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Study of the implicit relation and (F,H)-contractions on
double controlled metric-like space with an applicationﬂ

Sudipta Kumar Ghos}ﬁﬂ and C. Nahakﬁ

Abstract. In this article, utilizing the newly introduced concept of
double controlled metric like space, we study the implicit relation along
with (F,H)-contractions through orbital admissible mappings. Our re-
sults extend, generalize and unify many well known results. Examples
are also presented to justify the effectiveness of our new findings. Lastly,
one application is presented in a system of non-linear integral equations
to discuss the existence of a solution.
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1. Introduction and preliminaries

In the year 2012, the concept of an a-admissible mapping was proposed
by Samet et al.[20]. This concept become very popular as it covers theorems
in distinct platforms such as fixed point theorems in standard metric space,
fixed point theorems in metric space for cyclic mappings via closed subsets,
fixed point theorems in metric space endowed with a graph etc. Later in 2014,
Popescu [18] introduced the notion of an a-orbital admissible mapping as an
improvement of a-admissible mappings. Very recently, the concept of an «-
orbital admissible mapping was extended to the (a, 3)-orbital cyclic admissible
mapping by Alqahtani et al. [5].

On the other side, Czerwik [I1] defined the concept of a b-metric space as
a generalization of the metric space. Not long ago, Kamran et al.[21] have ex-
tended the notion of a b-metric space by introducing the concept of an extended
b-metric space. Researchers put their attention on this setup and established
many well known classical results of fixed point theorems (see for example
2], [3], [, [6], [24] and the references cited therein). Further, the notion
of an extended b-metric space has been extended into several directions such
as dislocated extended b-metric [I6], controlled metric type space [14], double
controlled metric type space [I], and very recently double controlled metric-like
space [15].
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The main aim of this paper is to study a new kind of fixed point results
involving implicit relation and (F,H)-contraction in the structure of newly
introduced double controlled metric-like spaces. Before we present our main
results, we first recall some basic definitions, and preliminary results from the
existing literature. From now, we write R, to mean [0, c0).

Definition 1.1. [I8] Let X be a non-empty set. Let £ : X — R and a : Rx N —
R, be two mappings. Then we say K is an «a-orbital admissible mapping if,
for all ¢ € N, we have

a(9,K9) = 1 = a(K9,K20) > 1.

Definition 1.2. [I8] Let X be a non-empty set. Let £ : X — Rand a: NxR —
R, be two mappings. Then we say K is a triangular a-orbital admissible
mapping if I is a-orbital admissible mapping, and

a(@,u) =1, alu,Ku) = 1= a(,Ku) = 1, for all 9,ue N.

Note: Every triangular a-admissible mapping is a triangular a-orbital ad-
missible mapping but the converse statement is not true (see [18]).

Lemma 1.3. [I8] Let X be a non-empty set. Let I : X — R be a triangular
a-orbital admissible mapping. Suppose that {9,}7_, is a sequence in N with
Grp1 = KOy and a(V1,K01) = 1. Then we have a(9,,95) = 1, for all s € N
with r < s.

Next, we move to the definition of an («, §)-orbital cyclic admissible pair.

Definition 1.4. [5] Let X be a non-empty set. Let K, £ : R — R, and «, 5 :
N x N — R, be four given mappings. Then, the pair (K, L) is said to be an
(a, B)-orbital cyclic admissible pair if for any ¥ € X, we have

a0, KV)
B0, L)

1= B(KY, LK)
1= a(L0,KLY)

1, and

=
= 1.

VoWV

Now, we come to the definition of a double controlled metric-like space [15].

Definition 1.5. [I5] Let X be a non empty set. Suppose that v, A : X x R —
[1,00) are two given mappings. Suppose that a mapping §, : X x X — Ry
satisfies the following conditions for all 9, u,v € N

(kC1) 6,(0,u) =0= 9 =u;
(3k C2) 0,(V,u) = 6,(u,V);
(5 C3) 6,(9,v) < (0, u)d,(0, u) + Au,v)d,(u,v).

Then the pair (X,d,) is called a double controlled metric-like space (in brief
DCMLS). Throughout the paper, we consider 6, as a continuous functional.

