1 k k 1)
for all al,..., an+l""' ireeey an+les.

In this article we shall be concerned with some relati-

ons belongincj to this class, with k=2, and k=n+1.

3;) (n+l)-ary relation R on S is iA -transitive, ie {1,...,n}.
iff
i-1 n i-1 n+1
(Vao""’an+l € S) ((ao ’ai’ai+l) eRA (al ’ai’ai+l) €R =
i-1 n+l
= .
(2) (ag s ai+1) €R)

(n+l)-ary relation R on § is iAI-transitive, ied{1,...
we.,n}t, iff

i-1 n i-1 n+1
(Vao,...,an+1 €85) ((ao 'aiai+l) €ERANA (al 'aia1+l) €R A

(3) . . i-1 _n+1
A(aj#ai, for je{1l,...,nI\{i}) = (ao ,ai+1)eR).

*)

(n+1)-ary relation R on § is iil—transitive,

ief{1,...,n}, iff

i-1 n i-1 n+l
,aiai+l) €RA (a1 ,a.a,

i l+l) eER £

(Vao, VL S) ((ao

1) In the transitivities considered here,a shall always be such that for
n=1 (1) reduces to the usual transitivity low.

%) In |2]: "transitive'" stands for "nﬂ1-transitive.
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11 n+l
1+l

2)

(4) (aj;éak, for 3=k, 3,ke{1,...,n})= lag )ER) .

3,) (n+l)-ary relation R on § is iiz—transitive, ie{1,...,n}

iff

i-1 n i-1 n+1
(’Vao,...,an+1 € S) ((ao,al 'ai'ai+1) €ERA (ai,al 1+1) €RA
. . i-1 n+l
(ajaéak, for j#k,j,ke{l,...,n}) = (ao,a1 i+lJER)

33) (n+l)~ary ‘reélation Ron § is :i;l‘zl?transitive, ief{2,...,n+l},
iff

(1) (n)

(Val,...,a ,a -V P X, cer Xy ,yeS)((xi(J) #

i-1"7i4+170 n+l'7i 0

n .
# xi”‘), for 37k, j.ke{l,...,nHA A (a] 1,xi(s), alth er 4
s=1
1 i-1 n +1 3).
x.(),...,xi(n),y)eR=> (al l+l,y)eR. )

34) (n+l)-ary relation R on S is iﬁz—transitive, ief{2,...,n+1}
iff

(1) (n) (3)
(Val"'"ai—l'ai+1""'an+l'x1 ree e r Xy ,yeS)((xi #
n .
# xj(_k), for j#k, j,ke{1l,...,nh) AA (al™! i‘s), altl) er A

s=1

(xj(_l),...,xj(-n),y) €R = (ai‘ 'Y an+l) €R ).

REMARK.

In the case n=1 all notions defined in 1), 2) and 3)

reduce to the usual binary notions.

4)) |1] For set § with at least n elements, the family P of
subsets of S is a partition of type n, iff (1) each member of

Pn has at least n elements and (2) each n different elements

2) The notion of an iA -transitive relation is froml4|. It is obvious that
one can define tranSitive relations without or with one star in 3.}, 3.)
and 3,) as in 3.). It has not been done here since the purpose of this3atri-
cle is to treat the transitivities connected with generalized equivalence

relations. :
3) M-~transitivities appeared in investigation of generalized orderings.
n

A Pi denotes a logical conjunction P1A ...APn
i=1
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S belong to exactly one member of Pn'

42) |2] (n+1)-ary relation E on S is a generalized equivalen-

ce relation on S iff it satisfies:

Eln: (1,n+l)-reflexivity,
E2n: symmetry, and
E3n: nil—transitivity.

4;) In |2] it is shown that (n+l)-ary (i.e. generalized) equ-
ivalence relation En on S induces on £ a partition of type n, and
contrary, that each partition of type n on S can be connected

with the generalized, (n+l)-ary equivalence relation on the sa-

me set.
’ * *

PROPOSITION 1. If (n+l)-ary relation R on S is (1,

i+l)-refilexive and iil -trangitive, then it is iﬂz —-transitive.

