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Spectral analysis of special perturbations of diagonal
operators on non-Archimedean Banach spaces

Aziz Blali1, Abdelkhalek El amrani23 and Mohamed Amine Taybi4

Abstract. In this paper we are concerned with the spectrum of the

operator T = D + Tµ where D is a diagonal operator and Tµ =

∞∑
i=1

µiPi

is a compact and self-adjoint operator in the non-Archimedean Banach
space c0, where µ = (µi)i∈N ∈ c0 and for each i ≥ 1, Pi = <.,yi>

<yi,yi>
yi is

the normal projection defined by (yi)i∈N ∈ c0. Using Fredholm theory in
the non-Archimedean setting and the concept of essential spectrum for
linear operator, we compute the spectrum of T.
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1. Introduction

Non-Archimedean analysis is a well-developed branch of mathematics com-
parable to its classical counterpart, dealing over R and C, see for example the
monographs [7], [3] and [11]. The previous references includes some basic infor-
mation on non-archimedean Banach spaces and operator theory and a rather
complete theory of compact operators, see [9]. Moreover, a characterization of
compact and self-adjoint operators on free Banach spaces is given in [3].

The problem of perturbation of p-adic linear operator has been long studied
through several steps. A first approach was carried out by Serre in [9], where
he dealt with compact perturbation of identity on Banach space having an
orthogonal base. A step further was taking by Gruson [5] for more general
class of Banach spaces, always working on perturbation of the identity. A
complete study of perturbation of the identity was finally done by Schikhof in
[8].
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Let K denote a non trivial field which is complete with respect to a non
archimedean valuation denoted |.| and its residue class fields is formally real,

i.e., for any finite subset {a1, ..., an} of K,
n∑

i=1

ai = 0 implies that each ai = 0,

see [6]. For a given sequence (λj)j∈N with λj ∈ K for all j ∈ N, we set
Λ = {λj ∈ K : j ∈ N}. For each λ in Λ, Iλ = {j ∈ N : λj = λ}. Further,
rλ = cardinality of Iλ. Moreover Λ∗ = {λ ∈ Λ : rλ < ∞}. The set Λ is the
closure of Λ in K and Λ′ = {λ ∈ Λ : λ is an accumulation point of Λ}. Then
the essential spectrum σe(D) of D is characterized by T. Diagana in [4] and is
given by

σe(D) = (Λ\Λ∗) ∪ (Λ∗ ∩ Λ′).

In this paper, we introduce a spectral analysis for compact and self-adjoint
perturbation of diagonal operator in non-Archimedean Banach space of count-
able type. Namely we study the spectral analysis for operator T of the form:

T = D + Tµ,

where D =
∑
i∈N

ai < ., ei > ei, (ai)i∈N ∈ c0, is a bounded diagonal operator

and Tµ =

∞∑
i=1

µi
< ., yi >

< yi, yi >
yi is compact and self-adjoint operator. Under some

suitable assumptions, we will show that the spectrum σ(T ) of the bounded
linear operator T is given by

σ(T ) = σe(D) ∪ σp(T ),

where σe(D) is the essential spectrum of D and σp(T ) is the point spectrum of
T, that is the set of eigenvalues of T given by σp(T ) = {an + µn : n ∈ N}.

2. Preliminaries

Define the space c0 as the collection of all λ = (λi)i∈N, λi ∈ K for all i ∈ N
such that λi tends to 0 in K as i → ∞. Namely, c0 is given by

c0 = {λ = (λn)n ⊂ K : lim
n

λn = 0}.

It is known that the space c0 equipped with the norm defined by for each
λ = (λi)i∈N ∈ c0

∥λ∥∞ = sup
i∈N

|λi|

is a non-Archimedean Banach space see [7]. The bilinear form ⟨., .⟩ : c0×c0 → K

defined by ⟨x, y⟩ =
∞∑
i=1

xiyi with x = (xi) , y = (yi) ∈ c0, is an inner product in

the non-archimedean sense. Since the residue class field of K is formally real,
then ∥x∥2∞ = ⟨x, x⟩. The non archimedean Banach space c0 has a special base
denoted by (ei)i∈N = (δij)i∈N where δij is the usual Kronecker symbol.
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Recall that a topological space is called separable if it has a countable dense
subset. Now let E be a non trivial normed space over K, E ̸= {0} and suppose
that E is separable, then its one-dimensional subspaces are homeomorphic to
K, so K must be separable as well. Thus, for normed space the concept of
separability is of no use if K is not separable, however linearizing the notion of
separability we obtain a generalization useful for every scalar field K. A normed
space E is of countable type if it contains a countable set whose linear hull is
dense in E. Clearly the span of unit vectors e1 = (1, 0, ...), e2 = (0, 1, 0, ...), ...
is dense in c0, which is a Banach space of countable type. Each normed space
is linearly heomeorphic to a subspace of c0. Each infinite-dimensional Banach
space of countable type is linearly heomeorphic to c0 see [7]. This result shows
that, up to linear homeomorphisms, there exists, for given K, only one infinite-
dimensional Banach space of countable type viz c0.