We now state some topological concepts, such as Cauchy sequence, conver-
gence and completeness in a DCMLS.
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Definition 1.6. [I5] Let (R,6,) be a DCMLS, and let {¢,}_; be a sequence

in N.
(i) {¥,} is a §, Cauchy sequence if and only if lim/ 3p(0,05) exists and is
86— L
finite.

(ii) {0, } converges to ¥* in N if and only if lim 6,(J,,9*) = 6,(9*,9%).
row
(iii) (X, 0,) is said to be complete if for each Cauchy sequence {1, }, there is
0% € X such that, lim 5,(0,,0%) = 5,(0*,0%) = lim_5,(0,,7,).

Definition 1.7. [15] Let (X,6,) be a DCMLS. For ¥ € X and v > 0:

(i) An open ball B(9,v) in (X,4,) is B(0,v) = {u € X, |0,(0,u) —6,(9,9)| <
v}.

(ii) The mapping K : X — N is said to be continuous at ¥ € N if for all 7 > 0,
there exists v > 0, such that K(B(V,v)) € B(K(9),7). Thus if K is contin-
uous at ¥, then for any sequence {¥,} converging to ¥, we have lim K¢, =

T—30
K9, ie., lir{} 3,(K9,, CO) = 6,(K0, K9).
Let ® denotes the collection of all  : R, — R, such that
1. n is non-decreasing;

2. n(r) < 7, for 7 > 0 with n(0) = 0.

2. Main results

Let X be a non-empty set and I, £ : X — R be two self mappings. Denote
by C(K, L) and Fix(K) the collection of all common fixed points of K, £ and
the collection of all fixed points of K, respectively, i.e.,

CIK,L) ={zxeR]|x =Kz = Lz},
and
Fix(K) = {z e X | Kz = z}.
2.1. Implicit relation in the context of DCMLS

In this section, we investigate implicit function in the context of DCMLS
using («, B)-orbital cyclic admissible mappings. To do this, first we consider
the following implicit function (readers may also look into [9], [10], [17] [22],
[23)).

Definition 2.1. Let  be the collection of all functions &(&y, -+ ,&) : RY > R
which satisfies the following properties:

(1) & is continuous in each variable and non-decreasing in the variable &;;
(By,) for all ¢,d = 0 with &(c,d,d,c) < 0 there exists a n € ® such that
c <n(d);

(&) for all ¢,d = 0, &(c,d, c,d) <0 implies ¢ < n(d), where n € ®;

(&3) for all 7 > 0, we obtain 0 < &(7,7,0,0).

Now, we provide some examples of &.
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Example 2.2. &(£1,892,83,81) = &1 — k€ — 165 — mé&y, where k,l,m > 0 with
k+l+m<1.

Example 2.3. 6(51352,53754) = 51 - kmax{£2,§3,§4}, where k € [07 %)
Example 2.4. 6(51,52,53,54) = g%—]{iggfg—l527 where k,l = 0 with k-{-l < 1.

Example 2.5. &(£1,82,83,&4) = & — kéy — 1€3 — mmax{2&,, &1 + &4}, where
k,lbm>0withk+1+4+2m <1.

Example 2.6. &(&1,89,83,61) = & — kmax{€3,£3, 67} — Imax{& &3, 6aéa} —
mé&sé&y, where k,[,m >0 with k+1+m < 1.

Example 2.7. &(&1,6,83,84) = £ — k&Téo — 1618360 — m&a& — nés&l, where
kilmnz=0withk+l+m+n<l.

Example 2.8. &(&1,6,8, &) = & — kmax{&, 544} where k € [0,1).

Example 2.9. &(&,&,83,84) = & — (k&Y +1EY +m§}f)%, where k,l,m,n > 0
with k+1+m < 1.

