Zbornik radova Prirodno-matematičkog fakulteta-Univerzitet u Novom Sadu knjiga 11 (1981)

Review of Research Faculty of Science-University of Novi Sad, Volume 11(1981)

ON A STRUCTURE
$$\phi$$
 SATISFYING $(\phi^2+1)(\phi^2-a)=0$

Jovanka Nikić

Fakultet tehničkih mauka. Institut za primenjene osnovne discipline, 21000 Novi Sad, ul. Veljka Vlahovića 3, Jugoslavija

- 1. In |1| and |2| a unified notation is given of almost complex structure and almost contact structure by the introduction of a tensor field of type (1,1) on \mathtt{M}^n such that $\mathtt{f}^3+\mathtt{f}=0$ and the rank $\mathtt{f}=\mathtt{k}$ is a constant everywhere. The necessary and sufficient condition for an n-dimensional manifold to admit a tensor field $\mathtt{f}\neq 0$ of type (1,1) such that $\mathtt{f}^3+\mathtt{f}=0$ is that $\mathtt{k}=2\mathtt{m}$ and that the group of the tangent bundle of the manifold can be reduced to the group $\mathtt{U}_{(\mathtt{m})}\times \mathtt{O}_{(\mathtt{n}-2\mathtt{m})}$. In |3| and |4| the structure $\phi^4\pm\phi^2=0$ is studied and the necessary and sufficient condition is given when \mathtt{M}^n admits such a structure. In this paper, we want to introduce a tensor field of type (1,1) which satisfies the condition $(\phi^2+1)(\phi^2-\mathtt{a})=0$.
- 2. Let M^n be an n-dimensional differentiable manifold of the class C^{∞} and let ϕ be a tensor field, $\phi^2 \neq a$, $\phi^2 \neq -1$ of type (1,1) and of class C^{∞} such that n=2m,

(2.1)
$$(\phi^2+1)(\phi^2-a) = 0 , a \in \mathbb{R}^+ , a \neq 1$$
 and rank $\phi = \frac{1}{2}$ (rank $\phi^2+\dim M^n$)=r=const.

For a differentiable manifold with a structure which satisfies such conditions we say that it asmits an $\phi(+1,a)$ structure.

(2.2) $\ell = \frac{\phi^2 - a}{-1 - a} , \quad m = \frac{\phi^2 + 1}{a + 1} .$

Then ℓ and m are complementary projection operators since $m^2 = m$, $\ell^2 = \ell$, $\ell = m\ell = 0$, $\ell + m = 1$, which can easily be verified.

THEOREM 2.1. Let ϕ satisfy conditions (2.1) and let ℓ and ℓ and ℓ and ℓ be defined by condition (2.2). We then have

(2.3)
$$\phi \ell = \frac{\phi^3 - \phi a}{-1 - a}$$
, $\phi m = \frac{\phi^3 + \phi}{a + 1}$

$$\phi^2 \ell = \frac{-\phi^2 + a\phi^2 + a - a\phi^2}{-1 - a} = \ell , \quad \phi^2 m = \frac{\phi^4 + \phi^2}{a + 1} = \frac{\phi^2 + a\phi^2 + a - \phi^2}{a + 1} = am.$$

Let L and M be complementary distributions which correspond to projections ℓ and m respectively. Then, (because of (2.3)), φ acts on L as an almost complex structure and on M as a structure for wich φ^2 is a homothety with coefficient of the homothety a. If φ is of constant rank r, then the dimensions of L and M are 2r-n and 2n-2r respectively. Obviously we have $n \leq 2r \leq 2n$.

- REMARK 2.1. If the rank of ϕ is n, then $\phi^2 + 1 = 0$. Consequently, the $\phi(+1,a)$ structure of maximal rank is an almost complex structure.
- REMARK 2.2. If the rank of ϕ is n/2, then $\phi^2-a=0$. Hence the $\phi(+1,a)$ structure of minimal rank is a structure for which ϕ^2 is a homothety with coefficient of the homothety a.

We shall now examine under which conditions the differentiable manifold admits a ϕ (+1,a) structure.