Pr oo «t. Let
i-1 n
a) (xo,xl ’xi’xi+1) eR and
i-1 _n
b) (x50X] TeXg 1 0Xnyy) ER

where xiaéxj for i#3j, i,je{1,...,n}. Then

i-2 n

1 ’xi-l’xi+1) €R ((1,i+l)-reflexivity).

€)Xy eXyeX

From (c;) and (b), by iil—transitivity, it follows

i-2 _n . -y c s
bl) (xi_l,xi,x1 ’xi+1'xn+1) € R. Applying 1Al—tran51t1vity
on (bl) and
i-3 n .
c2) (xi_z,xi_l,xi,x1 ’xi—2’xi+1) eR ((1,n+l)-reflexivity),
we get
i-3 _n+l
bo) (X5 _orXj_qsXgsX] TX5.7) €R

This procedure leads to the conclusion

i-1 X xn+l)
1 r2i"7iA

transitivity it follows that

€R . Finally, from (a) and (b), by iA, -

(B) (x 1
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(xo,xi-l, n+l)e R , which was to be proved.

COROLLARY 2. (n+l)-ary (1,n+l)-reflexive and nil— tra-

nsitive relation R on § is nﬁz ~transitive.

REMARK 2.

(lyn+l)-reflexivity and-nﬁz—transitivity do not imply
nAl—transitivity, which can be shown by the following example,
for n=2. R is a ternary relation on {a,b,c,d} consisting of all
triples with equal first and third coordinates and of (a,b,c),
(c,b,d),(a,b,d) and (b,d,a). It is easy to check that R satis-
fies (1,3)-reflexivity and 232-transitivity, but that it is not
2Al—transitive.

The following corollary is a consequence of the proof
of Proposition 1.

COROLLARY 3. (n+l)-ary (l1,i+l) -reflexive and iil -
transitive relation R on S satisfies the property

(vg) = (¥a ,oohap ) €S) ((ajfay, 37k, j,ke{l,...,n}) A

n+1
(a 1 ) ER = (aYif.l)""'aY-(n+l))eR)'
1
Yy = (i,1,...,i-1,i+1,...,n+1) e {1,...,n+1}!,

PROPOSITION 4. If (n+l)-ary (1,i+l)-reflexive and iﬁz trangtti=~
ve relation R on 8§ satisfies (Yi), then R T8 iﬁl -trangitive
(ie{1,...,n}).

Proof¢£. If

i-1 i-1 n+1
o 1Xyr ) € R and (x PXgaXo

i,J e{l,...,n}, then by (Yi) it follows that

i-1 i-1 n+l
o XyrXiyp) €R and (epx)TTxg)

(x ) eR , x #x for i#j,

(x ) eR .

Thereby iAj-transitivity implies

(x;-l,xgii) € R , completing the proof of the lemma.
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Proposition 1, Corollary.3 and Proposition 4 imply the
following proposition.

PROPOSITION 5. If (n+l)=-ary (1,n+l) -reflexive rela-
tion R on S satisfies (Yi), then R ig iiz -transitive 1ff it is
ia, -transitive, (ie{l,...,n}).

PROPOSITION 6. If (n+l)-ary relation R on S satisfies
(i+1)ﬁ1—transitivity (i=1,...,n), (j,i+l)-reflexivity for all
je{2,...,i} and (i+l1,k) -reflexivity for all ke {i+2,...,n+1},
then R satisfies iil-transitivity.

