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Almost quasi-Yamabe solitons on (LCS),-manifolds
Kanak Kanti Baishyﬂ Manoj Ray Bakshm Ashoke Daﬁ

Abstract.

The article attempts to study hyper generalized pseudo symmetric
(LCS), manifolds admitting almost quasi-Yamabe solitons (g, V,p, A)
and almost quasi-Yamabe gradient solitons (g, f,p, A). Also, we give an
example of hyper generalized pseudo symmetric (LC'S)s-manifold with

(9:Vip,A) and (g, f,p, A).
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1. Introduction

A non Einstein pseudo Riemannian manifold (M™, g) is said to be hyper gen-
eralized pseudo symmetric manifold (briefly, (HGPS),,) (see [11]) if the Rie-
mannian curvature tensor R satisfies the relation

(VxR)(Y,U,V, Z)
= 2B(X)R(Y,U,V,Z)+2F(X)(gAS)(Y,U,V, Z)
+E(Y)R(X,U,V,Z) + F(Y)(g A S)(X,U,V, Z)
+EWU)RY, X, V, 2) + F(U)(g A S)(Y, X, V, Z)
+EV)RY, U, X, Z)+ F(V)(gNS)(Y,U, X, Z)
(1.1) +E(Z)R(Y,U,V,X) + F(Z)(g A S)(Y,U,V, X),

(gNASY,U,V, Z)
= g, 2)S(U,V)+g(UV)S(Y, Z)
—g(Y, V>S(U7 Z) - 9(U, Z)S(Y7 V),

and F, F are non-zero 1-forms. We note that for F' = 0, a hyper generalized
pseudo symmetric space reduces to Chaki’s pseudo symmetric space ([13]).
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It is obvious that an Einstein hyper generalized weakly (pseudo) symmetric
space ([3], [8], [I8]) reduces to a generalized weakly (pseudo) symmetric space
([I0]). Also, we note that such related spaces are studied in ([5], [12] [15]).
The study of the Yamabe flow appeared in the work of Hamilton ([I6]) as

a tool to construct Yamabe metrics on compact Riemannian manifolds. A
Yamabe soliton is defined on a Riemannian or pseudo Riemannian manifold
(M™, g) by a vector field V satisfying the equation ([9]).

(1.2) Lyg=2(r—Ng,

where £y denotes the Lie derivative along V', r denotes the scalar curva-
ture and A is a real number. Moreover, when V' is a Killing vector field, the
Yamabe soliton is called trivial. Chen ([I4]) has investigated almost quasi-
Yamabe solitons (g, V,p, ) on almost cosymplectic manifolds. According to
Chen ([14]), a pseudo Riemannian metric is called an almost quasi-Yamabe
soliton if there exist a C'°° function A, a vector field V' and a positive con-
stant p such that

2
(1.3) £Vg:2(r—)\)g+§Vb®Vb.

An almost quasi-Yamabe soliton is said to be expanding, steady or shrinking
when X is negative, zero and positive, respectively. It is to be mentioned that
an almost quasi-Yamabe soliton (g, V, p, A) reduces to an almost Yamabe soli-
ton when p — oo. Furthermore, for V' = gradf such soliton is called almost
quasi-Yamabe gradient soliton and denoted by (g, f,p, A).

Our paper is structured as follows: Section 2 is concerned with some known
results of (LC'S),-manifolds which will be useful later. Section 3 deals with
hyper generalized pseudo symmetric (LCS),,-manifolds and such a manifold
is m-Einstein, space of quasi-constant curvature and conformally flat. Next,
we have observed that if a hyper generalized pseudo symmetric (LCS),,-
manifold admits closed almost quasi-Yamabe solitons, then the manifold

is Einstein and the sectional curvature is (a? — p) or the potential vector
field of the soliton is pointwise collinear with £&. Moreover, almost quasi-
Yamabe gradient solitons on hyper generalized pseudo symmetric (LCS),,-
manifold is discussed in Section 5. Lastly, we construct a non trivial example
of Lorentzian concircular structure which is a hyper generalized pseudo sym-
metric space and admits an almost quasi- Yamabe soliton.

