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Almost quasi-Yamabe solitons on (LCS)n-manifolds

Kanak Kanti Baishya1, Manoj Ray Bakshi23, Ashoke Das4

Abstract.

The article attempts to study hyper generalized pseudo symmetric
(LCS)n manifolds admitting almost quasi-Yamabe solitons (g, V, p, λ)
and almost quasi-Yamabe gradient solitons (g, f, p, λ). Also, we give an
example of hyper generalized pseudo symmetric (LCS)3-manifold with
(g, V, p, λ) and (g, f, p, λ).

AMS Mathematics Subject Classification (2020): 53C15; 53C25

Key words and phrases: almost quasi-Yamabe solitons; (LCS)n-manifolds;
η-Einstein; conformally flat

1. Introduction

A non Einstein pseudo Riemannian manifold (Mn, g) is said to be hyper gen-
eralized pseudo symmetric manifold (briefly, (HGPS)n) (see [11]) if the Rie-
mannian curvature tensor R satisfies the relation

(∇XR)(Y, U, V, Z)

= 2E(X)R(Y,U, V, Z) + 2F (X)(g ∧ S)(Y,U, V, Z)

+E(Y )R(X,U, V, Z) + F (Y )(g ∧ S)(X,U, V, Z)

+E(U)R(Y,X, V, Z) + F (U)(g ∧ S)(Y,X, V, Z)

+E(V )R(Y, U,X,Z) + F (V )(g ∧ S)(Y,U,X,Z)

+E(Z)R(Y, U, V,X) + F (Z)(g ∧ S)(Y,U, V,X),(1.1)

where

(g ∧ S)(Y,U, V, Z)

= g(Y, Z)S(U, V ) + g(U, V )S(Y,Z)

−g(Y, V )S(U,Z)− g(U,Z)S(Y, V ),

and E, F are non-zero 1-forms. We note that for F ≡ 0, a hyper generalized
pseudo symmetric space reduces to Chaki’s pseudo symmetric space ([13]).
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It is obvious that an Einstein hyper generalized weakly (pseudo) symmetric
space ([3], [8], [18]) reduces to a generalized weakly (pseudo) symmetric space
([10]). Also, we note that such related spaces are studied in ([5], [12] [15]).
The study of the Yamabe flow appeared in the work of Hamilton ([16]) as
a tool to construct Yamabe metrics on compact Riemannian manifolds. A
Yamabe soliton is defined on a Riemannian or pseudo Riemannian manifold
(Mn, g) by a vector field V satisfying the equation ([9]).

(1.2) £V g = 2(r − λ)g,

where £V denotes the Lie derivative along V , r denotes the scalar curva-
ture and λ is a real number. Moreover, when V is a Killing vector field, the
Yamabe soliton is called trivial. Chen ([14]) has investigated almost quasi-
Yamabe solitons (g, V, p, λ) on almost cosymplectic manifolds. According to
Chen ([14]), a pseudo Riemannian metric is called an almost quasi-Yamabe
soliton if there exist a C∞ function λ, a vector field V and a positive con-
stant p such that

(1.3) £V g = 2(r − λ)g +
2

p
V b ⊗ V b.

An almost quasi-Yamabe soliton is said to be expanding, steady or shrinking
when λ is negative, zero and positive, respectively. It is to be mentioned that
an almost quasi-Yamabe soliton (g, V, p, λ) reduces to an almost Yamabe soli-
ton when p → ∞. Furthermore, for V = gradf such soliton is called almost
quasi-Yamabe gradient soliton and denoted by (g, f, p, λ).
Our paper is structured as follows: Section 2 is concerned with some known
results of (LCS)n-manifolds which will be useful later. Section 3 deals with
hyper generalized pseudo symmetric (LCS)n-manifolds and such a manifold
is η-Einstein, space of quasi-constant curvature and conformally flat. Next,
we have observed that if a hyper generalized pseudo symmetric (LCS)n-
manifold admits closed almost quasi-Yamabe solitons, then the manifold
is Einstein and the sectional curvature is (α2 − ρ) or the potential vector
field of the soliton is pointwise collinear with ξ. Moreover, almost quasi-
Yamabe gradient solitons on hyper generalized pseudo symmetric (LCS)n-
manifold is discussed in Section 5. Lastly, we construct a non trivial example
of Lorentzian concircular structure which is a hyper generalized pseudo sym-
metric space and admits an almost quasi-Yamabe soliton.

