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1. 1In |1] and |2| a unified notation is given of almost
complex structure and almost contact structure by the introduc-
tion of a tensor field of type (1,1) on M? such that f3+f= 0
and the rank f =k is a constant everywhere The necessary and
sufficient condition for an n-dimensional manifold to admit a
tensor field f #0 of type (1,1) such that f3+f=0 is that k=2m
and that the group of the tangent bundle of the manifold can
be reduced to the group Ulm) XOin-omy - 0 |3] and |4| the struc-
ture ¢4 t ¢2 = 0 is studied and the necessary and sufficient con-
dition is given when M admits such a structure. In this paper,
we want to introduce a tensor field of type (1,1) which satis-

fies the condition (¢2+1) (¢2-—a)=0.

2. Let M" be an n-dimensional differentiable manifold
of the class C~ and let ¢ be a tensor field, ¢2#a, ¢2#—1 of
type (1,1) and of class ¢” such that n=2m,

(2.1) (02+1) (92-a) =0, aeRrR", az1

and rank ¢ =% {rank ¢2+dimMn)=r=const.

For a differentiable manifold with a structure which satisfies
such conditions we say that it asmits an ¢ (+1,a) structure.
Let

2
(2.2) g = $ma m= 4t
~-1-a a+l
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Then ¢ and m are complementary projection operators since m2==m,
2,2 =2, fIm=mL =0, L+m=1, which can easily be verified.
THEOREM 2.1. Let ¢ satisfy conditiones (2.1) and let
L and m be defined by condition (2.2). We then have
3 3

= $ -¢a = ¢

(2.3) $2 —1-a P om arl
2 2 b2 4. .2 2 2 2
¢2£ _ ~¢"+a¢"+a a¢=£' ¢2m= ¢ +¢” _ ¢ +a¢p"ra-¢” _ -

-1-a a+l a+l

Let L and M be complementary distributionswhich corre-
spond to projections 2 and m respectively. Then, (because of
(2.3)), ¢ acts on L as an almost complex structure and on M as
a structure for wich ¢2 is a homothety with coefficient of the
homothety a. If ¢ is of constant rank r, then the dimensions of
L and M are 2r-n and 2n-2r respectively. Obviously we have
n < 2r < 2n.

REMARK 2.1. If the rank of ¢ is n, then ¢2 +1=0. Consequen-
tly, the ¢(+1,a) structure of maximal rank is an almost complex

structure.

REMARK 2.2. If the rank of ¢ is n/2, then ¢2 -a=0. Hence the
$(+1,a) structure of minimal rank is a structure for which ¢2
is a homothety with coefficient of the homothety a.

We shall now examine under which conditions the diffe-
rentiable manifold admits a ¢ (+1,a) structure.

3. We now introduce a local coordinate system in the
J
i
tensors ¢,%,m respectively. We also introduce a positive defi-

manifold and denote by ¢3, 7, mi the local components of the
nite Riemannian metric in the manifold and take 2r-n mutually
orthogonal unit vectors v; (a,b,¢,...=1,2,...,2xr-n) in L and
2(n-r) to be mutually orthogonal unit vectors vJ (A,B,C,...

A
=2rr=-n +1,,..,n) in M. We then have
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s I S, o1
Zi vb vb B Zi vB 0,
i Vb =0, my VB = VB .

If we denote by (si, s?) the matrix inverse to (Vg, vg)

then s? and s? are both components of linearly indenpendent co-

variant vectors and satisfy the relations:

(3.2) s? vé = 62 ' si v; =0, s? Vé =0, s? vé = 62 '
(3.3) s2 v+ Pl = 6)

If we put

(3.4) Py = si si + sﬁ s?

