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Spectral equality for bounded regularized semigroup
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Abstract. In this note we prove that the spectral inclusion for reg-
ularized semigroups holds for the approximate point spectrum and the
semiregular spectrum. Also, we give conditions for which the regularized
semigroups satisfy spectral equality for approximate point and semireg-
ular spectrum. Furthermore, we give necessary and sufficient conditions
for the generator of a regularized semigroup to be semiregular.
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1. Introduction

Let X be a Banach space and B(X) the algebra of all bounded linear oper-
ators on X. For T ∈ B(X), let N(T ), R(T ) and R∞(T ) =

⋂
n≥0 R(Tn) denote

respectively the kernel, the range and the hyper-range of T. We denote by
ρ(T ), σ(T ), σp(T ), σa(T ), σr(T ) and σsu(T ) respectively the resolvent set, the
spectrum, the point spectrum, the approximate point spectrum, the residual
spectrum and the surjective spectrum of T . Recall that T is semiregular if
R(T ) is closed and N(T ) ⊆ R∞(T ). The semiregular spectrum is defined by:

σγ(T ) = {λ ∈ C : T − λI is not semiregular}.

For more details see [1].
Let X∗ denote the dual space of X and A∗ the adjoint operator of A with

domain D(A). The quasi-nilpotent part of A is defined by

H0(A) := {x ∈ ∩n≥0D(An) : lim
n→∞

∥Anx∥ 1
n = 0}.

Recall that the family (T (t))t≥0 of closed operators on X satisfying T (0) = I
and T (s)T (t) ⊂ T (s+ t) is called the semigroup of unbounded operators in the
sense of [6] if:

D := {x ∈ ∩s,t≥0D(T (s)T (t)) : t 7→ T (t)x ∈ C([0,∞], X)} ≠ {0},
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see for instance [12].
In the continuous case, a one-parameter family T = (T (t))t≥0 of con-

tinuous linear operators on X, is a strongly continuous semigroup (or C0-
semigroup) of operators, if T (0) = I, T (t)T (s) = T (t + s), for all t, s ≥ 0,
and limt→0 T (t)x = x for all x ∈ X. The operator A : D(A) ⊆ X → X defined

by Ax = limt→0
T (t)x−x

t is called the generator of the C0-semigroup T , where

D(A) = {x ∈ X : limt→0
T (t)x−x

t exists }. For further information about
C0-semigroups we refer the reader to the books [4].

Regularized semigroups have been extensively studied in functional analy-
sis and partial differential equations, and they have important applications in
various fields, including physics, engineering, and biology.

In the 1960s, L. Schwartz [13] introduced the concept of regularized semi-
groups as a way of extending the theory of semigroups of linear operators to
the case of unbounded operators. He showed that a regularized semigroup is
a family of linear operators that satisfies a number of properties, including the
semigroup property, the strong continuity property, and the regularity property.
Schwartz’s work laid the foundation for the study of regularized semigroups,
and his ideas have been extended and generalized in many different directions
since then.

In [9], the main assumption on the semigroup is that (T (t))t≥0 can be
regularized, i.e. there is an injective operator C ∈ B(X) such that

D ⊂ R(C) and C−1T (t)C = T (t) for all t ≥ 0.

Then S(t) = CT (t) defines a C-regularized semigroup satisfying:

1. S(0) = C is injective;

2. S(t)S(s) = CS(t+ s) for all t, s ≥ 0;

3. t 7→ S(t)x ∈ C([0,∞], X) for all x ∈ X.