2. Preliminaries

Let (Mn, g) be a Lorentzian manifold admitting an unit time-like concircular
vector field ξ, the characteristic vector field of the manifold. Then we have

(2.1) g(ξ, ξ) = −1,

(2.2) g(X, ξ) = η(X),
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(2.3) (∇Xη)Y = α[g(X,Y ) + η(X)η(Y )], (α ̸= 0),

(2.4) ∇Xα = (Xα) = ρη(X),

(2.5) ∇Xρ = βη(X),

where η is the dual 1-form of ξ, ∇ is the covariant differentiation operator
with respect to g, and α, β, ρ are non-zero scalar function.
If we assume

(2.6) ϕX =
1

α
∇Xξ = X + η(X)ξ,

then ϕ is a symmetric (1, 1)-tensor field. A manifold with such structure
(ϕ, ξ, η, g) and associated scalars α, β, ρ is known as an (LCS)n-manifold
[1]. In an (LCS)n-manifold, the following relations hold [7]:

(2.7) ϕ ◦ ξ = 0, η ◦ ϕ = 0,

(2.8) g(ϕX , ϕY ) = g(X,Y ) + η(X)η(Y ),

(2.9) η(R(X,Y )Z) = (α2 − ρ)[g(Y,Z)η(X)− g(X,Z)η(Y )],

(2.10) R(X,Y )ξ = (α2 − ρ)[η(Y )X − η(X)Y ],

(2.11) S(X, ξ) = (n− 1)(α2 − ρ)η(X),

(∇XR)(Y,Z)ξ

= α(α2 − ρ)[g(X,Z)Y − g(X,Y )Z]

+(2αρ− β)η(X)[η(Z)Y − η(Y )Z]− αR(Y,Z)X,(2.12)

(∇XR)(Y,Z, V, ξ) + αR(Y, Z, V,X)

= −α(α2 − ρ)[g(X,Z)g(Y, V )− g(X,Y )g(Z, V )]

−(2αρ− β)η(X)[η(Z)g(Y, V )− η(Y )g(Z, V )],(2.13)

(∇XS)(Y, ξ)

= (n− 1)[α(α2 − ρ)g(X,Y ) + (2αρ− β)η(X)η(Y )]− αS(X,Y ),(2.14)

for any vector fields X,Y, Z and V in Mn.
In [17] (also in [2], [4]) the authors claimed that the generalized Robertson–
Walker (in brief, GRW ) spacetime coincides with 4-dimensional Lorentzian
concircular structure (in brief (CS)4-spacetime [6], [19], [20]).
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3. Hyper generalized pseudo symmetric
(LCS)n-manifolds

We first consider an (LCS)n-manifold which is (HGPS)n. Now putting Z =
ξ and using (1.1) in (2.14), we find

{α+ E(ξ)}R(X,U, Y, V )

+[(α2 − ρ){αg(V,U) +D(U)η(V )} − F (ξ)S(V,U)]g(X,Y )

+[F (ξ)S(Y, U)− (α2 − ρ){αg(Y, U) +D(U)η(Y )}]g(X,V )

−(α2 − ρ){D(V )η(Y )−D(Y )η(V )}g(X,U)

+[F (ξ)S(X,V ) + (α2 − ρ)D(V )η(X)

+{2(α2 − ρ)D(X) + (β − 2αρ)η(X)}η(V )]g(Y,U)

−[F (ξ)S(X,Y ) + (α2 − ρ)D(Y )η(X)

+{2(α2 − ρ)D(X) + (β − 2αρ)η(X)}η(Y )]g(V,U)

+F (U)η(V )S(X,Y )− F (U)η(Y )S(X,V )

+{F (Y )η(V )− F (V )η(Y )}S(X,U)

+{F (V )η(X) + 2F (X)η(V )}S(Y, U)

= {F (Y )η(X) + 2F (X)η(Y )}S(V,U),(3.1)

where D(X) = E(X) + (n− 1)F (X).