Theorem 2.10. Let (X,d,) be a complete DCMLS. Let «, 8 be two mappings
from the cross product of N into Ry. Further, let K, L be two mappings from
N into itself. Suppose that for all 9,u € N the following relation holds

(2.1)  &(a(?,KI)B(u, Lu)d,(KI, Lu),d,(0,u),6,(0,KF),0,(u, Lu)) <0,

where & € Q). Also, suppose that the following conditions are satisfied:

(C1) there exists a ¥y such that a(do, Kdg) = 1;

(C2) the pair (K, L) is an («, 8)-orbital cyclic admissible pair;

(C3) for any sequence {U,})_, with U211 = Kd2p,92, = LI2r—1 and
a(Vor, Vori1) = 1, B(V2r41,92r42) = 1 for all r € N, we have:

1" (0, (90, 91))

sup lim ’7(19r+17 197‘+2)
" (6p(Y0, V1))

A 197‘ 719r s
s=1 ML ’7(197-,?9r+1) ( o +)

<1, (B)

where n € ®, and also the sequence {y(¥,,V,11)} is bounded;

(C4) K and L both are continuous mappings or;

(C4) if {9,} is a sequence in X such that ¥, — 9%, then a(9* K9*) =
L, B(Y*, LY9*) = 1 and also suppose that for any ¥ € R, we have §,(9*,9) <
limsup d, (9, 9).

r—%L

Then K and L have a common fized point, i.e., C(K,L) # .

Proof. By assumption (C1) there exists a 9o such that a(dg, Kdg) = 1. Con-
sider ¢; = Kv¥y and ¥ = L¥;. Using induction, we can easily build up a
sequence {U,}7_, such that ¥g,41 = K, and dy, = LUIg,_1, for all r € N.
Again, we have a(dg,91) = 1 and by the given condition the pair (K, L) is a
(a, B)-orbital cyclic admissible mapping. Thus, we get

04(190,191) >1= ﬁ(’Cﬂo,ﬁKﬁo) = 5(191,’(92) =
B(V1,92) = 1 = (L1, KLI1) = a(da, V3) =
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Proceeding in this way, using (C2), we obtain, a(da,, 92r+1) = 1, B(F2r+1, V2r12)
> 1, for all r € N. Without loss of generality, we may assume that ¢, #
Ur41, for all r € N. Next, we want to show that if for some 7, 6,(J,, J2,41) =
0, then Ky, = v, = L9, and if for some r, §,(J2r41,V2r+2) = 0, then
K241 = Vor41 = LI9.41. Suppose that for some 7, §,(¥2r,¥2,41) = 0.
Then we will show that 0,(J2,4+1,02,42) = 0. We establish this fact by us-
ing the method of contradiction. Suppose §,(V2r41,V2r+2) > 0. Now take
¥ = V9, u = Vor41 in 7 then we have

& (a(Var, K2r) B(O2r 41, LO2r11)0, (K27, LO2741), 0p(F2r, D2r11), 0p (D2r, K¥2r),
dp(V2r 41, LV2r11)) <0,

= &(a(V2r, V2r41) B(V2rt1, V2r12)0p (V2r 41, V2ri2), 6 (V2r, V2ry1), 6p(V2r, V2ry1),
0p(V2r41,V2r42)) < 0.

By (®1), we have

G(0,(V2r41,V2r42), 6p(V2r, V2ri1), 0p(V2r, V2rs1), 0p(F2r i1, V2rs2)) < 0.
Now, by applying (&2,), we obtain
(2.2) 0p(V2r41, V2ri2) < 1(6,(F2r, V2r41)), where ne &.

But we have 0,(J2,,Y2,+1) = 0 which implies §,(02,41,V2r4+2) = 0. Again, by
using (B9), we can show that 6,(V2,+1,V2,+2) = 0 implies 6,(Var42,V2r43) =
0. Consequently, we have ¥o,+1 = U242 = U9,43 which implies

192r+1 = 7927-+2 = /31927-+1 and
Vopgp1 = Vorys = Kdoppo = KLI2p 41 = K241

Thus, ¥2,41 becomes a common fixed point of IC and £. Hence if 0,(02,, V2,41) =
0 or 0,(Y2r+1,V2r+2) = 0, then our proof is completed. So, from now we as-
sume that 6,(9,,9r41) > 0 for all » € {0} U N. Next, we show that {J,}/_, is
a Cauchy sequence. To show this consider ¢ = ¥5,,u = ¥9,41 in (2.1)). Then,
we have

S(a(V2r, 2r+1) B(I2r+1, D2r12)0p (F2r11, Var+2), 0p (V2r, D2rt1), 6p(I2r, Var41),
60(192r+17192r+2)) <0.