then Py is a globally well- deflned pOSltlve definite Riemannian
metric with respect to which (vb, Vi J) form an orthogonal frame
such that

i A i

S v

v k = Pxi Va

a_
Sk T Pxi Var

Now from (3.1) and (3.2) we find that

j .a,. i _ .a Jo.a, i _
(27 s )vb = Gb , (Qi si)VB o,
A, 1 j A1 _ (A
(mi sj)vb =0, (mi sj)vB GB R
which show that
2? sé = s? ’ mJ S% = s% ’
i 73 i i73 i
(3.5) . .
m? sa =0 , 2? sé =0
i 3 i 3]
On the other hand, from Zg v; = vg we find that
J . . .
Ak _ _a_j J.k Ak, _ _a 3]
Qk Sy Vg = S; Vv 22 (87 sy VA) =s; vy
that is,

(3.6) 93 = g2 v3 .
1
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Similarly we get

j _ B i

(3.7) m; = sy Vg -
If we put

— T T Y
(3.8) fgi = ¥k Ppy v My T My Pry oo
we find from (3.6), (3.7) and (3.4)

_ .a _a _ A A
(3.9) zki Sy Sy v m g Sl S; ¢
(3.10) i = X v Mg = Myx o0 ik Y Mg = Pyy -

We can also easily verify the following relations

= r @ -
(3.11) LF 28 p = 2 , L mS prq o,

rq ki k

q
i
mp mg prq my -

A AR

For any two vectors x,y with components xl, yl let us

put

) = r. g - r g
(3.12) mr(g,y) =m Xy, pO,Y) =P XY,
(3.13)  F(x,¥) = 3(00x,y)+p(x,0y) + m*(x,¥)) .

Then we have
m*(vA,va) = p(vA’Va) =0,
- —l _
g(VA’Va) = 2(p(vA,va)+p(¢vA,¢va)-*m*(vA,va)) =0 .

Thus L and M are orthogonal with respect to 5. Furthermore, it

is easy to verify by using (3.8) and (3.10) that

r g.h _Jj
p(45Va’¢vb) 2rq¢h ¢j Va Vb !

hos
P4V, 0v) + m*(ov ,0v) = p o by 95 Vo vp .

2 2 _ r g
p(¢~v,, ¢ Vb) = prq vy Vp -
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These relations lead to the following:
(3.14) g(éx,9y) = g(x,y) for all x,y in L.

Let M, be a space such that for xeM,, ¢(x) = Y ax and

let M2 be the distribution orthogonal to M
to g. We choose an orthonormal basis u

in M with respect
with

1
n—r+1""’u2(n-r)
Furthermore, let e

respect to 5 for M be an ortho-

9 17 " €op n
normal basis for L with respect to g. Using g we can defined a

Riemannian metric g on m" by

gleyre) = gleg,e)), gleg,u) = ale;,u)), gluy,ug) = glug,ug)

g(ei,d)(ua)) =g (ei,¢(ua)), g(¢(ua),u8) 0, g(¢(ua)fb(u8))=

=6 1<i, k<2r-n, n-r+l<a,B8<2n-r .

aB’

Then g is well-defined because if u is another

n—r+1""’u2(n—r)

orthonormal basis for M, then for ﬁa=22 ug we have

2
- = = _ -, R £ _ B _e _ B _B
ay" g(ua.uY) = g(z, ugs z, us) =z, 2z, 685_ 2y Zy
and
(63 ), 6 @) =g(z5 w2z o)) = 2P28 go(u),otu)) =
9i%ag) R0y mRE, ©T0glmy $10e a®y g’ Ve
= zB zB =6 .
a “y ay

This means that there is a Riemannian metric g with respect to

which L, Ml' M2 are mutually orthogonal and
glox,oy) = g(x,v) for all x,y in L.
g(ox,0y) = a-g(x,y) for all x,y in M.
THEOREM 3.1. If in an n-dimension manifold M? (n=2m )

a ¢(+1,a) structure of rank r is given, then there exist com-
plementary distributions L of dimension 2r-n, and M of dimensi-
on 2(n-r) and a positive definite Riemannian metric g with res-
rect to which L and M are orthogonal, and, furthermore, such
that

n

g(dx,9y) X,y €L
g (¢x,9y) X,y € M.

g(x,y)
ag(x,y)
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4.

Take a vector e in the distribution L. Then the ve -

ctor ¢(e) is also in L and perpedikular to e, and moreover has

the same lenght as e with respect to the metric g.