3. We now introduce a local coordinate system in the manifold and denote by ϕ_1^j , ℓ_1^j , m_1^j the local components of the tensors ϕ , ℓ , m respectively. We also introduce a positive definite Riemannian metric in the manifold and take 2r-n mutually orthogonal unit vectors \mathbf{v}_a^i (a,b,c,...=1,2,...,2r-n) in L and 2(n-r) to be mutually orthogonal unit vectors \mathbf{v}_A^j (A,B,C,...=2r-n+1,...,n) in M. We then have

(3.1)
$$k_{i}^{j} v_{b}^{i} = v_{b}^{j}, \quad k_{i}^{j} v_{B}^{i} = 0,$$

$$m_{i}^{j} v_{b}^{i} = 0, \quad m_{i}^{j} v_{B}^{i} = v_{B}^{j}.$$

If we denote by (s_i^a, s_i^A) the matrix inverse to (v_b^j, v_B^j) then s_i^a and s_i^A are both components of linearly independent covariant vectors and satisfy the relations:

(3.2)
$$s_{i}^{a} v_{b}^{i} = \delta_{b}^{a}$$
, $s_{i}^{a} v_{B}^{i} = 0$, $s_{i}^{A} v_{b}^{i} = 0$, $s_{i}^{A} v_{B}^{i} = \delta_{B}^{A}$,

(3.3)
$$s_{i}^{a} v_{a}^{j} + s_{i}^{A} v_{A}^{j} = \delta_{i}^{j}$$

If we put

$$(3.4) p_{ki} = s_k^a s_i^a + s_k^A s_i^A$$

then p_{ki} is a globally well-defined positive definite Riemannian metric with respect to which $(v_b^j,\,v_B^j)$ form an orthogonal frame such that

$$s_k^a = p_{ki} v_a^i$$
, $s_k^A = p_{ki} v_A^i$.

Now from (3.1) and (3.2) we find that

which show that:

(3.5)
$$k_{i}^{j} s_{j}^{a} = s_{i}^{a}, \qquad m_{i}^{j} s_{j}^{A} = s_{i}^{A},$$

$$m_{i}^{j} s_{j}^{a} = 0, \qquad k_{i}^{j} s_{j}^{A} = 0.$$

On the other hand, from $l_i^j v_a^i = v_a^j$ we find that

$$\ell_k^j s_i^A v_a^k = s_i^a v_a^j$$
, $\ell_k^j (\delta_i^k - s_i^A v_A^k) = s_i^a v_a^j$

that is,

$$(3.6) \ell_i^j = s_i^a v_a^j.$$

Similarly we get

(3.7)
$$m_{i}^{j} = s_{i}^{B} v_{B}^{i}$$
.

If we put

(3.8)
$$\ell_{ki} = \ell_k^r p_{ri}, \quad m_{ki} = m_k^r p_{ri}^r,$$

we find from (3.6), (3.7) and (3.4)

(3.9)
$$l_{kj} = s_k^a s_i^a$$
, $m_{kj} = s_k^A s_i^A$,

$$(3.10) \qquad \ell_{ki} = \ell_{ik} , \qquad m_{ki} = m_{ik} , \quad \ell_{ik} + m_{ik} = p_{ik} .$$

We can also easily verify the following relations

(3.11)
$$\ell_{\mathbf{k}}^{\mathbf{r}} \ell_{\mathbf{i}}^{\mathbf{q}} p_{\mathbf{r}\mathbf{q}} = \ell_{\mathbf{k}\mathbf{i}}, \quad \ell_{\mathbf{k}}^{\mathbf{r}} m_{\mathbf{i}}^{\mathbf{q}} p_{\mathbf{r}\mathbf{q}} = 0,$$

$$m_{\mathbf{k}}^{\mathbf{r}} m_{\mathbf{i}}^{\mathbf{q}} p_{\mathbf{r}\mathbf{q}} = m_{\mathbf{k}\mathbf{i}}.$$

For any two vectors \mathbf{x}, \mathbf{y} with components $\mathbf{x}^{\mathbf{i}}$, $\mathbf{y}^{\mathbf{i}}$ let us put

(3.12)
$$m^*(x,y) = m_{rq}x^ry^q$$
, $p(x,y) = p_{rq}x^ry^q$,

(3.13)
$$\bar{g}(x,y) = \frac{1}{2}(p(x,y)+p(\phi x,\phi y) + m*(x,y))$$
.

