## ON A COMMON FIXED POINT IN BANACH AND RANDOM NORMED SPACES

Olga Hadžić

Prirodno-matematički fakultet. Institut za matematiku 21000 Novi Sad. ul. dr Ilije Djuričića 4. Jugoslavija

In |1| the following common fixed point theorem is proved.

THEOREM A Let S and T be continuous mappings of a complete metric space (X,d) into itself. Then S and T have a common fixed point in X if and only if there exists a continuous mapping  $A: X \to SX \cap TX$ , which commutes with S and T and satisfies the inequality

 $d(Ax,Ay) \leq q d(Sx,Ty)$  for every  $x,y \in X$ ,

where  $0 \le q < 1$ . Indeed S,T and A then have a unique common fixed point.

We shall prove in this note a common fixed point theorem if  $(X,||\ ||\ )$  is a Banach space, S and T are linear mappings,

 $\| Ax-Ay \| \le \| Sx-Ty \|$  for every  $x,y \in X$ ,

and in iterate  $A^{m}$  (m  $\in$  N) is  $\psi$ -densifying. Here S,T and A are defined on X and  $AX \subseteq SX \cap TX$ . If  $S = T = Id \mid X$ , from our Theorem follows the result from  $\mid 2 \mid$  for nonexpansive mapping A. First, we shall give some definitions  $\mid 4 \mid$ . Let  $(X, \mid \mid \mid \mid)$  be a Banach space,  $2^{X}$  the set of all subsets of X, and let  $N \subseteq 2^{X}$  be such that  $Q \in N$  implies  $\overline{CO} Q \in N$ . Further, let  $(U, \leq)$  be a partially ordered set. A mapping  $\psi: N \to U$  is a measure of noncompactness if and only if

$$\psi(\overline{co} \ Q) = \psi(Q)$$
 for every  $Q \in N$ .

The measure  $\psi$  is monotone if  $Q_1 \subseteq Q_2$  ( $Q_1$ ,  $Q_2 \in N$ ) implies  $\psi(Q_1) \leq \psi(Q_2)$ , and 2-regular if for every totally bounded set  $Q \in N$  the relation  $\psi(Q) = 0$  holds. The measure  $\psi$  is algebraically semi-additive if for every  $Q_1$ ,  $Q_2 \in N$  the inequality  $\psi(Q_1 + Q_2) \leq \psi(Q_1) + \psi(Q_2)$  holds. Let  $M \subseteq X$  and  $F: M \to X$ . The mapping F is  $\psi$ -densifying iff  $Q \subseteq M$  implies  $Q \in N$ ,  $F(Q) \in N$  and:

$$\bar{\mathbb{Q}}$$
 is not compact  $\Rightarrow \psi(F(\mathbb{Q})) \not \geq \psi(\mathbb{Q})$  .

In the following text we shall suppose that the set U is totally ordered and  $\psi$  is monotone, 2-regular and algebraically semi-additive, where N is the set of all bounded subsets of Banach space X. Let  $X' = \{\lambda y \mid \lambda \in (0,1), y \in AX\}$ .

THEOREM 1. Let  $(X, ||\ ||)$  be a Banach space, S and T linear, continuous mappings from X into X. Let A be a continuous mapping from X into SX  $\cap$  TX such that AX is bounded and that the following two conditions are satisfied:

- 1.  $||Ax-Ay|| \le ||Sx-Ty||$  for every  $x,y \in X$ .
- 2. There exists  $m\in N$  such that  $A^m\big|X$  is  $\psi$  -densifying. If A commutes with S and T then there exists  $x\in X$  such that

$$x = Tx = Sx = Ax$$
.