Consequently

we can choose 2r-n=2(r-m) orthonormal vectors in L such that

¢(el)

and in M an orthonormal basis e

= e
r-m+

1r0(ep)= ey

-m+2’ "

.,¢(er_m)

2(r-m)+1’""

= e2(r—m) !

.,en such that e

r+1’

...,e_ are in M2 and that ¢(er+l) - fEeZ(r—m)+1""'¢(en) =
= - Vvae_.
r
Then with respect to this orthonormal frame {el,...,en}
the tensors gji and ¢; have components
[~ - — -~
n 0 0 0 0 E n 0 0
) 2
n 0 0 ~E n 0 0 0
(4.1) g = r—i ¢= r-i
0 0 0 0 VYaE 0
n-r n-r
] 0o 0 n-t, LO 0 0 -/aEn_r_
Such a frame is an adapted frame of the ¢(+1,a) struc-

ture. Let {ég be another adapted frame in wich g and ¢ have

the same components as (4.1).

Put éi = yi ey- Then y has a matrix of the form
A n B n 0 0
2 72
vy = -B A 0 0
]
0 0 c__ Q
0 0 Y by
This means that the group of the tangent bundle of the mani -
fold can be reduced to U(r_%)x O(n-r) X O(n—r) Conversely,
if the group of the tangent bundle of the manifold can be re-
duced to U(r—%) X O(n—r) X O(n—r) then we can define a positive

definite Riemannian metric g and a ¢(+1,a) structure withmatrices
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(4.1) with respect to the adapted frames. Then we have

[ ] [ ]
E 0 0 0 E_ 0 o 0
r—2- r—2-
2. 0 E 0 0 ) 0 B, 0 0
= 2 L0 = )
0 0 aE_, 0 0 0 a’E__ 0
0 0 0 0 0 0 a%E
n"Ji | n‘r_

and it is easily verified that (¢2+1)(¢2—a)=0. From this we have

THEOREM 4.1. A necessary and sufficient condition for
the n-dimensional manifold to admit a ¢(+1,a) structure 1s that

the group of the tangent bundle can be reduces to the group

U X O X O .

n n-r n-r

r——
2
It is known from !3] that if the structuralgroup of a
manif»ld Mn is reduced to U x O x O , then Mt ad-
-2 (n-r) {(n-r)
2

mits a ¢(4,+2) structure. L is the subspace of e on which ¢2=-1,
while the complement M of the space L in M admits an almost
tangent structure.

From this paper it follows that if the structural group

of manifold M? is reduced to U x O x O , then Mt
(r-1) (n-r) (n-r)
2

admits a ¢(+1,a) structure. L is the subspace of M* aqvhid1¢2=-1,
vhile the complement M of space L in M’ admits the structure ¢M‘ for which ¢§=a.

From this we have:

THEOREM 4.2. If the structural group of mantifold Mt

, n . .

is reduced to U(r_g)}<0(n_r) X0 _pys then M admits a ¢(4,+2;
2 o

and ¢ (+1,a) structure. L Zg the subspace of M™ on which ¢2 =-1

for both structures. Complement M of the space L 1in M® ad-

mits structure for phich ¢;==0 or ¢£ = a.
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REZIME

O STRUKTURI ¢ KOJA ISPUNJAVA USLOV (¢2+J) (®2-a) =0

Potreban i dovoljan uslov da se n~dimenzionalna mnogo-
strukost moZe snabdeti ¢ (+1,a) strukturom je da se grupa tan-

gentnog bandla moZe reducirati do U(r_E)xO(n_r) xO(n_r) . Ako
2

se strukturna grupa moZe reducirati do U(r_E) xo(n—r) xo(n-r)
2

tada se mnogostrukost moZe snabdeti i ¢(4,+2) i ¢(+1,a) struk-

turom. U prvom slucaju je ¢i=-l, a na komplementarnom prostoru

M je ¢h24=0. U drugom slucaju ¢i=—1, a na M je ¢1\24 = a.