Then we have

$$\begin{split} & m^{*}(v_{A}, v_{a}) = p(v_{A}, v_{a}) = 0, \\ & \bar{g}(v_{A}, v_{a}) = \frac{1}{2}(p(v_{A}, v_{a}) + p(\phi v_{A}, \phi v_{a}) + m^{*}(v_{A}, v_{a})) = 0. \end{split}$$

Thus L and M are orthogonal with respect to \bar{g} . Furthermore, it is easy to verify by using (3.8) and (3.10) that

$$\begin{split} p\left(\phi \mathbf{v_a}, \phi \mathbf{v_b}\right) &= \ell_{\mathbf{rq}} \phi_h^{\mathbf{r}} \phi_{\mathbf{j}}^{\mathbf{q}} \mathbf{v_a}^{h} \mathbf{v_b^{j}} \,, \\ p\left(\phi \mathbf{v_a}, \phi \mathbf{v_b}\right) &+ m \star (\phi \mathbf{v_a}, \phi \mathbf{v_b}) &= p_{\mathbf{rq}} \phi_h^{\mathbf{r}} \phi_{\mathbf{j}}^{\mathbf{q}} \mathbf{v_a^{h}} \mathbf{v_b^{j}} \,, \\ p\left(\phi^2 \mathbf{v_a}, \phi^2 \mathbf{v_b}\right) &= p_{\mathbf{rq}} \mathbf{v_a^{\mathbf{r}}} \mathbf{v_b^{q}} \,. \end{split}$$

These relations lead to the following:

(3.14)
$$\overline{g}(\phi x, \phi y) = \overline{g}(x, y)$$
 for all x,y in L.

Let M_1 be a space such that for $x \in M_1$, $\phi(x) = \sqrt{ax}$ and let M_2 be the distribution orthogonal to M_1 in M with respect to \bar{g} . We choose an orthonormal basis $u_{n-r+1}, \dots, u_{2(n-r)}$ with respect to \bar{g} for M_2 . Furthermore, let e_1, \dots, e_{2r-n} be an orthonormal basis for L with respect to \bar{g} . Using \bar{g} we can defined a Riemannian metric g on M^n by

$$\begin{split} &g(e_{\underline{i}},e_{\underline{k}}) = \overline{g}(e_{\underline{i}},e_{\underline{k}}), \quad g(e_{\underline{i}},u_{\alpha}) = \overline{g}(e_{\underline{i}},u_{\alpha}), \quad g(u_{\alpha},u_{\beta}) = \overline{g}(u_{\alpha},u_{\beta}) \\ &g(e_{\underline{i}},\phi(u_{\alpha})) = \overline{g}((e_{\underline{i}},\phi(u_{\alpha})), \quad g(\phi(u_{\alpha}),u_{\beta}) = 0, \quad g(\phi(u_{\alpha}),\phi(u_{\beta})) = \\ &= \delta_{\alpha\beta}, \quad 1 \leq \underline{i}, \quad \underline{k} \leq 2r - n, \quad n - r + 1 \leq \alpha, \beta \leq 2n - r \quad . \end{split}$$

Then g is well-defined because if $\bar{u}_{n-r+1}, \dots, \bar{u}_{2(n-r)}$ is another orthonormal basis for M_2 then for $\bar{u}_{\alpha} = Z_{\alpha}^{\beta} u_{\beta}$ we have

$$\delta_{\alpha\gamma} = \bar{g} (\bar{u}_{\alpha}, \bar{u}_{\gamma}) = \bar{g} (z_{\alpha}^{\beta} u_{\beta}, z_{\gamma}^{\epsilon} u_{\epsilon}) = z_{\alpha}^{\beta} z_{\gamma}^{\epsilon} \delta_{\beta\epsilon} = z_{\alpha}^{\beta} z_{\gamma}^{\beta}$$

and

$$\begin{split} g\left(\phi\left(\overline{u}_{\alpha}\right),\phi\left(\overline{u}_{\gamma}\right)\right) &= g\left(z_{\alpha}^{\beta} \phi\left(u_{\beta}\right),z_{\gamma}^{\varepsilon} \phi\left(u_{\varepsilon}\right)\right) = z_{\alpha}^{\beta}z_{\gamma}^{\varepsilon} g\left(\phi\left(u_{\beta}\right),\phi\left(u_{\varepsilon}\right)\right) = \\ &= z_{\alpha}^{\beta} z_{\gamma}^{\beta} = \delta_{\alpha\gamma}. \end{split}$$

