ON THE PREDICTION OF A FUNCTIONAL OF GAUSSIAN RANDOM PROCESS

Zoran A. Ivković

Prirodno-matematički fakultet, Institut za matematiku Beograd, Studentski trg 16, Jugoslavija

Let $\{\xi(t), t \in T\}$ be a real Gaussian process (centered at the expectation: $E\xi(t)=0$) and let η be a integrable functional measurable with respect to σ -field F(T) generated by $\{\xi(t), t \in T\}$. It is well-known that the conditional expectation $\hat{\xi}(t) = E(\xi(t)|F(S)|, S \subset T$, coincides with the projection of $\xi(t)$ on the Hilbert space $H^1(S)$ spanned on $\{\xi(t), t \in S\}$.

THEOREM. The functional $\hat{\eta} = E(\eta \mid F(S))$ is measurable with respect to σ -field $\hat{f}_{\hat{\xi}}$ generated by $\{\hat{\xi}(t), t \in T\}$.

Proof. The conditional distribution (given F(S)) of η is determined by the family of the conditional distributions of the vectors $(\xi(t_1),\ldots,\xi(t_n))$, $t_1,\ldots,t_n\in T$. The conditional distribution of $(\xi(t_1),\ldots,\xi(t_n))$ is Gaussian, so it is determined by the mean vector $(\xi(t_1),\ldots,\xi(t_n))$ and the covariance matrix

$$B = \|b(t_{i}, t_{j})\|, \quad i, j = 1, ..., n,$$

$$b(t_{i}, t_{j}) = E((\xi(t_{i}) - \hat{\xi}(t_{j}))(\xi(t_{j}) - \hat{\xi}(t_{j}))|F(S)).$$

But $\xi(t) - \hat{\xi}(t)$ is independent (for Gaussian process) of F(S). So $b(t_i,t_j)$ is the constant $E(\xi(t_i) - \hat{\xi}(t_i)) (\xi(t_j) - \hat{\xi}(t_j))$. In this way the conditional distribution of η depends only of $\hat{\xi}(t)$, $t \in T$, and its conditional expectation $\hat{\eta}$ depends only of $\hat{\xi}(t)$, $t \in T$.

Theorem is closely related to |2|, pp.73-78, but puts in evidence the evaluation of $\hat{\eta}$ by $\{\hat{\xi}(t)\}$.

Example 1. Let $\operatorname{H}^n(S)$ be the linear closure of all polynomials of the variables $\xi(t)$, $t \in S$, the degree not greated than n. It is shown in |2| that $\eta \in \operatorname{H}^n(T)$ implys $\hat{\eta} \in \operatorname{H}^n(S)$. We precise this result showing that $\hat{\eta}$ belongs to the linear closure of all polynomias of the variables $\hat{\xi}(t)$, $t \in T$, the degree not greated than n. For this it is enough to see that

$$\begin{split} & E\left(\xi\left(t_{1}\right)\dots\xi\left(t_{n}\right)|F(S)\right) \quad \text{is a polynomials of} \\ & \hat{\xi}\left(t_{1}\right),\dots\hat{\xi}\left(t_{n}\right) \quad \text{of the degree n:} \\ & E\left(\xi\left(t_{1}\right)\dots\xi\left(t_{n}\right)|F(S)\right) = \\ & = \frac{1}{(2\pi)^{n/2}(\det B)^{1/2}} \quad \int \dots \int x_{1}\dots x_{n} \, \exp\{-\frac{1}{2} \, \sum_{i,j} \, B_{ij}(x_{i} - \hat{\xi}\left(t_{j}\right)) \, (x_{j} - \hat{\xi}\left(t_{j}\right)))\} dx_{1}\dots \, dx_{n} = \frac{1}{(2\pi)^{n/2}(\det B)^{1/2}} \quad \int \dots \\ & \dots \int \prod_{k=1}^{n} \, (u_{k} + \hat{\xi}\left(t_{k}\right)) \exp\{-\frac{1}{2} \, \sum_{i,j} \, B_{ij}u_{i}u_{j}\} du_{1}\dots du_{n} = \\ & = P_{n}\left(\hat{\xi}\left(t_{1}\right),\dots\,\hat{\xi}\left(t_{n}\right)\right) \cdot \left(B_{ij} \, \text{is the cofactor of b}(t_{i},t_{j})\right) \; . \end{split}$$