n+l

n
Proof. Let (xo)eR and (x1 v’ u#v,

u,ve{l,...,n}. Then

) eR , &J#x

(xo,xl, RN TIREL L SPRTRRY ,xn) eR ((2,i+1)-reflexivity),

(xo,xl, N2 TIRR2 VS PR ,xn) €R ((3,i+1)-reflexivity),

(xo'xl"'"xi—l'xi-l'xi+1""'xn) €eR ((i,i+l)-reflexivity),

(xo'xl""’xi-l'xi’xi+1""’xn) e R (by assumption),

(xo,xl, cee Xy e Xy Xy ,xn) €R ((i+1,i+2)~reflexivity),

(xo,xl, e 'xi—l’xn'xi+1’ e ,xn) € R ((i+l,n+l)-reflexivity),

(xl, SERYE FRREL S SRR ,xn,xn+1) € R (by assumption).
Thereby (i+1)ﬁ1-transitivity implies

(xo’x1’°"’xi-1'xi+1"'_"xn'xn+1) € R, which was to be proved.

COROLLARY 7. If (n+l)-ary (n+1)1\712—trans7ltive relation
R on S satisfies(i,n+l) -reflexivity for all ie{2,...,n}, then

R satisfies nxl—transitivity.

REMARK 3.

The following example is a reflexive, nil—transitive
ternary relation on {a,b,c,d,e}, which is not (n+1)1\712-transi—-
tive. Let R consist of all triples with at least two equal co -
ordinates and of (a,b,c), (b,a,c),(a,b,d),(b,a,d),(c,d,e) and
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(d,c,e). It is obvious that R is reflexive, Zﬁz—transitive, but
not 3ﬁz—transitive, since {(a,b,c) €R, (a,b,d) eR, (c¢c,d,e)eR ,
but (a,b,e) £¢R.

COROLLARY 8. If (n+l)=-ary relation R on S satisfies
(i+1)ﬁ2—transitivity (i=1,...,n}), (j,i+l)-reflexivity for all
je{2,...,n }, (i+1,k) -reflexivity for all ke{i+2,...,n+1}
and y-symmetry for y=(1,...,i,n+1,i+1,...,n) € {1,...,n+1} ! ,
then R satisfies iﬁl—transitivity.

PROPOSITION 9. If (n+l)-ary relation R on S satisfies
(1,j)-reflezivity for all je{2,...,i+1} , iA - and (i-1)Ajtran-
sitivity, ie{l,...,n}, then R is (i—z)il-transitiue (i-2,i-1,
ief{1,...,n})

Proof.

(a) (al73,a

al i-3 n+1
o) i-2'%i-1

) €R and (al ’ai-2’a1+1)eR’ ai#aj,

i#3, i,je{1,...,n}.

i) Suppose first aoaﬁai, i=l,...,n. Then, by using the
well known properties of permutations, by Corollary 3 and sin-
ce R is iKl—, (i—l)ﬁl-transitive and (1,i)-reflexive, (a) im-
plies
-1 i-1
1

By (i—l)Al—transitivity then (aé_B,agfi) € R.

- n n+1l
(a) (a ,ai_z,ai) €R and (a 134 5085 ) ER .

10 F

(ii) Let ag #ai_z, and

i-3 n+1l

= i-3 n
(b) 1 r34-2:84

(a._2,al 185 5085 ) ER .

i —1) €R and (a

By using (1,i)-reflexivity and by the procedure used in i),

- i-3 n

(c) (ai—Z’al ’ai-l’ai—Z’ai) € R and
= i-3 n+1

(d) (al ’ai'l Iai_2 lai ) € R .

From (c) and (d), by (i—l)il—transitivity, if follows that

i-3 n+1
(ai_z,al ’ai—l’ai ) ER
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iil) Let ao==aj, je{1l1,...,i-3,i-1,...,n}, and

i-3 t-1 n+l

i-3 t-1 a a a .a
1 7Ti-277i-1TE T e

n
1 'ai—2’ai-l'at’at+l)e R and (a

(at,a JER,

where t<i or t>i, te{1l,...,n}. (1,t+l)-reflexivity now gives

i-3 t-1 n+1

1351085 sa084) ER

(at,al

i), ii) and iii) prove the proposition.

Using the fact that each permutation on {1,...,n+1} can
be produced by two cycles yn+l=(n+1,l,...,n ) and yn=(n+1,...
...,n-1,n+l1), one can easely show that the following propositi-

on is a consequence of the previously proved statements.