Again putting V = X = ξ, we can easily obtain:

S(Y, U)

=
β − 2αρ− 4(α2 − ρ)(E(ξ) + (n− 1)F (ξ))

4F (ξ)
g(Y,U)

+
β − 2αρ− 4(α2 − ρ)(E(ξ) + 2(n− 1)F (ξ))

4F (ξ)
η(Y )η(U).(3.2)

Contracting the above equation (3.2), we have

(3.3) E(ξ) =
β − 2αρ

4(α2 − ρ)
− r + (n− 2)(α2 − ρ)

(n− 1)(α2 − ρ)
F (ξ).

Now putting this value of E(ξ) in (3.2), we have

S(Y, U)

=
r − (n− 1)(α2 − ρ)

(n− 1)
g(Y, U)

+
r − n(n− 1)(α2 − ρ)

(n− 1)
η(Y )η(U).(3.4)
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Now contracting (3.1) over V and X, we get

3α2E(ξ)g(Y, U)− 3ρE(ξ)g(Y,U) + E(ξ)S(Y, U) + 3α2nF (ξ)g(Y,U)

−3nρF (ξ)g(Y,U) + rF (ξ)g(Y,U)− 3α2F (ξ)g(Y,U) + 3ρF (ξ)g(Y,U)

+nF (ξ)S(Y,U) + F (ξ)S(Y,U)− 2αρη(e)2g(Y, U) + βη(e)2g(Y,U)

+α3(−n)g(Y,U) + αnρg(Y,U) + α3g(Y, U)− αρg(Y, U)

+αS(Y,U)− α2nE(U)η(Y ) + nρE(U)η(Y )− 2α2E(U)η(Y )

+2ρE(U)η(Y )− α2n2F (U)η(Y ) + n2ρF (U)η(Y )

+(n− 1)
(
α2 − ρ

)
F (U)η(Y )− α2nF (U)η(Y ) + nρF (U)η(Y )

−rF (U)η(Y )− 3η(Y )F (S(U)) + 2α2F (U)η(Y )− 2ρF (U)η(Y )

+2αρη(Y )η(U)− βη(Y )η(U) = 0.

Again, contracting above over Y and U , we get

(3.5) E(ξ) =

−2F (ξ)
(
2
(
α2 − ρ

)
+ n

(
(n− 3)

(
α2 − ρ

)
+ r

))
+(n− 1)

(
β + α3n− α(n+ 2)ρ

)
− αr

2(n− 1) (α2 − ρ) + r
.

Now comparing (3.5) and (3.3), we get

(3.6) F (ξ) = −
(n− 1)

(
2(n− 1)

(
α2 − ρ

) (
−2αρ+ β + 2n

(
α3 − αρ

))
−r

(
4α3 − 6αρ+ β

) )
4r (r − (n− 1)n (α2 − ρ))

.

Again, from symmetry of R, we have

(3.7) R(Y, V, U, Z) +R(V, Y, U, Z) = 0.

Now putting the expression of R from (3.1) in (3.7) and taking contraction
over V and U and then putting Z = ξ, we have

(3n+ 2)
(
α2 − ρ

)
α+ E(ξ)

E(Y ) +
(3n+ 2)

(
(n− 2)(n− 1)

(
α2 − ρ

)
+ r

)
(n− 1)(α+ E(ξ))

F (Y )

−
(n− 6)

(
α2 − ρ

)
E(ξ)

α+ E(ξ)
η(Y ) +

(n− 1)(β − 2αρ)

α+ E(ξ)
η(Y )

−
(n− 6)F (ξ)

[
(n− 2)(n− 1)

(
α2 − ρ

)
+ r

]
(n− 1)(α+ E(ξ))

η(Y ) = 0.

Now using (3.3) in above we get
(3.8)

E(Y ) = −
4F (Y )

(
(n− 2)(n− 1)

(
α2 − ρ

)
+ r

)
+ (n− 1)η(Y )(β − 2αρ)

4(n− 1) (α2 − ρ)
.
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Finally, using (3.4), (3.6) and (3.8) in (3.1), we get the following:

R(Y, V, U, Z)

=
r − 2(n− 1)

(
α2 − ρ

)
(n− 2)(n− 1)

G(Y, V, U, Z)

+
r − n(n− 1)

(
α2 − ρ

)
(n− 2)(n− 1)

H(Y, V, U, Z),(3.9)

where H = g ∧ (η ⊗ η).
Therefore we can state the following:

Theorem 3.1. Every hyper generalized pseudo symmetric (LCS)n-manifold
is a space of quasi-constant curvature and η-Einstein.