Observe that

$$\frac{\partial}{\partial x_k} p_n(x_1, \dots, x_k, \dots, x_n) = p_{n-1}(x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_n).$$

APPLICATION TO THE PREDICTION

Let $T = [t_0, \infty)$ $S = [t_0, s]$, $t_0 < s$. Then for fixed t,t > s, $\hat{\xi}(s,t) = E(\xi(t)|F_S)$, (we put $F(S) = F_S$), is the best (in the sence of the minimal variance) prediction of $\xi(t)$ by $\{\xi(u), u \in [t_0, s]\}$ $\hat{\xi}(s,t)$ coincides, for Gaussian process, with the best linear prediction which is widely elaborated for stationary process $\{\xi(t), -\infty < t < \infty\}$. In the terms of predication problem Theorem says

that the prediction $\hat{\eta}$ of an integrable functional η of $\{\xi(u), u \in [s,\infty)\}$ by $\{\xi(u), u \in [t_0,s]\}$ is the functional of $\{\hat{\xi}(s,u), u \in [s,\infty]\}$

Example 2. Prediction of the time over a level by Gaussian process. Supposing the continuity of $\{\xi(t), t \geq 0\}$ the functional $\eta = \int I(\xi(u) > c) du$, (I(.) is the indicator function), is the time over the level c by the process $\{\xi(u)\}$ during the time [s,t]. The prediction of η by $\{\xi(u), u \leq s\}$ is

$$\hat{\eta} = E(\eta | F_s) = \int_s^t P(\xi(u) > c | F_s) du = \int_s^t \left[1 - \phi \left(\frac{c - \hat{\xi}(s, u)}{\sqrt{b(u, u)}} \right) \right] du,$$

where $\Phi(.)$ is the distribution function of a standard Gaussian variable.

Example 3. The problem of the prediction of the process $\{\zeta(t),\ t\geq 0\}$, $\zeta(t)=f(\xi(t))$, where f(.) is a non-random function, is posed in |1|. In the case $f(x)=x^2$ and the differentiable process $\{\xi(t),\ t\geq 0\}$ for which

$$\hat{\xi}(s,t) = \sum_{j=0}^{N-1} a_j(s,t) \xi^{(j)}(s)$$
,

(such process belongs to so called N-tiple Markov processes), the explicit formula for $\hat{\zeta}(s,t)$ in the terms of $\zeta(s),\ldots,\zeta^{(N-1)}(s)$ is given.

But generaly, because the conditional distribution of $\xi(t)$ given F_s is Gaussian with the parameters $\hat{\xi}(s,t)$ and b(t,t), we have simple

$$\hat{\zeta}(s,t) = E(f(\xi(t))|F_s) = \frac{1}{\sqrt{2\pi b(t,t)}} \int f(x) \exp\{-\frac{1}{2} \frac{(x-\hat{\xi}(t,s))^2}{b(t,t)}\} dx = g(\hat{\xi}(t,s)).$$

For instance, if $\{\xi(t)\}$ is as in |1| and $f^{-1}(.)$ is the differentiable function, we find $\hat{\zeta}(s,t)$ in terms of $\zeta(s),\ldots,\zeta^{(N-1)}(s)$.

REFERENCES

- | 1 | Hida, T. and Kallianpur, G.: The square of a Gaussian Markov process and non-linear prediction, J. of Mult. An. 5, 1975, pp. 451-461.
- [2] Розанов,Ю. А.: Марковские случайные поля, М., 1981.

REZIME

O PREDVIDJANJU FUNKCIONALA GAUSOVOG SLUČAJNOG PROCESA

Pokazuje se da je predvidjanje funkcionala Gausovog procesa $\{\xi(t)\,,\,\,t\in T\}$ funkcional od linearnog predvidjanja $\{\hat{\xi}\,(s,t)$, $t\in T\}\,.$