PROPOSITION 10. If (n+l)-ary relation R on S satisfi-

€8 Y 41 and yn-symmetry (Yn+1 and Y, are given above), then

1) R 18 reflexive 1ff it is (l,n+l)-reflexive ;

2) R is iil ~transitive, i€ {1l,...,n}, 2ff it is nil— tran-
sttive ; :

3) R 1is iiz ~-transitive, i€ {1,...,n}, iff it is niz—tra—

nsitive ;

4) R is iﬂl -transtitive, i€ {2,...,n+l}, Zff it <s
(n+l)Ml —-transitive ;

5) R s iM2
(n+l)M2—transitive N

-transitive, i€ {2,...,n+1}, iff it is

6) R is niz-transitive,-iff it is nil-transitiue.

PROPOSITIGN 11. (n+l)-ary relation R on S Zs the gene-

ralized equivalence relation on S in the sense of 42) 1ff

I R is reflexive ;

IT R satisfies the property

(1) (va,,...,a leﬁ(h?ﬂ)eRA(%f%,i#L i,jef1,...,n})

n+

( ) €R ,where T=(n+l,2,...,n,1") ;

ar(1) '3 (n+l)

III R s nil—transitive.
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Proof. The only nontrivial part of the proof is
the one in which the symmetry has to be proved, under the assum—
ption that R satisfies I, II and III.

ol
Suppose (a? 1)e R.

If ai==aj, for some i#3j, i,je{l,...,n+1}, then this
part of the symmetry follows directly from I and the definition
of reflexivity.

If there are no equal elements amoné aj. ie{l,...,n+1},
then Corollary 3, I,and III imply that if :

(a?+l) € R then all (n+l)-tiples produced by the cycle

(n,1,...,n-1,n+1) also belong to R. Since this cycle and 1 pro-
duce each permutation on {1,...,n+l1}, using II, we get that for

each permutation me {1,...,n+1} !

,a ) €R , proving that T satisfies the sy-

(an(l)""
mmetry.

m(n+1)

There, is another characterization of the generalized equ-
ivalence relation, depending on reflexivity and two transitivi-

ties.

PROPOSITION 12. (n+l1)-ary relation R on S 78 a genera-

lized equivalence relation in the sense of 42) iff

() R 28 reflexive ;
(8) R Zs (n~-1)A, -transitive ; .
(vy) R s nﬁl ~transitive

n-2

1
) also belongs to R. Thereby, for

Proof. Let (ao,a

flexivity (a?-z,a

'an—l’aﬁ) €R. By (n-1,n+l)-re-

n-1"%n"%n-1
+
?l)eR,ﬂmn

,an+l,an)e R. The proof of the symmetry now follows from

digf?rent al""’an+l’(B) implies that if (a
(ay
the procedure used in proving Proposition 11.

The following proposition shows that, assuming (1,n+1)-
reflexivity and some of the symmetry, iil—transitivity implies
(i+l)Ml—transitivity. Putting together this statement and Pro-
position €., one gets the conditions for the equivalence of the-~

se two transitivies.
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PROPOSITION 13. If (n+l)=-ary relation R on S satigfi-

es Y - and Yo -symmetry (Yn+l=(n+1,1,...,n), y;(n,l,...,

n+l

n-1,n+l)), iﬁl -transitivity (1€{l,...,n}) and (1,n+l) -refle-

xivity, then R satisfies (i+1)ﬁ1 ~-transgitivity.

Proof€E. 1) R is symmetric, because it satisfies

Yn+1~ and Yn~ symmetry (see the text preceding Proposition 10.).

2) Let (a’l‘,x ) eR,...,(a‘l‘,x ) eR, x; #x; for i#3 ,
i,je{1,...,n}. Now, if there are equal elements among Alreeny
a ;y . reflexivity implies (a /Y) €R , proving (1+1)M -transi-
tivity for R.