Let (S(t))t≥0 be a C-regularized semigroup on X. We define a linear operator
G and U by the strong limits:

D(G) = {x ∈ R(C) : ∃ lim
t→0+

(C−1S(t)x− x)

t
},

Gx := lim
t→0+

1

t
(C−1S(t)x− x)

and

D(U) = {x ∈ X : lim
t→0+

(S(t)x− Cx)

t
∈ R(C)},

Ux := C−1 lim
t→0+

(S(t)x− Cx)

t
for x ∈ D(U),

respectively. The operator G is called generator of the C-regularized semigroup
(S(t))t≥0 in the sense of Miyadera [11]. The operator U is called generator of
the C-regularized semigroup (S(t))t≥0 in the sense of Da Prato [2].
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Recall also that

x ∈ D(G) ⇔ ∀t > 0 : S(t)x− Cx =

∫ t

0

S(r)Gxdr,

For all x ∈ D(G) :
d

ds
S(s)x = S(s)Gx = GS(s)x.

Also, if x ∈ D(G), then for all t ≥ 0 we have S(t)x ∈ D(G), [3].

C-regularized semigroups have also been studied in the context of operator
theory and spectral theory. For example, Ki Sik Ha [5] and Kunstman P.C,[9]
developed a theory of spectral mapping theorems for C-regularized semigroups,
which provides a powerful tool for studying the spectra of operators that gen-
erate such semigroups.

Ki Sik Ha in [5] proved that spectral mapping theorems such as etσ(G) ⊂
σ(T (t)), etσp(G) ⊂ σp(T (t)) ⊂ etσp(G) ∪ {0} and etσr(G) ⊂ σr(T (t)) ⊂ etσr(G) ∪
{0} hold for every t ≥ 0, where T (t) = C−1S(t).
In this work we will continue in the same direction, and prove that the spectral
inclusion is verified for approximate point spectrum and semiregular spectrum.
After giving an example that shows the spectral inclusion is strict for the ap-
proximate point spectrum and the semiregular spectrum, we will develop a
spectral theory for C-regularized semigroups and their generators by giving
conditions for which the C-regularized semigroups satisfy spectral equality for
approximate point and semiregular spectrum. Finally, we give, under suit-
able assumptions, necessary and sufficient conditions for the generator of a
C-regularized semigroup to be semiregular.

2. Main results

The following lemma will be needed in the sequel.

Lemma 2.1. For a C-regularized semigroup (S(t))t≥0 with generator G, let

B(λ, t) :=
∫ t

0
eλ(t−s)S(s)ds. Then we have B(λ, t)x ∈ D(G) for all x ∈ X.

Furthermore, for all λ ∈ C, n ∈ N and t ≥ 0, we have:

1. (eλtC − S(t))nx = (λ−G)nB(λ, t)nx, for all x ∈ X.

2. (eλtC − S(t))nx = B(λ, t)n(λ−G)nx, for all x ∈ D(G).

3. R∞(eλt − C−1S(t)) ⊆ R∞(λ−G).

4. N(λ−G) ⊆ N(eλt − C−1S(t)).

5. H0(λ−G) ⊆ H0(e
λt − C−1S(t)).
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Proof. It is easy to show that B(λ, t) =
∫ t

0
eλ(t−s)S(s)ds, is a bounded linear

operator on X, for all λ ∈ C and t ≥ 0. Now, for every x ∈ X we have:

S(h)− C

h
B(λ, t)x =

1

h

∫ t

0

eλ(t−s)S(s+ h)xds− C

h

∫ t

0

eλ(t−s)S(s)xds

=
eλh

h

∫ h+t

h

eλ(t−s)CS(s)xds− C

h

∫ t

0

eλ(t−s)S(s)xds

= eλh

h

∫ t

h
eλ(t−s)CS(s)xds+ eλh

h

∫ h+t

t
eλ(t−s)CS(s)xds−C

h

∫ h

0
eλ(t−s)S(s)xds.

As h ↓ 0, the right-hand side converges to:

CλB(λ, t)x+ CS(t)x− C2eλtx = C(λB(λ, t)x+ S(t)x− Ceλtx)

and consequently B(λ, t)x ∈ D(G) and

CGB(λ, t)x = C(λB(λ, t)x+ S(t)x− Ceλtx).

Since C is injective this implies:

GB(λ, t)x = λB(λ, t)x+ S(t)x− Ceλtx.