A mapping T : c0 → c0 is said to be a bounded linear operator on c0 when
it is linear and bounded. That is, there exists C > 0 such that

∥Tu∥∞ ≤ C∥u∥∞

for all u ∈ c0.
B(c0) denotes the collection of all bounded linear operators on c0, B(c0) is

a Banach space with the norm ∥T∥ = sup
u ̸=0

∥Tu∥∞
∥u∥∞

.

For all T ∈ B(c0), its kernel and range are, respectively, defined by N(T ) =
{u ∈ c0 : Tu = 0} and R(T ) = {Tu : u ∈ c0}.

A linear operator T : c0 → c0 is said to be a compact operator if T (Bc0)
is compactoid, where Bc0 = {x ∈ c0 : ∥x∥∞ ≤ 1} is the unit ball of c0. It was
proved in [11], that T is compact if and only if, for each ϵ > 0, there exist a
linear operator of finite dimensional range S in B(c0) such that ∥T − S∥ < ϵ.

An operator T ∈ B(c0) is said to be a Fredholm operator if it satisfies the
following conditions:
1. η(T ) = dimN(T ) is finite;
2. R(T ) is closed;
3. δ(T ) = dim(c0/R(T )) is finite.

The collection of all Fredholm linear operators on c0 will be denoted by
Φ(c0). If T ∈ Φ(c0), then we define its index by setting χ(T ) = η(T ) − δ(T ).
An example of a Fredholm operator is an invertible bounded linear operator, in
particular, the identity operator I : c0 → c0, I(x) = x is a Fredholm operator
with index χ(I) = 0 as δ(I) = η(I) = 0.

The adjoint T ∗ of T ∈ B(c0), if it exists, is defined by < Tu, v >=<
u, T ∗v > for all u, v ∈ c0. In contrast with the classical case, the adjoint of
an operator may or may not exist. Note that if it exists, the adjoint T ∗ of an
operator T is unique and has the same norm as A, and hence, lies in B(c0)
as well. Since c0 is not orthomodular, there exist operator in B(c0) which do
not admit an adjoint; for example the linear operator T : c0 → c0 defined by

T (x) = (

∞∑
i=1

xi)e1, x = (xi)∈N ∈ c0, does not admit an adjoint. We will denote
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by A0 = {T ∈ B(c0) : lim
i→∞

< Tei, y >= 0, for all y ∈ c0} the collection of all

element of B(c0) which admit an adjoint.
Set

A1 = {T ∈ B(c0) : lim
n→∞

Ten = 0},

and note that A1 ⊊ A0, because | < Ten, y > | < ∥Ten∥∞∥y∥∞, for all
n ∈ N and y ∈ c0 and Id doesn’t in A1. We know that each T ∈ B(c0) can be
represented by:

T =

∞∑
i,j=1

aije
,
j ⊗ ei,

where lim
i→∞

aij = 0 for each j ∈ N. Also,

∥T∥ = sup{∥T (ei)∥∞ : i ∈ N}
= sup{| < T (ei), ej > | : i, j ∈ N}.

And T is compact if and only if : lim sup
j→∞

{|aij | : i ∈ N} = 0.

Now, note that for all n ∈ N,

∥Ten∥∞ = ∥(
∞∑

i,j=1

aije
′

j ⊗ ei)(en)∥∞

= ∥
∞∑

i,j=1

aije
′

j(en)ei∥∞

= ∥
∞∑
i=1

ainei∥∞

= sup{|ain| : i ∈ N}.

Thus
T ∈ A1 ⇐⇒ T ∈ A0 and T is compact.

We will call a normal projection any projection P : c0 → c0 such that < x, y >=
0 for each pair (x, y) ∈ N(P ) × R(P ). An example of a normal projection is
P (.) = <.,y>

<y,y>y, for a fixed y ∈ c0\{0}.
Let us take a fixed orthonormal sequence (yi)i∈N ∈ c0 that is, < yi, yj >= 0,

for all i, j; i ̸= j and ∥yi∥∞ = 1.
The next theorem involves normal projections with compact and self-adjoint

operators. The proof can be found in [1].