Assume now that ai_#aj. a; #y i.3 e{1,....n}. Also let

a;=x;, 1i=1,...,k, k € {0,....n} (for k=0 there are no such ecu-

al elements). Assumption 2) is now given by

k n n _n
(a) (leak+1,xl) €R,...,(xl,ak+l,xk) €R ,
k n k n
(b) (xl’ak+1’xk+1) eR,....(xl,ak+1,xn) €ER .

From (b), by symmetry, it follows .that

k
k+1’ X k+l) e R and (x k+1,x ) €R, t.e{k+2 «..,nl}.

nﬁl ~-transitivity now implies

(x

n-

(e) (XppprXyray,

i,xt) eR, ted{k+2,...,n}.

From this, by symmetry and nﬁl-transitivity, it follo-
ws that

(a) ve{k+3,...,n}.

k _n-2
(X por Xy 17X 18 rX,) ER,

Continuing this procedure, we finally get (x?,a ) ER, i.e.

k+1
n
(e) (ak+1,xl) €ER-

Since xi:=a.,i=1,...,k, from (a), (b) and (e) it follows that

'k k .n . = .
{ k+l’al'xk+1) € R and (a1 xk+1,y) € R, and applying nAl-tran51-

tivity, we get

-1
(£)  (ay,,.a%.Xp1/¥) €R .
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Applying nﬁl—transivity on

k n-1

n-1
(@ ypray yrayrxy 1Y) € R,

k
VER , (agyrayixy

(the first (n+l)-tiple is from (d) i.e. from the procedure ex-
posed there, and the second is (f)), we get

k n-2
(9) (@) 4prdy 178 ,%y ) ,¥)E R.

Continuing this procedure, we finally get

k . n ' .
(an,an_l,...,ak+1,a1,y) €ER , i.e. (al,y) € R, proving the sta-

tement, if i=n.
In the case when i#n, suppose that

n-1 n+1l i-1 n+1l

(h) (al ’Xl’ai+1) eR,...,(al ’Xn’ai+1) €R and

(1) (x],¥) eR, xg #xy, for 1#3, 1,je{1,...,n}.
Since R is symmetric (1)), we have (from (h) and (1))

i-1 _n+1

i-1 _n+l
1 3410 %))

€R,...,(a a l,xn) €R and

(3 (a 12ty

(k) (1,¥) eR, x; #x5, for i#3, i,je{1,...,n}.

Applying the symmetry and 4), Proposition 10, the proof in this
case is the same as the one given for i=n.

COROLLARY 14. If (n+l)-ary reflexive relation on S sa-

tisfies (n—l)il— and nA_-traneitivity, then it is (n+l)!711 -tra-

1
neitive.

Proof. This is a consequence of the two previous
propositions.

COROLLARY 15. (n+l) =-ary (1,nt+l)-reflexive and symme-

tric relation R on S is nA_-transitive iff it is (n+l)ﬁl-tran—

1
sitive.

Proof. Immediately by Proposition 6. and Proposi-
tion 13.
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REMARK 4.

Applying Corollary 8., and the first part of the proof
of Proposition 13. concerning the symmetry, one can put " (i+l1)
ﬁz—" instead of “(i+1)ﬁ1-" into the formulation of Proposition
13., which will remain true.

* * *

In this part we shallshow thatthe condition of n different
elements in iil-transitivity ((4) in (3)), given by Pickett | 2]
can be weakened ((3) in 31) , giving something new in the pre-
vious characterizations.

The following lemma follows immediately from the defi-

nitions of iA*- and iﬁl—transitivity.

LEMMA 16. a) iAI -transitive relation is iﬁl—transi—
tive; :

b) For n=2 the relation R is iA,-transitive iff it is

1

ii;—transitive (i.e. these two definitions to not differ).

REMARK 5.

If we consider reflexive relations, the condition aj#ai
could not be weakened more, since for example, for n=2, from
(a,b,b) €eR and (b,b,c) € R, its absence implies (a,b,c) € R. The
reflexive relations would thus always consist of all triples
((n+1)~- tiples) on the given set.