It is to be noted that a hyper generalized pseudo symmetric (LCS)n-manifold
reduces to Chaki’s pseudo symmetric (LCS)n-manifold ([13]) for F ≡ 0. This
motivates us to state the following:

Corollary 3.2. Every pseudo symmetric (LCS)n-manifold is a space of
quasi-constant curvature and η-Einstein.

Next, in view of (3.4) and (3.9) we see that the Weyl conformal curvature
tensor

C(X,Y )Z = R(X,Y )Z − 1

n− 2
[S(Y, Z)X − S(X,Z)Y + g(Y,Z)QX

−g(X,Z)QY +
r

(n− 1)
{g(Y,Z)X − g(X,Z)Y }].

vanishes. Thus we can say that

Theorem 3.3. Every hyper generalized pseudo symmetric (LCS)n-manifold
is conformally flat.

Corollary 3.4. Every pseudo symmetric (LCS)n-manifold is conformally
flat.

4. Almost quasi-Yamabe solitons on hyper generalized
pseudo symmetric (LCS)n-manifolds

Let the metric of the almost quasi-Yamabe soliton be closed on hyper gener-
alized pseudo symmetric (LCS)n-manifolds. Then the equation (1.3) yields

(4.1) ∇XV = (r − λ)X +
1

p
g(X,V )V.

Taking the covariant derivative along the vector field Y of (4.1), we have

(4.2) ∇Y ∇XV = (Y (r−λ))X+(r−λ)∇Y X+
1

p
∇Y g(X,V )V +

1

p
g(X,V )∇Y V.
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In view of (4.1), (4.2), we determine

R(X,Y )V = (X(r − λ))Y − (Y (r − λ))X

+
1

p
(r − λ)[g(Y, V )X − g(X,V )Y ].(4.3)

Next, taking the inner product in (4.3) with ξ, we have

η(R(X,Y )V ) = (X(r − λ))η(Y )− (Y (r − λ))η(X)

+
1

p
(r − λ)[g(Y, V )η(X)− g(X,V )η(Y )].(4.4)

Using (2.9) in (4.4) and then replacing X by ϕX and Y by ξ, we find

(4.5) ϕ grad(r − λ)− {1
p
(r − λ)−

(
α2 − ρ

)
}ϕV = 0.

Again, contracting (4.3) and using (3.4), we obtain

r − (n− 1)(α2 − ρ)

(n− 1)
g(X,V ) +

r − n(n− 1)(α2 − ρ)

(n− 1)
η(X)η(V )

= −(n− 1)(X(r − λ)) +
1

p
(n− 1)(r − λ)g(X,V ).(4.6)

Next replacing X by ϕX in (4.6), we get

(4.7)
r − (n− 1)(α2 − ρ)

(n− 1)
ϕV +(n− 1)ϕ grad(r−λ)− 1

p
(n− 1)(r−λ)ϕV = 0.

Now combining (4.5) and (4.7), we obtain

(4.8) [
r

(n− 1)
− n(α2 − ρ)]ϕV = 0.

From (4.8) two cases may arise: one is r
(n−1) − n(α2 − ρ) = 0 and the other is

ϕV = 0.

� Case-1, if r = n(n−1)(α2−ρ), then (3.4) and (3.9) together impliy that
the manifold is Einstein and the sectional curvature is (α2 − ρ).

� Case-2, if ϕV = 0, then from (2.6) we see that V = −η(V )ξ i.e., the
potential vector field of the almost quasi-Yamabe soliton is pointwise
collinear with ξ.

Thus we can state that

Theorem 4.1. Every hyper generalized pseudo symmetric (LCS)n-manifold
admitting closed almost quasi-Yamabe solitons reduces to an Einstein mani-
fold and the sectional curvature is (α2 − ρ) or the potential vector field of the
soliton is pointwise collinear with ξ.
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Corollary 4.2. Every hyper generalized pseudo symmetric (LCS)n-manifold
admitting closed almost quasi-Yamabe solitons reduces to a generalized pseudo
symmetric (LCS)n-manifold.

Corollary 4.3. Every pseudo symmetric (LCS)n-manifold admitting closed
almost quasi-Yamabe solitons reduces to an Einstein manifold and the sec-
tional curvature is (α2 − ρ) or the potential vector field of the soliton is point-
wise collinear with ξ.