Theorem 2.1. If the linear operator T : c0 → c0 is compact and self-adjoint,
then there exist an element λ = (λi)i∈N ∈ c0 such that:

T =

∞∑
i=1

λiPi.

Where for all i ∈ N, Pi =
<.,yi>
<yi,yi>

yi is the normal projection defined by (yi)i∈N ∈
c0. Moreover ∥T∥ = ∥λ∥∞.
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3. Main Results

From now we will consider a fixed orthonormal sequence Y = (yi)i∈N ∈ c0.
We will denote by CY the collection of all compact operator Tµ, µ ∈ c0, where

Tµ =

∞∑
i=1

µiPi.

The adjoint T ∗
µ of Tµ is itself and lim

n→∞
Tµ(en) = 0. On the other hand, since

Y is orthonormal for all i ∈ N, Tµ(yi) = µiyi, then µi is eigenvalues of Tµ. Let
us denote by σp(Tµ) the set of eigenvalues of Tµ.

Now, the collection CY is a linear space with the operations

Tλ + Tµ = Tλ+µ; αTλ = Tαλ.

On the other hand, since c0 is a commutative algebra with the operation λ.µ =
(λi.µi), we have

Tλ ◦ Tµ = Tλ.µ = Tµ ◦ Tλ.

In order to simplify the notation, Tλ ◦ Tµ will be denoted by Tλ.Tµ.
With the operations described above, CY becomes a commutative algebra

without unit. Even more, by the fact that Tλ = Tµ implies λ = µ, the map

Γ : c0 → CY ; λ 7→ Γ(λ) = Tλ

is an isometric isomorphism of algebras.
The resolvent of a bounded linear operator T : c0 → c0 is defined by ρ(T ) =

{λ ∈ K : λI−T is a bijection and (λI−T )−1 ∈ B(c0)}. The spectrum σ(T ) of
T is then defined by σ(T ) = K \ ρ(T ). A scalar λ ∈ K is called an eigenvalue of
T ∈ B(c0), whenever there exists a nonzero u ∈ c0 (called eigenvector associated
with λ) such that Tu = λu.

Clearly, eigenvalues of T consist of all λ ∈ K, for with λI −T is not one-to-
one, that is N(λI − T ) ̸= {0}. The collection of all eigenvalues of T is denoted
by σp(T ) (called punctual Spectrum) and is defined by

σp(T ) = {λ ∈ σ(T ) : N(λI − T ) ̸= {0}}.

Example 3.1. Consider the diagonal operator D : c0 → c0 defined by

Du =

∞∑
j=0

λjujej for all u = (uj)j∈N ∈ c0

where sup
j∈N

|λj | < +∞. Then σ(D) = {λk : k ∈ N} the closure of {λk : k ∈ N},

i.e:
σ(D) = {λ ∈ K : inf

j∈N
|λ− λj | = 0}.

Definition 3.2. Define the essential spectrum σe(T ) of a bounded linear op-
erator T : c0 → c0 as follows

σe(T ) = {λ ∈ K : λI − T is not Fredholm operator of index 0}.
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Clearly, if λ ∈ K does not belong to neither σp(T ) nor σe(T ), then (λI −
T ) must be injective. N(λI − T ) = {0} and R(λI − T ) is closed with 0 =
dimN(λI−T ) = dim(c0/R(λI−T )). Consequently (λI−T ) must be bijective
(injective and surjective) which yields that λ ∈ ρ(T ). In view of the previous
fact, we have

σ(T ) = σp(T ) ∪ σe(T ).

Theorem 3.3. 1. Let Tλ ∈ CY be a compact and self-adjoint operator and let
µ ∈ K, µ ̸= 0 be an eigenvalue of Tλ. Then µ = λi for some i.
2. If T ∈ B(c0), then for all Tµ ∈ CY , we have

σe(T + Tµ) = σe(T ).

3. If T = D + Tµ, where Tµ ∈ CY and D is a diagonal operator, then its
spectrum σ(T ) is given by σ(T ) = σe(D) ∪ σp(T ).
4. The punctual Spectrum of T = D + Tµ, is given by:

σp(T ) = {µn + an : n ∈ N}.

We use the following lemma to show the second assertion of the theorem.

Lemma 3.4. If T ∈ Φ(c0) and Tµ ∈ CY , then T+Tµ ∈ Φ(c0), with χ(T+Tµ) =
χ(T ).

Proof. see [10] and [2].

Proof of Theorem 3.3
1. Let x ∈ c0 an eigenvector corresponding to µ. Then

Tλx =

∞∑
i=1

λi
< x, yi >

< yi, yi >
yi

Tλ(Tλx) = Tλ(µx) = µTλx.