This means that there is a Riemannian metric g with respect to which L, $\rm M_1$, $\rm M_2$ are mutually orthogonal and

$$g(\phi x, \phi y) = g(x, y)$$
 for all x,y in L.
 $g(\phi x, \phi y) = a \cdot g(x, y)$ for all x,y in M.

THEOREM 3.1. If in an n-dimension manifold M^n (n=2m) a ϕ (+1,a) structure of rank r is given, then there exist complementary distributions L of dimension 2r-n, and M of dimension 2(n-r) and a positive definite Riemannian metric g with respect to which L and M are orthogonal, and, furthermore, such that

$$g(x,y) = g(\phi x, \phi y)$$
 $x,y \in L$
 $ag(x,y) = g(\phi x, \phi y)$ $x,y \in M$.

4. Take a vector e in the distribution L. Then the vector ϕ (e) is also in L and perpedikular to e, and moreover has the same length as e with respect to the metric g. Consequently we can choose 2r-n=2 (r-m) orthonormal vectors in L such that

$$\phi(e_1) = e_{r-m+1}, \phi(e_2) = e_{r-m+2}, \dots, \phi(e_{r-m}) = e_{2(r-m)},$$
 and in M an orthonormal basis $e_{2(r-m)+1}, \dots, e_n$ such that e_{r+1}, \dots, e_n are in M₂ and that $\phi(e_{r+1}) = -\sqrt{a}e_{2(r-m)+1}, \dots, \phi(e_n) = e_{2(r-m)+1}, \dots, \phi(e_n) = e_{2(r-m$

Then with respect to this orthonormal frame $\{e_1,\dots,e_n\}$ the tensors $g_{j\,i}$ and ϕ_j^i have components

$$(4.1) \quad g = \begin{bmatrix} E & 0 & 0 & 0 & 0 \\ r - \frac{n}{2} & & & & & \\ 0 & E & 0 & 0 & 0 \\ & & r - \frac{n}{2} & & \\ 0 & 0 & E_{n-r} & 0 \\ 0 & 0 & 0 & E_{n-r} \end{bmatrix} \phi = \begin{bmatrix} 0 & E & 0 & 0 & 0 \\ & r - \frac{n}{2} & & & \\ -E & 0 & 0 & 0 & 0 \\ r - \frac{n}{2} & & & \\ 0 & 0 & \sqrt{a}E_{n-r} & 0 \\ 0 & 0 & 0 & -\sqrt{a}E_{n-r} \end{bmatrix}$$

Such a frame is an adapted frame of the $\phi(+1,a)$ structure. Let $\{\bar{e}_j\}$ be another adapted frame in wich g and ϕ have the same components as (4.1).

Put $e_i = \gamma_i^j e_j$. Then γ has a matrix of the form

$$\gamma = \begin{bmatrix} A & B & 0 & 0 \\ r - \frac{n}{2} & r - \frac{n}{2} & 0 & 0 \\ -B & A & 0 & 0 \\ r - \frac{n}{2} & r - \frac{n}{2} & 0 & 0 \\ 0 & 0 & C_{n-r} & 0 \\ 0 & 0 & 0 & C_{n-r} \end{bmatrix}$$

This means that the group of the tangent bundle of the mani - fold can be reduced to $U_{(r-\frac{n}{2})} \times O_{(n-r)} \times O_{(n-r)}$. Conversely, if the group of the tangent bundle of the manifold can be reduced to $U_{(r-\frac{n}{2})} \times O_{(n-r)} \times O_{(n-r)}$ then we can define a positive definite Riemannian metric g and a $\phi(+1,a)$ structure with matrices