5. Gradient almost quasi-Yamabe solitons on hyper gen-
eralized pseudo symmetric (LCS)n-manifolds

In this section we take the potential vector field V as a gradient of a smooth
function f : Mn → R. Then relation (1.3) becomes

(5.1) ∇X gradf = (r − λ)X +
1

p
g(X, gradf) gradf

which yields

(5.2) R(X,Y ) gradf = (X(r−λ))Y −(Y (r−λ))X+
1

p
(r−λ)[(Y f)X−(Xf)Y ].

Taking the inner product in (5.2) with ξ and then from (2.9), we obtain
(5.3)

(X(r−λ))η(Y )−(Y (r−λ))η(X)+{ (r − λ)

p
−(α2−ρ)}[(Y f)η(X)−(Xf)η(Y )] = 0.

Now replacing Y by ξ and X by ϕX in (5.3), we obtain

(5.4) [
(r − λ)

p
− (α2 − ρ)]ϕ gradf = ϕ grad(r − λ).

Taking the contraction over X in (5.2), we find

(5.5) S(Y, gradf) = −(n− 1)(Y (r − λ)) +
1

p
(r − λ)(n− 1)(Y f).

Combining (5.5) and (3.4), we get

r − (n− 1)(α2 − ρ)

(n− 1)
(Y f) +

r − n(n− 1)(α2 − ρ)

(n− 1)
η(Y )(ξf)

= −(n− 1)(Y (r − λ)) +
1

p
(r − λ)(n− 1)(Y f).(5.6)

Replacing Y by ϕY in (5.6) we have
(5.7)
r − (n− 1)(α2 − ρ)

(n− 1)
ϕ gradf = −(n−1)ϕ grad(r−λ)+

1

p
(r−λ)(n−1)ϕ gradf.
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Combining (5.4) and (5.7), we obtain

[
r

(n− 1)
− n(α2 − ρ)]ϕ gradf = 0.

Thus we can conclude that

Theorem 5.1. Every hyper generalized pseudo symmetric (LCS)n-manifold
admitting gradient almost quasi-Yamabe solitons reduces to an Einstein man-
ifold and the sectional curvature is (α2 − ρ) or the gradient of the potential
function f of the soliton is pointwise collinear with ξ.

Corollary 5.2. Every hyper generalized pseudo symmetric (LCS)n-manifold
admitting gradient almost quasi-Yamabe solitons reduces to a generalized
pseudo symmetric (LCS)n-manifold.

Corollary 5.3. Every pseudo symmetric (LCS)n-manifold admitting gra-
dient almost quasi-Yamabe solitons reduces to an Einstein manifold and the
sectional curvature is (α2 − ρ) or the gradient of the potential function f of
the soliton is pointwise collinear with ξ.

Again, gradf + ξ(f)ξ = 0 implies that

(5.8) ∇X gradf = −X(ξf)ξ − (ξf)∇Xξ.

In view of (5.1), equation (5.8) yields

(5.9) (r − λ)X +
1

p
g(X, gradf) gradf +X(ξf)ξ + (ξf)∇Xξ = 0.

Taking the inner product with ξ, we have

(5.10) (r − λ)η(X) +
1

p
(Xf)(ξf)−X(ξf) = 0.

Again contracting (5.9) over X, we get

(5.11) n(r − λ) + ξ(ξf) + (ξf) divξ = 0.

Now setting X = ξ in (5.10) and then comparing with (5.11) we obtain

(n− 1)(r − λ) + (ξf)[
1

p
(ξf) + divξ] = 0.

Therefore we can state

Theorem 5.4. Every hyper generalized pseudo symmetric (LCS)n-manifold
admitting gradient almost quasi-Yamabe solitons satisfies

λ = r +
(ξf)

(n− 1)
[
1

p
(ξf) + divξ].
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6. Example

Example 6.1. Consider a 3-dimensional manifold M3 = {(x1, x2, x3) ∈
R3 : x3 ̸= 0, where (x1, x2, x3) are the standard coordinates in R3}. Let
{e1, e2, e3} be a linearly independent global frame on M3 given by

e1 = x3
∂

∂x1
, e2 = x3

∂

∂x2
, e3 = (x3)

3 ∂

∂x3
.