From the definition of B(λ, t) it is clear that for x ∈ D(G), B(λ, t)Gx =
GB(λ, t)x. Proceeding by induction on n, we get the result. The assertions
(3), (4) and (5) easily result from (1).

Now, we give another proof for a spectral inclusion that has been proven in
[5].

Theorem 2.2. Let G be the generator of the C-regularized semigroup S(t)t≥0,
then

etσ(G) ⊂ σ(T (t)),∀t ≥ 0,

where T (t) = C−1S(t).

Proof. Let λ ∈ C such that eλt − T (t) is invertible, then eλt − T (t) is injective
and surjective. As eλt − T (t) is surjective then R(eλt − T (t)) = X. From (3)
in Lemma 2.1 it follows that R(λ − G) = X, hence (λ − G) is surjective. On
the other hand, as eλt − T (t) is injective then N(eλt − T (t)) = {0} and from
(4) of Lemma 2.1 this implies that N(λ − G) = {0}, it follows that λ − G is
bijective, hence λ−G is invertible.

In the following, we give a spectral inclusion for the approximate point
spectrum.

Theorem 2.3. Let G be the generator of the C-regularized semigroup (S(t))t≥0,
then

etσa(G) ⊂ σa(T (t)),∀t ≥ 0,

where T (t) = C−1S(t).
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Proof. Take λ ∈ σa(G) and a corresponding approximate eigenvector (xn)n∈N ∈
D(G) ⊆ R(C). According to Lemma 2.1,

eλtxn − T (t)xn = eλtxn − C−1S(t)xn = C−1B(λ, t)(λ−G)xn

These vectors satisfy for some constant M > 0 the estimate

∥C−1B(λ, t)(λ−G)xn∥ ≤ M∥(λ−G)xn∥ → 0 as n → ∞.

Hence,
eλtxn − T (t)xn → 0.

Then eλt is an approximate eigenvalue of T (t), and (xn)n∈N serves as the same
approximate eigenvector for all t ≥ 0.

Now, we will give some important concepts for C-regularized semigroups.
Quotient C-regularized Semigroups. For a closed (S(t))t≥0−invariant

subspace Y of X, we consider the quotient space X/ := X/Y with canonical
quotient map q : X → X/. The quotient operators S(t)/ given by S(t)/q(x) :=
q(S(t)x) for x ∈ X and t ≥ 0 are well-defined and form a C-regularized semi-
group, called the quotient C-regularized semigroup (S(t)/)t≥0 on the Banach
space X/. The generator G/ of the quotient C-regularized semigroups is given
by

G/q(x) := q(Gx)

with domain D(G/) := q(D(G)).
Let S(t)t≥0 be a C-regularized semigroup on a Banach spaceX such that S(t) =
CT (t), with T (t)t≥0 is a semigroup. The adjoint C-regularized semigroup S∗(t)
is the C∗-regularized semigroup on the dual space X∗ which is obtained from
S(t) by taking pointwise in t the adjoint operators S∗(t) := (S(t))∗.

Proposition 2.4. D(G∗) is a S∗(t)-invariant subspace of X∗ for all t ≥ 0.
Furthermore, for all x∗ ∈ D(G∗) we have:

1. G∗S∗(t)x∗ = S∗(t)G∗x∗, for all t ≥ 0.

2. weak∗
∫ t

0
S∗(s)x∗ds ∈ D(G∗) for all t > 0 and x∗ ∈ X∗, and

G∗(weak∗
∫ t

0

S∗(s)x∗ds) = S∗(t)x∗ − C∗x∗.

If x∗ ∈ D(G∗), then

G ∗ (weak∗
∫ t

0

S∗(s)x∗ds) = (weak∗
∫ t

0

S∗(s)G∗x∗ds).