2. Preliminaries

Let (M™,g) be a Lorentzian manifold admitting an unit time-like concircular
vector field &, the characteristic vector field of the manifold. Then we have

(2.1) 96,6 = -1,

(2.2) 9(X, &) = n(X),
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(2.3) (Vxn)Y = alg(X,Y) +n(X)n(Y)], («#0),
(2.4) Vxa = (Xa) = pn(X),
(2.5) Vxp = Bn(X),

where 7 is the dual 1-form of £, V is the covariant differentiation operator
with respect to g, and «, 3, p are non-zero scalar function.
If we assume

(26) 6X = LVxE= X +n(X)E,

then ¢ is a symmetric (1, 1)-tensor field. A manifold with such structure
(¢,€,m, g) and associated scalars «, 3, p is known as an (LCS),,-manifold
[1]. In an (LCS),-manifold, the following relations hold [7]:

(2.7) pof=0,m0¢ =0,

(2.8) 9(¢X ,9Y) = g(X,Y) +n(X)n(Y),

(2.9) N(R(X.Y)Z) = (o” = p)g(Y. Z)n(X) — g(X, Z)n(Y)],
(2.10) R(X,Y)¢ = (o = p)n(Y)X —n(X)Y],

(2.11) S(X,€) = (n—1)(a® = p)u(X),

(VXR)(Y7 Z)f
= O‘(OP*/D)[Q(X?Z)Y*.Q(‘X}Y)Z]
(212) +Q2ap = B)(X)[n(2)Y —n(Y)Z] — aR(Y, Z)X,

(VxR)(Y,Z,V,€) + aR(Y, Z,V, X)
= —a(e® —p)[g(X,2)g(Y,V) - g(X,Y)g(Z,V)]
(2.13) —(2ap = B)(X)n(2)g(Y, V) —n(Y)g(Z, V)],

(Vx9)(Y,€)
(2.14) = (n—1)[a(a® - p)g(X,Y) + (2ap = B)n(X)n(Y)] - aS(X,Y),

for any vector fields X, Y, Z and V in M".

In [I7) (also in [2], [4]) the authors claimed that the generalized Robertson—
Walker (in brief, GRW) spacetime coincides with 4-dimensional Lorentzian
concircular structure (in brief (C'S)4-spacetime [6], [19], [20]).
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3. Hyper generalized pseudo symmetric
(LCS),-manifolds

We first con81der an LCS) -manifold which is (HGPS),. Now putting Z =

¢ and using in , we find

{a+EB(}R(X,U,Y,V)

+[(@® = p){ag(V,U) + DU)n(V)} = F(§)S(V,U)]g(X,Y)

+[F(S(Y,U) — (& — p){ag(Y,U) + D(U)n(Y)}g(X,V)

—(a® = p{D(V)n(Y) = DY )n(V)}g(X,U)

+[F(§)S(X, V) + (a® — p)D(V)n(X)

+{2(a? - )D(X) (B = 2ap)n(X)In(V)]g(Y,U)

—[F(&)S(X,Y) + (a® = p)D(Y)n(X)

+{2(a2 - p)D(X) + (8 = 2ap)n(X)In(Y)]g(V,U)

+FU)n(V)S(X,Y) = F(U)n(Y)S(X,V)
HFEY)n(V) - F(V)n(Y)}S(X,U)
HEWV)In(X) +2F(X)n(V)}S(Y,U)

(31) = {FY)nX)+2F(X)nY)}S(V,U),

where D(X) = E(X) + (n — 1) F(X).
Again putting V = X = £, we can easily obtain:

S(Y,0)
- e e
(3.2) R L. Zlgé()g) #20 = DEE), v yw).

Contracting the above equation (3.2, we have

(33) B = 220 D) g

Now putting this value of E(§) in (3.2), we have

S(Y,U)

o (—1)(a?—p)

B (n—1) 9(¥.U)
r—n(n —1)(a? — p)
T o

n(Y)n(U).
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Now contracting (3.1]) over V and X, we get

3a2E(&)g(Y,U) = 3pE(&)g(Y,U) + E(€)S(Y,U) + 3a’nF(£)g(Y,U)

=3npF(€)g(Y,U) + rF(€)g(Y,U) = 3o’ F(£)g(Y,U) + 3pF (£)g(Y,U)

+nF(E)S(Y,U) + F(&)S(Y,U) — 2apn(e)*g(Y,U) + Bn(e)*9(Y, U)
a’(=n)g(Y,U) + anpg(Y,U) + a’g(Y,U) — apg(Y,U)

+aS(Y,U) — nE( ) (V) +npE(U)n(Y) — 202 E(U)n(Y)

+2pE(U)77(Y) PFUNY) +n’pF(U)n(Y)