It follows from the last equation that

Tλ(

∞∑
i=1

λi
< x, yi >

< yi, yi >
yi) = µ(

∞∑
i=1

λi
< x, yi >

< yi, yi >
yi).

Thus
∞∑
i=1

λ2
i

< x, yi >

< yi, yi >
yi =

∞∑
i=1

λiµ
< x, yi >

< yi, yi >
yi.

Since Tλx = µx ̸= 0, it follows that < x, yi > ̸= 0 for some i. Hence

∞⋃
i=1

{λi} ≠ ∅.

Thus
∞∑
i=1

λi(λi − µ)
< x, yi >

< yi, yi >
yi = 0 for < x, yi > ̸= 0.
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The normality of the sequence {yi} implies that

for all i ∈ N, λi(λi − µ)
< x, yi >

< yi, yi >
= 0; < x, yi > ̸= 0.

Since the eigenvectors corresponding to different eigenvalues are normal and
since x ̸= 0, it follows that λi ̸= 0 for some i ∈ N, then λi − µ = 0 for i ∈ N.

Hence λi = µ for some i.
2. If λ does not belong to σe(T ), then λI −T belongs to Φ(c0) with χ(λI −

A) = 0, therefore λI − T − Tµ belongs to Φ(c0) with χ(λI − (T + Tµ)) = 0 for
all Tµ ∈ CY . Then λ does not belong to σe(T + Tµ).

3.We have σ(T ) = σe(T )∪σp(T ). In view of the second assertion of theorem,
we have σe(T ) = σe(D+Tµ) = σe(D). So, it follows that σ(T ) = σe(D)∪σp(T ).

4. Let y = (yn)n∈N be an orthonormal sequence in c0 then:

Ty = (D + Tµ)(y);

since y is orthonormal, we have: Dy = an < yn, en > en and Tµy = µnyn.
Then:

Ty = Tyn = an < yn, en > en + µnyn. (∗)

Taking the inner product of equality (∗) with the canonical basis of c0 we
obtain:

< Tyn, en >= an < yn, en > +µn < yn, en >= (µn + an) < yn, en > .

Then < Tyn − (µn + an)yn, en >= 0 it follows that Tyn − (µn + an)yn = 0, if

not, there exists a nonzero (αi)i∈N ⊆ K such that Tyn−(µn+an)yn =
∑
i∈N

αiei,

then <
∑
i∈N

αiei, en >= αn, absurd because αn ̸= 0. Consequently µn + an is

an eigenvalue of T.

Corollary 3.5. For every Tµ ∈ CY , we have σe(D+ Tµ) = σe(D), where D is
a bounded diagonal operator in c0.

Corollary 3.6. The spectrum of T = D + Tµ is

σ(T ) = {µn + an : n ∈ N} ∪ (Λ\Λ∗) ∪ (Λ∗ ∩ Λ′).

Proposition 3.7. Let T = D + Tµ where D is diagonal operator and Tµ is
compact and self-adjoint, then σp(T ) ∩ σp(D) = ∅.

Proof. Suppose λ ∈ σp(T ), thus there exists u ̸= 0, u ∈ c0 such that Tu = λu.
Equivalently,

(λI −D)u = Tµu =

∞∑
i=1

µi
< u, yi >

< yi, yi >
yi.

Clearly, all expressions < u, yi > ̸= 0 for i ∈ N. If not, we will get (λI−D)u = 0
with u ̸= 0. That is, λ ∈ σp(D) and hence there exists j0 ∈ N such that λ = λj0 ,
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u = aej0 , a ∈ K\{0}. Then for i = j0, we have: 0 =< u, yj0 >=< aej0 , yj0 >=
a < ej0 , yj0 > ̸= 0. Absurd, consequently λ doesn’t belong to σp(D).

Conversely, suppose that λ ∈ σp(D). Thus there exists u ̸= 0, u ∈ c0 such
that Du = λu, hence there exists i0 ∈ N and αi0 ∈ K\{0} such that λ = λi0

and u = αi0ei0 . On the other hand, we have

Tu = Du+ Tµu = λu+ µi0αi0

< yi0 , ei0 >

< yi0 , yi0 >
yi0 .

Then λu − Tu = −µi0αi0
<yi0

,ei0>

<yi0
,yi0

>yi0 ̸= 0, if not we will have µi0yi0 = 0 =

Tµ(yi0), absurd. Then λ doesn’t belong to σp(T ).

Remark 3.8. T and Tµ have the same eigenvectors corresponding to µi + ai
and µi, respectively.
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