Proof. 1. Let x∗ ∈ D(G∗) and x ∈ D(G) be arbitrary. Then for any fixed
t > 0, we have

⟨S∗(t)x∗, Gx⟩ = ⟨x∗, S(t)Gx⟩ = ⟨x∗, GS(t)x⟩
= ⟨G∗x∗, S(t)x⟩ = ⟨S∗(t)G∗x∗, x⟩

Therefore S∗(t)x∗ ∈ D(G∗) and G∗S∗(t)x∗ = S∗(t)G∗x∗.
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2. Let x ∈ D(G) be arbitrary. The identities

< weak∗
∫ t

0

S∗(s)x∗ds,Gx >

=

∫ t

0

< S∗(s)x∗, Gx > ds =

∫ t

0

⟨x∗, S(s)Gx⟩ds

= ⟨x∗,

∫ t

0

S(s)Gxds⟩ = ⟨x∗, G

∫ t

0

S(s)xds⟩

= ⟨x∗, S(t)x− Cx⟩ = ⟨S∗(t)x∗ − C∗x∗, x⟩

show that weak∗
∫ t

0
S∗(s)x∗ds ∈ D(A∗) and

G∗(weak∗
∫ t

0

S∗(s)x∗ds) = S∗(t)x∗ − C∗x∗.

The second formula follows from a similar calculation: for x ∈ D(G) we
have

⟨G∗(weak∗
∫ t

0

S∗(s)x∗ds), x⟩ =

∫ t

0

⟨x∗, S(s)Gx⟩ds

= ⟨weak∗
∫ t

0

S∗(s)G∗x∗ds, x⟩.

In [7] V. Kordula and V. Müller proved the following lemma:

Lemma 2.5. Let T ∈ B(X).

1. T is semiregular if and only if there exists a closed subspace M ⊆ X
such that TM = M and the operator T̃ : X/M → X/M induced by T is
bounded below.

2. If T is semiregular, then the operator T̂ : X/R∞(T ) → X/R∞(T ) induced
by T is bounded below.

Now we can prove the following theorem.

Theorem 2.6. Let (S(t))t≥0 be a C-regularized semigroup with generator G.
Then:

etσγ(G) ⊂ σγ(T (t)), ∀t ≥ 0

where T (t) = C−1S(t).

Proof. Let λ ∈ C \ {0} and t0 ≥ 0 such that eλt0 − C−1S(t0) = eλt0 − T (t0) is
semiregular. Then according to Mbekhta [10] the subspace R∞(eλt − T (t0)) is
T (t)t≥0−invariant and is closed.

Take the quotient semi-group T̃ (t)t≥0 is defined on X/R∞(eλt − T (t0)) by:

T̃ (t)x̃ = T̃ (t)x, x̃ ∈ X/R∞(eλt − T (t0)).
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Its generator G̃ is defined on D(G̃) = {x̃ : x ∈ D(G)} by G̃x̃ = G̃x for all

x ∈ D(G̃). As in Lemma 2.2 we have that the operator eλt0 − T̃ (t0) is bounded

below, then eλt0 /∈ σa(T̃ (t0)), therefore as we see in Theorem 2.2 λ /∈ σa(G̃) so

the operator λ − G̃ is bounded below. The injectivity of the operator λ − G̃
gives that:

N(λ−G) ⊆ R∞(eλt0 − T (t0))

and by (3) of Lemma 2.1, we have :

N(λ−G) ⊆ R∞(λ−G).

Now we show that R(λ−G) is closed. Let (fn)n∈N be a sequence of R(λ−G)
which converges to f , then there exists a sequence (gn)n∈N in D(G) such that

(λ−G)gn = fn → f, n → ∞.

Since R(λ−G̃) is closed, then there exists h̃ ∈ D(G̃) such that f̃ = (λ−G̃)h̃.
As a result, f − (λ−G)h ∈ R∞(eλt0 − T (t0)) ⊆ R∞(λ−G) ⊆ R(λ−G). Then
f ∈ R(λ−G). Therefore, λ−G is semiregular.