(n—1)(® - ) UN(Y) = a*nF(U)n(Y) +npFU)n(Y)
—TF(U)U(Y)—377( JE(S(U) +2a2F(U) (Y) = 2pF(U)n(Y)
+2apn(Y)n(U) — Bn(Y)n(U) =

Again, contracting above over Y and U, we get

—2F(§) (2 (a® —p) +n((n—3) (a® —p) +1))
+(n—1) (B+a®n — a(n+2)p) —ar

35)  E(§= 2(n—1)(a?—p)+r

Now comparing and (3.3]), we get

B 2(n—1) (a® — p) (—2ap + B+ 2n (® — ap))
(n 1)( —r (403 — 6ap + ) )

dr(r—(n—Dn(a? - p))

(3.6) F(§) = -

Again, from symmetry of R, we have
(3.7) R(Y,V,U,Z)+ R(V,Y,U,Z) = 0.

Now putting the expression of R from (3.1)) in (3.7) and taking contraction
over V and U and then putting Z = £, we have

(3n+2) (a? = p)
a+ E(€)
(n—6) (a2 — p) E¢) (n—=1)(8 - 2ap)

T arme " avEg Y
(n=6)F(§) [(n—2)(n—1) (a® — p) +7]

(n—1)(a+ E(Q))

(3n+2) ((n— 2)(n—1) ( 2
(n—1)(a+ E(E))

EY)+

n(Y)=0.

Now using (3.3)) in above we get
(3.8)

B(Y) = CAF(Y) (n=2)(n — 1) (0® = p) +7) + (n = Dn(¥)(8 — 2ap)

i(n—1)(a? - p)
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Finally, using (3.4), (3.6) and (3.8) in , we get the following:

R(Y,V,U, Z)
r—=2(n—-1)(a®—p)

r—n(n—1)(a? - p)
(n—2)(n-1)

(3.9) + H(Y,V,U,2),

where H = g A (n®1n).
Therefore we can state the following:

Theorem 3.1. FEvery hyper generalized pseudo symmetric (LCS ),,-manifold
s a space of quasi-constant curvature and n-Finstein.

It is to be noted that a hyper generalized pseudo symmetric (LC'S),-manifold
reduces to Chaki’s pseudo symmetric (LC'S),-manifold ([13]) for F = 0. This
motivates us to state the following:

Corollary 3.2. FEvery pseudo symmetric (LCS ),,-manifold is a space of
quasi-constant curvature and n-Einstein.

Next, in view of (3.4)) and (3.9) we see that the Weyl conformal curvature
tensor

C(X,Y)Z =R(X,Y)Z —

~9(X,2)QY + ﬁ{g(iﬁ 2)X - g(X, Z)Y}].

LSO 2)X — S(X,2)Y + (Y, 2)QX

n —

vanishes. Thus we can say that

Theorem 3.3. FEvery hyper generalized pseudo symmetric (LCS ),,-manifold
s conformally flat.

Corollary 3.4. Ewvery pseudo symmetric (LCS ),-manifold is conformally
flat.

4. Almost quasi-Yamabe solitons on hyper generalized
pseudo symmetric (LCS),-manifolds

Let the metric of the almost quasi-Yamabe soliton be closed on hyper gener-
alized pseudo symmetric (LCS),-manifolds. Then the equation (1.3)) yields

1
(4.1) VxV = (r—)\)X—i—;g(X, V.
Taking the covariant derivative along the vector field Y of (4.1)), we have

1 1
(42) VyVxV = (Y (r=X) X+ (=N Ty X+ Ty g(X, VIV g(X,V)Vy V.
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In view of (4.1)), (4.2), we determine

RX, Y)YV = (Xr—-AN))Y —-(Y(r—-X)X
(4.3) +})<r ~NEYV)X — g(X, V)Y,

Next, taking the inner product in (4.3]) with &, we have

nRX,Y)V) = (X(r=X2)nY) = (Y (r—A)n(X)
(14) o (= NlaY.V)n(X) = g (X, V)n(¥)
Using in and then replacing X by ¢X and Y by &, we find
(4.5) P grad(r — ) — {%(r —)) — (e®=p)}oV =0.

Again, contracting (4.3) and using (3.4]), we obtain

r—n— OZ2— r—n{n— a2—
( = 1_)(1) £ y(x. V) + ((n _1)1() 2) (X (V)
(4.6) = f(nfl)(X(r—)\))+%(n—1)(rf/\)g(X,V).