Let g be the Lorentzian metric defined by g( ∂
∂x1

, ∂
∂x1

) = g( ∂
∂x2

, ∂
∂x2

) =(
1
x3

)2

, g( ∂
∂x3

, ∂
∂x3

) = −
(

1
x3

)6

and g( ∂
∂xi

, ∂
∂xj

) = 0 for i ̸= j = 1, 2, 3.

Let η be the 1-form defined by η(U) = g(U, e3) for any U ∈ χ(M). Let ϕ be
the (1, 1) tensor field defined by ϕ · e1 = e1, ϕ · e2 = e2, ϕ · e3 = 0. Then
using the linearity of ϕ and g we have η( e3) = −1, ϕ2 = I + η ⊗ e3 and
g(ϕU, ϕW ) = g(U,W ) + η(U)η(W ) for any U,W ∈ χ(M). Thus for e3 = ξ,
(ϕ, ξ, η, g) defines a Lorentzian paracontact structure on M .

Let ∇ be the Levi-Civita connection with respect to g and R be the curva-
ture tensor of g. Then we infer

[e1, e3] = − (x3)
2
e1, [e2, e3] = − (x3)

2
e2.

Taking e3 = ξ and using Koszul formula for the Lorentzian metric g, we can
easily bring out

∇e1e3 = − (x3)
2
e1, ∇e2e3 = − (x3)

2
e2, ∇e3e3 = 0,

∇e1e2 = 0, ∇e2e2 = − (x3)
2
e3, ∇e3e2 = 0,

∇e1e1 = − (x3)
2
e3, ∇e2e1 = 0, ∇e3e1 = 0.

From above, we can say (ϕ, ξ, η, g) is an (LCS)3 structure on M . Conse-

quently, M3(ϕ, ξ, η, g) is an (LCS)3-manifold with α = − (x3)
2 ̸= 0 and

ρ = 2 (x3)
4
. Using the above relations, we calculate the non-vanishing compo-

nents of the curvature tensor as follows :

R(e2, e3)e3 = − (x3)
4
e2, G(e2, e3)e3 = −e2

R(e1, e2)e1 = − (x3)
4
e2, R(e1, e2)e1 = −e2,

R(e1, e3)e3 = − (x3)
4
e1, G(e1, e3)e3 = −e1,

R(e1, e3)e1 = (x4)
4
e3ϵ3, G(e1, e3)e1 = −e3ϵ3,

R(e2, e3)e2 = (x3)
4
e3ϵ3, G(e2, e3)e2 = −e3ϵ3,

and the components which can be obtained from these by the symmetric
properties. Thus, we have

R(X,Y, Z, U) = (α2 − ρ)ϵbG(X,Y, Z, U),

and S(Y,Z) = 3(α2 − ρ)ϵbg(Y,Z), r = 9(α2 − ρ)

where ϵb = −1, for b = 3,

= 0 , for b = 1, 2.
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Additionally, it is well known that the scalar curvature r of the space of con-
stant curvature is always constant. Consequently, (α2 − ρ ), that is, (x3)

4
is

constant. Hence, the covariant derivatives of the curvature tensor are

(∇eiR)(X,Y, Z, U) = 0, for i = 1, 2, 3.

For the choice of the following 1-forms

F (ei) = − 1

(α2 − ρ)
, for i = 1, 2, 3,

E(ei) = − F (ei)

(α2 − ρ)
, for i = 1, 2, 3,

spacetime under consideration is a hyper generalized pseudo symmetric.

For V = δe3, we have

∇XV = (r − λ)X +
1

p
g(X,V )V.

(e3δ) = (r − λ)− 1

p

λ = r − (e3δ)−
1

p
.

This motivates us to state that

Theorem 6.2. The manifold (M3, g) under consideration is a hyper general-
ized pseudo symmetric (LCS)3-manifold. Then

� (g, V = −5 (x3)
2
e3, p, λ = (x3)

4 − 1
p ) is an expanding almost quasi-

Yamabe soliton

� (g, V = 2 (x3)
2
e3, p, λ = −13(x3)

4 − 1
p ) is a shrinking almost quasi-

Yamabe soliton

Furthermore, for f = (x3)
4, V = gradf = 4e3, Subsequently, we infer

� (g, f = (x3)
4, p, λ = −9(x3)

4 − 1
p ) is a shrinking almost quasi-Yamabe

gradient soliton.
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