Song X. in [14] proved the inclusion

{eλ : λ ∈ σ(A)} ⊂ σ(C−1T (t)).

In the following example, we show that the inclusion is strict and that the
spectral inclusion is strict for approximate point spectrum and semiregular
spectrum. We start by the following Lemma [8].

Lemma 2.7. The generator of a semigroup (T (t))t≥0 generates a regularized
semigroup if and only if there is an injective bounded operator C ∈ B(X) which
commutes with all (T (t))t>0, and satisfies

R(C) ⊂ {x ∈ E : lim
t→0

T (t)x = x}.

Example 2.8. Let X be the Banach space of continuous functions on [0, 1]
which are equal to zero at x = 1 with the supremum norm. Let (T (t))t≥0 be a
C0-semigroup with generator A and λ > ω0.
Define:

(T (t)f)(x) :=

{
f(x+ t) ifx+ t ≤ 1,
0 ifx+ t > 1.

Set

Cf(x) = (λ−A)−1f(x) =

∫ ∞

0

e−λtT (t)f(x)dt forx ∈ [0, 1].

We have C is a bounded linear in X, injective CT (t) = T (t)C and R(C) ⊂ {x ∈
X : limt→0 T (t)x = x}. In fact, let y ∈ R(C) ⇒ ∃f ∈ Xsuch that y = Cf(x)
then

lim
t→0

T (t)y = lim
t→0

T (t)Cf(x) = lim
t→0

T (t)

∫ ∞

0

e−λsT (s)f(x)ds
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= lim
t→0

∫ ∞

0

e−λsT (t+ s)f(x)ds = lim
t→0

∫ ∞

t

e−λ(s−t)T (s)f(x)ds

= lim
t→0

eλt
∫ ∞

t

e−λsT (t+ s)f(x)ds = Cf(x) = y.

Then A generates a C−regularized semigroup.

S(t) = CT (t) is a C-regularized semigroup on X and CT (t) = T (t)C. Its
infinitesimal generator G is given on

D(G) = {f : f ∈ C1([0, 1]) ∩X, f
′
∈ R(C) ∩X}

by

Gf = Cf
′
for f ∈ D(G) ⊂ R(C) ∩X.

One checks easily that for every λ ∈ C and g ∈ R(C) ∩X the equation λf −
Cf

′
= g has an unique solution f ∈ R(C) ∩X .

Therefore σ(G) = ∅, hence σap(G) = ∅.
On the other hand, since for every t ≥ 0, S(t) is a bounded linear operator, then
σ(C−1S(t)) ̸= ∅ and as ∂σ(C−1S(t)) ⊆ σa(C

−1S(t)) then σa(C
−1S(t)) ̸= ∅,

therefore the inclusion etσa(G) ⊂ σa(C
−1S(t)) is strict. The same for semireg-

ular spectrum i.e. etσγ(G) ⊂ σγ(C
−1S(t)) is strict.

In the next theorem, we give conditions for which the regularized semigroups
satisfy the spectral equality for approximate point and semiregular spectrum.
We start with the approximate point spectrum.

Theorem 2.9. Let (S(t))t≥0 be a C-regularized semigroup and let G be its
generator. If λ ∈ σa(A), then eλt ∈ σa(C

−1S(t)), and if eλt ∈ σa(C
−1S(t)),

such that limt↓0 supn∈N ||(S(t) − eλt)xn|| = 0, where (xn)n ⊆ X, ||xn|| = 1,
then there exists k ∈ Z such that λk = λ+ 2πik

t ∈ σa(G).

Proof. If λ ∈ σa(G), then eλt ∈ σa(C
−1S(t)) by Theorem 2.3.