(4.1) with respect to the adapted frames. Then we have

$$\phi^2 = \begin{bmatrix} -E & 0 & 0 & 0 & 0 \\ r & 0 & & & & & \\ 0 & -E & 0 & 0 & 0 \\ r & 2 & & & & \\ 0 & 0 & aE_{n-1} & 0 \\ 0 & 0 & 0 & aE_{n-r} \end{bmatrix}, \phi^4 = \begin{bmatrix} E & 0 & 0 & 0 & 0 \\ r & 2 & & & \\ 0 & E & 0 & 0 & 0 \\ r & 2 & & & \\ 0 & E & 0 & 0 & 0 \\ r & 2 & & & \\ 0 & 0 & a^2E_{n-r} & 0 \\ 0 & 0 & 0 & a^2E_{n-r} \end{bmatrix}$$

and it is easily verified that $(\phi^2+1)(\phi^2-a)=0$. From this we have

THEOREM 4.1. A necessary and sufficient condition for the n-dimensional manifold to admit a $\varphi(+1,a)$ structure is that the group of the tangent bundle can be reduces to the group $\overset{U}{r-\frac{n}{2}} \overset{\times}{n-r} \overset{O}{n-r} \overset{\times}{\cdot} \overset{O}{n-r} \cdot$

It is known from |3| that if the structural group of a manifold \texttt{M}^n is reduced to U \times O $_{(n-r)}$ × O $_{(n-r)}$, then \texttt{M}^n admits a $\phi(4,+2)$ structure. L is the subspace of \texttt{M}^n on which $\phi^2=-1$, while the complement M of the space L in \texttt{M}^n admits an almost tangent structure.

From this paper it follows that if the structural group of manifold \textbf{M}^n is reduced to U $_{(r-\frac{n}{2})}$ × O $_{(n-r)}$ × O $_{(n-r)}$, then \textbf{M}^n admits a ϕ (+1,a) structure. L is the subspace of \textbf{M}^n on which $\phi^2=1$, while the complement M of space L in \textbf{M}^n admits the structure $\phi_{\textbf{M}}$, for which $\phi^2_{\textbf{M}}=a$.

From this we have:

THEOREM 4.2. If the structural group of manifold \textbf{M}^{n} is reduced to U $_{(r-\frac{n}{2})}$ $^{\text{XO}}_{(n-r)}$ $^{\text{XO}}_{(n-r)}$, then \textbf{M}^{n} admits a $\phi(4,+2)$ and $\phi(+1,a)$ structure. L is the subspace of \textbf{M}^{n} on which $\phi^{2}=-1$ for both structures. Complement M of the space L in \textbf{M}^{n} admits structure for which $\phi^{2}_{\textbf{M}}=0$ or $\phi^{2}_{\textbf{M}}=a$.

REFERENCES

- |1| K.Yano, On a structure satisfying $f^3+f=0$, University of Washington, Technical Report, No. 12, June 20, (1961).
- |2| K.Yano, On a structure defined by a tensor field f of type (1,1) satisfying $f^3+f=0$, Tensor, N.S., 14 (1963), 99-109.
- |3| K.Yano, C.Houh & B.Chen, Structures defined by a tensor field ϕ of type (1,1) satisfying $\phi^4 \pm \phi^2 = 0$, Tensor, N.S., 23 (1972), 81-87.
- |4| P.M.Gader & L.A. Gordero, On integrability conditions of a structure satisfying $\phi^4 \pm \phi^2 = 0$, Tensor, N.S., 25 (1974), 78-82.

REZIME

O STRUKTURI ϕ KOJA ISPUNJAVA USLOV $(\phi^2+1)(\phi^2-a)=0$

Potreban i dovoljan uslov da se n-dimenzionalna mnogostrukost može snabdeti ϕ (+1,a) strukturom je da se grupa tangentnog bandla može reducirati do U $(r-\frac{n}{2})$ $^{\text{XO}}(n-r)$ $^{\text{XO}}(n-r)$. Ako se strukturna grupa može reducirati do U $^{\text{XO}}(r-\frac{n}{2})$ $^{\text{XO}}(n-r)$ $^{\text{XO}}(n-r)$ tada se mnogostrukost može snabdeti i ϕ (4,+2) i ϕ (+1,a) strukturom. U prvom slučaju je ϕ^2_L =-1, a na komplementarnom prostoru M je ϕ^2_M = 0. U drugom slučaju ϕ^2_L =-1, a na M je ϕ^2_M = a.