Next replacing X by ¢X in (4.6]), we get

r—(n—1)(a® -
(a7) T={ B 1_)(1) P) 4V 4 (n—1)6 grad(r — \) — %(nf 1)(r — NV = 0.
Now combining and , we obtain
(4.8) [m —n(a® = p)lpV =0.

gIz‘z;)rn ) two cases may arise: one is (n’ﬂfl) —n(a? — p) = 0 and the other is

e Case-1, if r = n(n—1)(a® — p), then (3.4) and (3.9) together impliy that
the manifold is Einstein and the sectional curvature is (o — p).

e Case-2, if ¢V = 0, then from (2.6)) we see that V. = —n(V)¢ i.e., the
potential vector field of the almost quasi-Yamabe soliton is pointwise
collinear with &.

Thus we can state that

Theorem 4.1. Every hyper generalized pseudo symmetric (LCS ),-manifold
admitting closed almost quasi- Yamabe solitons reduces to an Einstein mani-
fold and the sectional curvature is (a® — p) or the potential vector field of the
soliton is pointwise collinear with &.
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Corollary 4.2. Every hyper generalized pseudo symmetric (LC'S ), -manifold
admitting closed almost quasi- Yamabe solitons reduces to a generalized pseudo
symmetric (LCS ),-manifold.

Corollary 4.3. Every pseudo symmetric (LCS ),-manifold admitting closed
almost quasi- Yamabe solitons reduces to an Einstein manifold and the sec-
tional curvature is (o — p) or the potential vector field of the soliton is point-
wise collinear with .

5. Gradient almost quasi-Yamabe solitons on hyper gen-
eralized pseudo symmetric (LCYS),-manifolds

In this section we take the potential vector field V' as a gradient of a smooth
function f: M™ — R. Then relation (|1.3)) becomes

(5.1) Vxgradf =(r—-MNX+ %g(X, gradf) gradf
which yields
(5.2) R(X,Y)gradf = (X(T—)\))Y—(Y(r—)\))X-i-;lj(r—)\)[(Yf)X—(Xf)Y].

Taking the inner product in (5.2)) with £ and then from (2.9)), we obtain
(5.3)

(X=X )~ (¥ (A ()4 { T

—(@®=p) (Y f)n(X)—(X f)n(Y)] = 0.

Now replacing Y by £ and X by ¢X in (5.3]), we obtain

(5.4) [u

—(a® = p)lp gradf = ¢ grad(r — \).
Taking the contraction over X in (5.2)), we find

(6.5) SV, gradf) = —(n—-1)(Y(r—A)) + %(T — A =1 ).
Combining and 7 we get

r—(n—1)(a® - p) —n(n—1)(a® - p)

Sy gy 4 D))
(5.6) = —(n—1)(Y(T—)\))+%(7‘—)\)(n—1)(Yf).
Replacing Y by ¢Y in we have

(5.7)
r—(n-1)-p)
(-1

pgradf = —(n—1)pgrad(r — )+ %(r— A)(n—1)¢ gradf.
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Combining (5.4)) and (5.7]), we obtain
[(nrﬁ —n(a® = p)lp gradf = 0.

Thus we can conclude that

Theorem 5.1. Every hyper generalized pseudo symmetric (LCS ),-manifold
admitting gradient almost quasi- Yamabe solitons reduces to an Einstein man-
ifold and the sectional curvature is (o — p) or the gradient of the potential
function f of the soliton is pointwise collinear with .

Corollary 5.2. Every hyper generalized pseudo symmetric (LCS ),-manifold
admitting gradient almost quasi- Yamabe solitons reduces to a generalized
pseudo symmetric (LCS ),-manifold.

Corollary 5.3. Every pseudo symmetric (LCS ),-manifold admitting gra-
dient almost quasi- Yamabe solitons reduces to an FEinstein manifold and the
sectional curvature is (a® — p) or the gradient of the potential function f of
the soliton is pointwise collinear with &.

Again, gradf + £(f)€ = 0 implies that
(5.8) Vx gradf = —X(£f)€ — (€f)VxE.
In view of , equation yields

(59  (r-NX+ %g(x, gradf) gradf + X(E£) + (€f)Vx€ = 0.

Taking the inner product with &, we have

1
(5.10) (T*/\)H(X)+5(Xf)(£f)*X(€f):0-
Again contracting ([5.9) over X, we get

(5.11) n(r —A) +&(&f) + (£f) divg = 0.