To prove the second inclusion, let eλt ∈ σa(C
−1S(t)), then there is an

approximate eigenvector (xn)n∈N ⊂ X satisfying ||xn|| = 1, n ∈ N and ||(eλt −
C−1S(t))xn|| → 0, n → ∞ such that limt↓0 supn∈N ||(eλt−S(t))xn|| = 0. The
uniform continuity of ((e−λtS(t)))t≥0 on the vectors xn, n ∈ N implies that the
maps [0, t] ∋ s → e−λsS(s)xn, n ∈ N are equicontinuous.
We take x

′

n ∈ X∗, ||x′

n|| ≤ 1, satisfying ⟨xn, x
′

n⟩ ≥ 1
2 for all n ∈ N. Then the

functions

[0, t] ∋ s 7→ ξn(s) := ⟨e−λsS(s)xn, x
′

n⟩

are uniformly bounded and equicontinuous. Hence, by the Arzelà-Ascoli the-
orem, there exists a convergent subsequence (ξn)n∈N which converge to the
function ξ different from zero, since it does not vanish identically one of its
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Fourier coefficients must be different from zero. Therefore there is a k ∈ Z
such that

1

t

∫ t

0

e−(2πik/t)sξ(s)ds ̸= 0.

If we set

zk :=
1

t

∫ t

0

e−(2πik/t)s(e−λsS(s))xnds ̸= 0,

then

(λ+ 2πkt−1 −G)zk

=
1

t
(λ+ 2πkt−1 −G)

∫ t

0

e−(2πik/t)s(e−λsS(s))xnds

=
1

t
(λ+ 2πkt−1 −G)

∫ t

0

e−(2πikt−1+λ)sS(s)xnds

=
1

t
e−(2πikt−1+λ)t(λ+ 2πkt−1 −G)

∫ t

0

e(2πikt
−1+λ)(t−s)S(s)xnds

=
1

t
e−(2πikt−1+λ)t(λ+ 2πkt−1 −G)B(2πikt−1 + λ, t)xn

=
1

t
e−(2πikt−1+λ)t(Ce(λ+2πkt−1)t − S(t))xn

=
1

t
(C − e−λtS(t))xn → 0, n → ∞.

We have zk ∈ D(G), and (λk −G)zk → 0.
As

lim
k→∞

||zk|| ≥ lim
n→∞

|1
t

∫ t

0

e−(2πik/t)s⟨e−λsS(s)xn, x
′

n⟩ds|

≥ |1
t

∫ t

0

e−(2πik/t)sξ(s)ds| > 0.

This shows that zk/||zk|| is an approximate eigenvector of G corresponding to
λk = λ+ 2πik/t as an approximate eigenvalue of G

We turn now to the semiregular spectrum.

Theorem 2.10. Let (S(t))t≥0 be a C-regularized semigroup and let G be its
generator. If λ ∈ σγ(G), then eλt ∈ σγ(C

−1S(t)), and if eλt ∈ σγ(C
−1S(t))

and B(λ, t) is right invertible such that limt↓0 supn∈N ||(S(t) − eλt)xn|| = 0,
where (xn)n ⊆ X, ||xn|| = 1, n ∈ N, then there exists k ∈ Z such that λk =
λ+ 2πik

t ∈ σγ(G).

Proof. If λ ∈ σγ(G), then by Theorem 2.6 we have that eλt ∈ σγ(C
−1S(t)).

Now, let t0 > 0 be fixed and suppose that λ ∈ {C \ λ + 2πikt−1, k ∈ Z} is
such that (λ − G) is semiregular. We show that (eλt0 − C−1S(t0)) = eλt0 −
T (t0) is semiregular. We consider the closed (S(t))t≥0-invariant subspace M =
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R∞(eλt0 − C−1S(t0)) = R∞(eλt0 − T (t0)) of X and quotient C− regularized

semigroup, (T̂ (t))t≥0 defined on X/M by: T̂ (t)x̂ = T̂ (t)x, for x̂ ∈ X/M,

with generator Ĝ defined by:

D(Ĝ) = {x̂, x ∈ D(G)} and Gx̂ = Ĝx, for all x̂ ∈ D(G).