Proof. Suppose that  $\{r_n\}_{n\in\mathbb{N}}$  is a sequence of real numbers from (0,1) such that  $\lim_{n\to\infty}r_n=1$ . For every  $n\in\mathbb{N}$  let  $A_nx=r_nAx$ ,  $x\in X$ . Let us show that for every  $n\in\mathbb{N}$  there exists  $x_n\in X$  such that:

$$(1) x_n = A_n x_n = Sx_n = Tx_n .$$

First, from  $AX \subseteq SX \cap TX$  and the fact that S and T are linear it follows that:

Further,  $A_nSx = r_nASx = r_nSAx$  and  $SA_nx = S(r_nAx) = r_nSAx$  for every  $x \in X$ , and so  $A_n$  and S are commutative and similarly  $A_n$  and T. Since for every x,y  $\in$  X,  $||A_nx-A_ny|| \le r_n ||Sx-Ty||$ , it follows that all the conditions of Theorem A are satisfied. So for every n  $\in$  N there exists  $x_n \in X$  such that (1) holds. From (1) we have that  $x_n - Ax_n = (r_n - 1)Ax_n$  and since AX is bounded and  $\lim_{n \to \infty} r_n = 1$ it follows that  $\lim_{n\to\infty} (x_n - Ax_n) = 0$ . Let us prove that:

$$\lim_{n\to\infty} (x_n - A^m x_n) = 0.$$

First we shall show that for every k,ne N

$$||\mathbf{A}^k\mathbf{x}_n^{-\mathbf{A}^{k+1}}\mathbf{x}_n^{}|| \ \leq \ ||\mathbf{x}_n^{-\mathbf{A}}\mathbf{x}_n^{}|| \quad .$$

We use induction in k. For k=1 and  $n \in N$  we have:

$$||Ax_n - A^2x_n|| \le ||Sx_n - TAx_n|| = ||Sx_n - ATx_n|| = ||x_n - Ax_n||$$
.

Suppose that for some k and every  $n \in N$ :

$$||A^{k}x_{n} - A^{k+1}x_{n}|| \le ||x_{n} - Ax_{n}||$$

Then:

$$\begin{split} || \mathbf{A}^{k+1} \mathbf{x}_n^{-\mathbf{A}^{k+2}} \mathbf{x}_n || &\leq || \mathbf{S} (\mathbf{A}^k \mathbf{x}_n)^{-\mathbf{T}} (\mathbf{A}^{k+1} \mathbf{x}_n) || = || \mathbf{A}^k (\mathbf{S} \mathbf{x}_n)^{-\mathbf{A}^k} \\ &- || \mathbf{A}^{k+1} (\mathbf{T} \mathbf{x}_n) || = || \mathbf{A}^k \mathbf{x}_n^{-\mathbf{A}^{k+1}} \mathbf{x}_n || &\leq || \mathbf{x}_n^{-\mathbf{A} \mathbf{x}_n} || . \end{split}$$

Now:

$$\|x_n - A^m x_n\| \le \sum_{s=0}^{m-1} \|A^s x_n - A^{s+1} x_n\| \le m \|x_n - A x_n\|$$
 for every  $n \in \mathbb{N}$ ,

and since  $\lim_{n\to\infty} (x_n - Ax_n) = 0$ , it follows that  $\lim_{n\to\infty} (x_n - A^m x_n) = 0$ .

Let us prove that there exists a convergent subsequence  $\{x_{n_k}\}_{k\in\mathbb{N}}$ . Let  $y_n = x_n - A^m x_n$  for every  $n \in \mathbb{N}$ . Then:

$$\psi \left[ \left\{ \mathbf{x}_{n} \mid \mathbf{n} \in \mathbf{N} \right\} \right] \leq \psi \left[ \left\{ \mathbf{y}_{n} \mid \mathbf{n} \in \mathbf{N} \right\} \right] + \psi \left[ \left\{ \mathbf{A}^{m} \mathbf{x}_{n} \mid \mathbf{n} \in \mathbf{N} \right\} \right]$$

since the measure  $\psi$  is monotone and algebraically semi-additive. Since  $\lim_{n\to\infty}y_n=0$  and the measure  $\psi$  is 2-regular it follows that  $\psi[\{y_n\mid n\in N\}]=0$ . Consequently:

$$\psi \left[ \left\{ \mathbf{x}_{n} \mid n \in \mathbf{N} \right\} \right] \leq \psi \left[ \left\{ A^{m} \mathbf{x}_{n} \mid n \in \mathbf{N} \right\} \right]$$