Now setting X = ¢ in (5.10) and then comparing with (5.11)) we obtain

(0= 1)(r = X) + (€N (€) + divg] =0
Therefore we can state

Theorem 5.4. FEvery hyper generalized pseudo symmetric (LCS ),-manifold
admitting gradient almost quasi- Yamabe solitons satisfies

(&f) [}
(n—1)"p

=71+ (€f) + dive].
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6. Example

Example 6.1. Consider a 3-dimensional manifold M3 = {(x1,22,23) €
R3: 23 # 0, where (21,22, 73) are the standard coordinates in R®}. Let
{e1,e2,e3} be a linearly independent global frame on M? given by

0 0 0

3
€1 =3 — €y = T3~ €3 = (x3) —.
8x1’ 5‘:52’ ( ) 01'3

Let g be the Lorentzian metric defined by g(a%l, 6%1) = g(:2,-2) =

Oxs’ Oxo
2 6

(35) + olats ) = = (%) and el af) = 0fori £ =123
Let n be the 1-form defined by n(U) = g(U, e3) for any U € x(M). Let ¢ be
the (1,1) tensor field defined by ¢ - e; = e, ¢ - ea = ea, ¢ - e3 = 0. Then
using the linearity of ¢ and g we have n( e3) = —1, > = I + 1 ® e3 and
g(oU, oW) = g(U, W) + n(U)n(W) for any U, W € x(M). Thus for e3 = &,
(4,€,1,9) defines a Lorentzian paracontact structure on M.

Let V be the Levi-Civita connection with respect to g and R be the curva-
ture tensor of g. Then we infer

[e1,e3] = — (z3)% €1, [e2, €3] = — (z3)° es.
Taking e3 = ¢ and using Koszul formula for the Lorentzian metric g, we can
easily bring out
Vees = —(23)% €1, Veges = —(23)°€a, Veges =0,
Ve, e2 =0, Ve, = — (x3)2 es, Veseo =0,
Ve, €1 =— (x3)2 es, Ve,e1 =0, Vese1 =0.

From above, we can say (¢,£,7,g) is an (LCS)3 structure on M. Conse-
quently, M3(¢,€,n,g) is an (LCS)s-manifold with o = — (2:3)> # 0 and
p=2 (x3)4. Using the above relations, we calculate the non-vanishing compo-
nents of the curvature tensor as follows :

R(ey,e3)es = —(x3)"es, G(eg,e3)es = —eqg
R(e1,ez)er — (x3)4 e, R(e1,ex)er = —ea,
R(ei,e3)es = —(xz3)"eq, G(e1,e3)es = —eq,
R(ei,e3)er = (x4)4 es€s, G(e1,e3)e; = —eses,
Rles,es)es = (3)" eses, G(eq,e3)es = —eses,

and the components which can be obtained from these by the symmetric
properties. Thus, we have

R(X,Y,Z,U) = (a®—p)eG(X,Y,Z,U),
and S(Y,Z) = 3(a®—peag(Y,Z), r=9(a®—)p)
where ¢, = —1, for b=3,

= 0, forb=1,2.
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Additionally, it is well known that the scalar curvature r of the space of con-

stant curvature is always constant. Consequently, (a2 — p ), that is, (z3)" is
constant. Hence, the covariant derivatives of the curvature tensor are

(V.,R)(X,Y,Z,U) =0, for i =1,2,3.

For the choice of the following 1-forms

1 )
F(el) = 7(0527—p), for i = 1,2,3,
F(ei ‘
E(e;) = —(2(6)), fori=1,2,3,
a?—p

spacetime under consideration is a hyper generalized pseudo symmetric.
For V' = Jes, we have

VxV = (r—)\)X+1%g(X,V)V.
(es6) = <r—A>—%
1

N = = (esd) — 2,
r— (e30) .

This motivates us to state that

Theorem 6.2. The manifold (M?3,g) under consideration is a hyper general-
ized pseudo symmetric (LCS )s-manifold. Then

o (9,V = -5 (xg)2 e3,py A = (w3)* — %) is an expanding almost quasi-
Yamabe soliton

o (9,V = 2(x3)° e3,p, A = —13(x3)* — %) is a shrinking almost quasi-
Yamabe soliton

Furthermore, for f = (x3)%, V = gradf = 4es, Subsequently, we infer

e (g9,f = (x3)*,p, A = —9(x3)* — %) is a shrinking almost quasi-Yamabe
gradient soliton.
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