PROPOSITION 17. (n+l)-ary relation R on s‘”snin)jsthzge—
neralized equivalence relation on S in the sense of 42) iff
it satisfies:

(Z) for each sequence of n different elements Xs¥qs- -

cesYo of S, there 18 y in S,¥ =Y, 1> such that

n-1
(x,y] ",¥Y) €R ;

(Z7) R s Yn+1—and Yn—symmetric, where
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1
Yner = (n+1,1,...,n) and Y, = (n,1,...,n-1,n+1) ) ;
(ZZZ) R ©8 nA"lk - transitive.
REMARK 6.

For n=1, (i) reduce to the statement that for each x €8S,
there is y € 8, such that (x,y) € R, and this is equivalent to the

usual condition pR=§, in the binary case.

Proof of Proposition 17.: We have to prove that R satis-
fies (l,n+l)-reflexivity (the rest is trivial), if it satisfi-

es (i), (ii) and (iii).

Let X ,...,X €8S, xi#xj, i,5€{0,...,n-1}. Then by

n-1 _
and (xg l,y) € R, From here,by sym-

(i), there is v €S, y#xn_l,

metry,it follows that (x?—l,y,xo) €R, and by (iii)

n-1

(xo

. n-1
,xo) € R,ie{symmetry), &o’xl ) € R.
n-1 2 n-1
From (xo yy) €R and (xo,xl

(}% xn—2
o'l

Continuing this procedure, we finally get
(a) (% ,xn_(l—l)) €R, for each i€e{2,,..,n+l}, and for arbitrar

) €R, (iii) implies

. 3 .n-2
,xo) €R i.e. (xo,x1 )€ R.

different xo,...,Xn-1 €8S.
Applying the symmetry on (a), we get

i n+l-i i n+l-i

(xl,xo, 5 ) €R , and (xo,x2 ,xl) €R, and (iii) qgi-
i n-i . 2 i n-i . .
ves (xl,xo,x2 ,xl) €ER i.e. (x_l,xo,x2 ) €R, and again,by (111))
3 i n-i-1
(xl,SEO,x2 1 } €R,

Continuing, we get
i n+2~i-7 c
(xo,'i?cl,x2 Iy €R, i+j <n+l.

The same procedure gives

1) Yq4y-and v, -symmetry produce the (whole) symmetry. Instead of Y, one

can take an arbitrary transposition.
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. i i. » _3 _ i
i 1 n+j+1-1i cee—is .
(xg,xl,...,xg,xj+i o j)er , io+...+1j§}1+ 1,

completing by (ii), the proof of the reflexivity.

REMARK 7.
Note that the "only if" part of the proof of the prece-

ding proposition shows that "some" of nA;-transivity is included

in reflexivity, in the case when there are equal element among
n+1l
} €R.

x 1

LARERE

for (xg) € R and (x
The fact that reflexivity does much more in generalized
equivalences than in the binary case, can be shown by the follo-
wing example, for n=2. Let Rconsists of all triples with equal
coordinates (i.e. for x€8, (x,x,x) € R), and of arbitrary trip-
les with different coordinates ((xl,xz,x3) €R, xi#xj, i#3j), pro-
vided that R is 2A1-transitive. Then no part of the symmetry
can be produced, since there are no triples in R, being of the

form (x,y,x), x#y.
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REZIME

TRANZITIVNE n-ARNE RELACIJE I
KARAKTERIZACIJE UOPSTENIH EKVIVALENCIJA

Pickett |2]| defini¥e uop%tene relacije ekvivalencije i
povezuje ih sa particijama tipa n koje je uveo Hartmanis |1}.
U ovom radu dati su razli&iti tipovi uopStenih refleksivnih ,
simetri¢nih, kao i tranzitivnih relacija. Ispitane su osobine
tih relacija i data su tvrdjenja koja ih povezuju. Najzad, do-
kazani su stavovi o razliditim karakterizacijama uop$tenih ek-

vivalencija.