Hence, as  ${\tt A}^m \, | \, {\tt X}^{'}$  is  $\psi$  densifying it follows that the set  $\overline{\{ {\tt x}_n \, | \, n \in {\tt N} \, \} } \ \, \text{is compact. Suppose that } \lim_{k \to \infty} \, {\tt x}_{n_k} = {\tt y}^{\star}. \ \, \text{Then } {\tt y}^{\star} = {\tt lim} {\tt x}_{n_k} = {\tt A} ({\tt lim} \, {\tt x}_{n_k}) = {\tt S} ({\tt lim} \, {\tt x}_{n_k}) = {\tt T} ({\tt lim} \, {\tt x}_{n_k}), \quad \text{and so } {\tt y}^{\star} \text{ is a common } {\tt k} + \infty$  fixed point for the mappings A,S and T.

A special 2-regular,monotone and algebraically semi-additive measure  $\psi$  is Kuratowski's measure of noncompactness  $\alpha$  defined on bounded subsets  $A\subseteq X$  by

 $\alpha(A)=\inf\{\epsilon\,\big|\,\epsilon>0\,,\text{ there exists a finite cover $A$ of}$  the set A such that  $diam\,(B)<\epsilon$ , for every B  $\epsilon\,A\}.$ 

From Theorem 1 we obtain the following Corollary.

COROLLARY 1. Let X,T,S and A be as in Theorem 1, where  $\alpha=\psi$  . Then there exists a common fixed point for A,S and T.

If  $A^m X$  is relatively compact, then  $A^m$  is  $\alpha$  densifying. This special case can be generalized to random normed spaces (X,F,t) with continuous T-norm t.

A triplet (X,F,t) is a Menger space iff X is an arbitrary set,  $F: X \times X \to \Delta$ , where  $\Delta$  denotes the set of all distribution functions F, and t is a T-norm so that the following conditions are satisfied (we write  $F(p,q) = F_{p,q}$  for every  $p,q \in X$ ):

- 1.  $F_{p,q}(x) = 1$  for every  $x \in R^+$  iff p = q.
- 2.  $F_{p,q}(0) = 0$  for every  $p,q \in X$ .
- 3.  $F_{p,q} = F_{q,p}$  for every  $p,q \in X$ .
- 4.  $F_{p,r}(x+y) \ge t(F_{p,q}(x),F_{q,r}(y))$  for every  $p,q,r \in X$  and every x,y > 0.

The  $(\varepsilon,\lambda)$  topology is introduced by the  $(\varepsilon,\lambda)$  neighbourhoods of v € X:

$$U_{\mathbf{v}}(\varepsilon,\lambda) = \{\mathbf{u} \mid \mathbf{F}_{\mathbf{u},\mathbf{v}}(\varepsilon) > 1-\lambda\}, \ \varepsilon > 0, \ \lambda \in (0,1)$$
.

In |3| the following Theorem is proved.

- 5 THEOREM B. Let (X,F,t) be a complete Menger space with continuous T-norm t, and let S and T be continuous mappings X in-X. Then S and T have a common fixed point in X if and only if there exists a continuous mapping A of X into SXN TX which commutes with S and T and satisfies the following two conditions:
  - (i) For every  $x, y \in X$

$$F_{Ax,Ay}(\varepsilon) \ge F_{Sx,Ty}(\frac{\varepsilon}{q})$$
 for every  $\varepsilon > 0$ , where  $q \in (0,1)$ .

(ii) There exists  $x_0 \in X$  such that  $\sup_{\epsilon} \inf_{n \in N} F_{Ax_n,Ax_0}(\epsilon) = 1$ . where  $\{x_n\}_{n \in \mathbb{N}}$  is such that  $Ax_{2n-2} = Sx_{2n-1}$ ,  $Ax_{2n-1} = Sx_{2n-1}$ = Tx2n for every n & N.

Indeed S,T and A then have a unique common fixed point.