From Lemma 2.5 it follows that the operator (λ−Ĝ) is bounded below for all λ ∈
{C \ λ+2πikt−1, k ∈ Z}. Thus, λ /∈ σap(Ĝ). By virtue of Theorem 2.9, we get

eλt0 /∈ σap(Ĉ−1S(t0)) = σap(T̂ (t0)) in consequence, the operator (eλt0 − T̂ (t0))

is bounded below. If (eλt0 − T (t0))x = 0 then (eλt0 − T̂ (t0))(x +M) = 0 and

the injectivity of (eλt0 − T̂ (t0)) implies x ∈ M. Thus N(eλt0 − T (t0)) ⊂ M.
We found that

N(eλt0−C−1S(t0)) = N(eλt0−T (t0)) ⊂ R∞(eλt0−T (t0)) = R∞(eλt0−C−1S(t0))

Now, let us show R(eλt0 − C−1S(t0)) = R(eλt0 − T (t0)) is closed. To do
this, let a sequence (yn)n of elements of R(eλt0 − T (t0)) and yn → y, n → ∞.
Then there exists a sequence (vn)n ∈ X such that

(eλt0 − T (t0))vn = yn = (λ−G)B(λ, t0)vn = (λ−G)un → y.

As B(λ, t0) is right invertible and (λ−G) is closed then

(λ−G)un → (λ−G)u = (λ−G)B(λ, t0)B
−1(λ, t0)u = (λ−G)B(λ, t0)h.

Then yn = (eλt0 − T (t0))vn → y = (λ − G)B(λ, t0)h = (eλt0 − T (t0))h
⇒ y ∈ R(eλt0 − T (t0)) ⇒ R(eλt0 − C−1S(t0)) is closed. Consequently the
operator (eλt0 − C−1S(t0)) is semiregular.

The next theorem gives, under suitable assumptions, necessary and suffi-
cient conditions for the generator of a C-regularized semigroup to be semireg-
ular.

Theorem 2.11. Let (S(t))t≥0 be a C-regularized semigroup with generator G.
If (S(t))t≥0 satisfies limt→∞

1
tn ∥S(t)∥ = 0, then the following assertions are

equivalent:

1. G is semiregular,

2. G is invertible .

Proof. (1) ⇒ (2) :
Since G is semiregular, then N(G) ⊆ R∞(G) and R(G) is closed. Let

y ∈ N(G), then there exists x ∈ D(Gn)) such that y = Gnx. We integrate by
parts in the following formula:

S(t)x = Cx+

∫ t

0

S(s)Gxds,
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We obtain that

S(t)x = Cx+ tCG+
t2

2!
CG2 +

∫ t

0

(t− s)2

2!
S(s)G3xds.

We repeat this operation for n times, we obtain that

S(t)x =

n−1∑
k=0

tk

k!
CGkx+

∫ t

0

(t− s)n−1

(n− 1)!
S(s)Gnxds.

Hence,

S(t)x =

n−1∑
k=0

tk

k!
CGkx+ Cy

∫ t

0

(t− s)n−1

(n− 1)!
ds

=

n−1∑
k=0

tk

k!
CGkx+

tn

n!
Cy.

As lim
t→∞

1

tn
∥S(t)∥ = 0, then y = 0, this implies that

N(G) = {0}.

On the other hand, let (S(t)∗)t≥0 with generator G∗ the adjoint semigroup
of (S(t))t≥0. Since G is semiregular, then G∗ is also semiregular, see [10,
Proposition 1.6]. Using the following formula

S(t)∗x
′
− C∗x

′
= weak∗

∫ t

0

S(s)∗G∗x
′
ds, ∀x

′
∈ D(G∗), ∀t ≥ 0

which is proved in Proposition 2.4 and by the same argument as above, we get
that N(G∗) = {0}. This is equivalent to the fact that

R(G) = X.

Since R(G) is closed, then R(G) = X. From this it follows that G is surjective
and hence it is invertible. Finally, G is invertible.
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