Let S be a real or complex linear space and  $\Delta^{+}$  be the set of all distribution functions F such that F(0) = 0. A random normed space is an ordered triple (S, F,t), where t is a Tnorm stronger than  $T_m : T_m(u,v) = \max\{u+v-1,0\}$  and F is a mapping of S into  $\Delta^+$  so that the following conditions are satisfied (we shall denote F(p) by  $F_{p}$ ):

- 1.  $F_p = H \iff p = 0$  (0 is the neutral element in S).
- 2.  $F_{\lambda p}(x) = F_{p}(\frac{x}{|\lambda|})$ , for every  $p \in S$ ,  $x \in R$  and  $\lambda \in K \setminus \{0\}$ where K is the scalar field.
- 3.  $F_{p+q}(x+y) \ge t(F_p(x), F_q(y))$ , for every p,q  $\in S$  and every  $x, y \in R$ .

The  $(\varepsilon,\lambda)$ -topology in (S,F,t) is introduced by the family of  $(\varepsilon,\lambda)$ -neighbourhoods of  $v \in S : U_v(\varepsilon,\lambda) = \{u \mid u \in S, F_{v-v}(\varepsilon) > 1 - \lambda\}$  where  $\varepsilon > 0$  and  $\lambda \varepsilon (0,1)$  and if T-norm t is continuous then S is, in the  $(\varepsilon,\lambda)$ -topology, a Hausdorff linear topological space. Every random normed space is a Menger space if we take  $F_{u,v} = F_{u-v}$ , for every  $u,v \in S$ .

From Theoremm B it is easy to obtain the following Corollary in which (X,F,t) is a random normed space.

COROLLARY 2. Let (X,F,t) be a complete random normed space with continuous T-norm t and let S and T be continuous mappings from X into X. If A is a continuous mapping from X into SX  $\cap$  TX which commutes with S and T, if AX is bounded in  $(\varepsilon,\lambda)$  topology and if

$$F_{Ax-Ay}(\varepsilon) \ge F_{Sx-Ty}(\frac{\varepsilon}{q})$$
 for every  $\varepsilon > 0$ 

and every  $x,y \in X$ , where  $q \in (0,1)$  then S,T and A have a unique common fixed point.

Using the similar idea as in the proof of Theorem 1 we shall prove the following common fixed point theorem.

THEOREM 2. Let (X,F,t) be a complete random normed space with continuous T-norm t,S and T be linear continuous mappings from X into X. Further let A be a continuous mapping which commutes with S and T such that  $AX \subseteq SX \cap TX$ , AX is bounded in the  $(\epsilon,\lambda)$  -topology and  $A^{M}X$  is relatively compact. If for every  $x,y \in X$  and every  $\epsilon > 0$ :

$$F_{Ax-Av}(\varepsilon) > F_{Sx-Tv}(\varepsilon)$$

then there exists  $x \in X$  such that x = Tx = Sx = Ax.

P r o o f. As in the proof of Theorem 1, using Corollary 2, we conclude that, for every n  $\epsilon$  N, there exists x  $_n$   $\epsilon$  X such that

$$x_n = A_n x_n = Sx_n = Tx_n$$

and  $\lim_{n\to\infty} (x_n - Ax_n) = 0$ . Let us prove that  $\lim_{n\to\infty} (x_n - A^m x_n) = 0$ . Similarly as in Theorem 1 it follows that for every  $k \in \mathbb{N}$ , every  $n \in \mathbb{N}$  and every  $\epsilon > 0$ :

$$F_{A^k x_n - A^{k+1} x_n} (\varepsilon) \ge F_{x_n - A x_n} (\varepsilon)$$
.

Further from the definition of a random normed space it follows:

$$F_{\mathbf{x}_{n}-\mathbf{A}^{m}\mathbf{x}_{n}}(\varepsilon) \geq t(F_{\mathbf{x}_{n}-\mathbf{A}\mathbf{x}_{n}}(\frac{\varepsilon}{2}), F_{\mathbf{A}\mathbf{x}_{n}-\mathbf{A}^{m}\mathbf{x}_{n}}(\frac{\varepsilon}{2})) \geq \\ \geq t(F_{\mathbf{x}_{n}-\mathbf{A}\mathbf{x}_{n}}(\frac{\varepsilon}{2}), t(F_{\mathbf{A}\mathbf{x}_{n}-\mathbf{A}^{2}\mathbf{x}_{n}}(\frac{\varepsilon}{4}), F_{\mathbf{A}^{2}\mathbf{x}_{n}-\mathbf{A}^{m}\mathbf{x}_{n}}(\frac{\varepsilon}{4}))) \geq \\ \geq t(F_{\mathbf{x}_{n}-\mathbf{A}\mathbf{x}_{n}}(\frac{\varepsilon}{2}), t(F_{\mathbf{x}_{n}-\mathbf{A}\mathbf{x}_{n}}(\frac{\varepsilon}{4}), t(F_{\mathbf{x}_{n}-\mathbf{A}\mathbf{x}_{n}}(\frac{\varepsilon}{2}))) + \\ \cdots, F_{\mathbf{x}_{n}-\mathbf{A}\mathbf{x}_{n}}(\frac{\varepsilon}{2^{m-1}})))).$$

Since t(1,1) = 1, t is continuous and

$$\lim_{n \to \infty} F_{x_n - Ax_n} (\frac{\varepsilon}{2^s}) = 1, s = 1, 2, ..., m-1,$$

it follows that  $\lim_{n\to\infty} F_{\mathbf{x_n}-\mathbf{A}^m\mathbf{x_n}}(\epsilon)=1$  for every  $\epsilon>0$ , which means that  $\lim_{n\to\infty} \mathbf{x_n}-\mathbf{A}^m\mathbf{x_n}=0$ . The rest of the proof is similar to that of Theorem 1.

## REFERENCES

- | 1 | B.Fisher, Mappings with a Common Fixed Point, Math. Sem. Notes, Kobe
  University, Japan, Vol. 7, No. 1, (1979), 81-84.
- |2| D.Göhde, Über Fixpunkte bei stetigen Selbstabbildungen mit kompakten Iterierten, Math.Nachr., 28 (1964), 45-55.
- 3 0. Hadžić, On Common Fixed Point in Probabilistic Metric Spaces, Math. Sem. Notes, Kobe University, Japan. Vol. 10(1982), 31-39.

- [4] B.N.Sadovskii, Predelnokompaktnye i upotnjajuscie operatori, UMN, 28, 1 (163) (1972), 81-146.
- [5] A.N. Serstnev, The notion of random normed spaces, DAN SSSR, 149, (2) (1963), 280-283.

## REZIME

## O ZAJEDNIČKOJ NEPOKRETNOJ TAČKI U BANAHOVIM I SLUČAJNIM NORMIRANIM PROSTORIMA

U ovom radu su dokazane sledeće dve teoreme.

TEOREMA 1. Neka je  $(X,||\cdot||)$ Banachov prostor, S i T linearna preslikavanja iz X u X. Neka je A neprekidno preslikavanje X u SXN TX tako da je AX ograničen skup i da su zadovoljeni sledeći uslovi, gde je  $X' = \{\lambda y \mid \lambda \in (0,1), y \in AX\}$ .

- 1. ||Ax-Ay|| < ||Sx-Ty|| za svako  $x,y \in X$ .
- 2. Postoji  $m \in N$  tako da je  $A^m \mid X$   $' \psi$  kondenzujuće preslikavanje, gde je mera nekompaktnosti  $\psi$  monotona, 2-regularna i algebarski semiaditivna.

Ako preslikavanje A komutira sa preslikavanjima S i T tada postoji  $x \in X$  tako da je x = Tx = Sx = Ax.

TEOREMA 2. Neka je (X,F,t) kompletan slučajan normirani prostor sa neprekidnom T-normom t,S i T linearna neprekidna preslikavanja iz X u X. Dalje, neka je A neprekidno preslikavanje, koje komutira sa S i T tako da je AX $\subseteq$ SX $\cap$ TX , AX je ograničeno u ( $\varepsilon$ , $\lambda$ )-topologiji i  $A^m$ X je relativno kompaktan skup. Ako za svako x,y  $\varepsilon$  X i svako  $\varepsilon$  >0 važi nejednakost  $F_{Ax-Ay}$  ( $\varepsilon$ )  $\geq$   $F_{Sx-Ty}$  ( $\varepsilon$ ) tada postoji x  $\varepsilon$  X tako da je x = Tx = Sx = Ax.