Now, using (&) and (&), we have
8p(V2r41,V2r2) < 1(0,(V2r, I2741)), for all 7 € {0} UN, where n e ®.
In a similar way, by taking ¢ = ¥a, 10, u = o417 in , we have
0p(Vory2,V2r43) < N(6,(V2r41,V2r42)), for all r € {0} UN, where ne .

Thus, for all r € {0} UN, we get
(2.3) 0p(Vrs 0 i1) < M(6p(0r—1,9y)), for all e {0} UN.
Repeatedly applying , we have

3p(0r, Opy1) < 1"(6,(Y0, 1)), for all r e {0} UN.
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Now for r,s € {0} U N with s > 1, we have

5p (Vs Vrys)

< 7(19T719r+1)5 (U, Org1) + A(Org1, Orts)0p (Vg1 Urgs)
Yy, ¥r11)0, (197"7797‘+1) F+ A1, Prps) Y (i1, T9r+2)5p(79r+1719r+2)
( L Vg s )N g2, 0 g5) 0, (Vg2 Urgs)
Y07, ps1)0 (19m Vrg1) + A Org1, Vrgs)¥(Frs1, 197“+2)5p(197“+1719r+2)
( r 1, Ur s )Ny 2, Urgs) Y (Vs 2, "9r+3)6p(79r+2, Vr+3)
+ A

r+1, r+s))\(79r+27 19'r+5))\(79r+37 19T+8)6p(197“+37 ?97‘+s)
<

X

r+s5—2
SRR IR AT RS Y () § (R IR 0) TR AR
t=r+1 qg=r+1
r+s—1
+( H )\(ﬁt77‘97‘+5))5p(197“+571a19T+S)
t=r+1
r+s—2 t
<7(79T719r+1)5 197";79T+1 Z ( H )\ r+s) (19t319t+1)5ﬁ(19ta’l9t+1)
t=r+1 g=r+1
r+s—1
+ ( H )‘('ﬂta197'-&-5))'7(197'-&-5—17ﬂr+s)5p(’0r+s—1af‘97+s) [Since ’7(197’“') = 1,V 197” € N]
t=r+1

r+s—2 t

<A@ )0 G000, 90) + D5 (T AW 900 )70 0000 (8 (B0, )

t=r+1 q=r+1

r+s—1
H )‘(ﬂtv19T+3))7(19r+s—1»19T+s)777“+571(5p(1907191))
t=r+1
r+s— t
= YO, )0 (5,(90,01)) + D] (H (Pas Dr46) ) V(D1 D) (3, (P, 91))
t=r+1 q=r
r+s—1 t
<'7(19r719r+1) ((5 (190, (1_[ ﬁqa'lngrs) (ﬂt719t+1)77t(5p(1907191)) (Al)

t=1r

Let us pUt A Zt 0 (H (19Q7197’+S))’Y(19t719t+1)77 (6 (1907191)) Then in-
equality (A1) can be written as

(2'4) 6/7(197% 79r+s) < ’7(19T7 797‘+1)777n(6p(1907191)) + [ArJrsfl - Ar]
Again, by condition (C3), we have

r+1
7(197‘—"_1,19T+2))\(19r+]_719r+5)77 (6/)(190’191)) < 1.

sup lim
5 7 (8,90, 91))

521 TX 7(197“3 197’-‘1-1)
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Consequently, we obtain lim,_,, A&“ < 1. Clearly, ratio test guarantees that

the series Y- A, is convergent. Again, observe that 7(6,(J90,91)) < A,
since y(J,u) = 1,A\(9,u) > 1 for all ¥,u € R. Hence >/_ A; < oo implies
> o (6,(90,91)) < 0. Thus, we obtain 7'(8,(Jo,91)) — 0 as ¢ — co. Thus,
using boundedness of {y(¥,, 9,+1)},2,, from , we obtain 6,(9,, ¥y 45) = 0
as r,s — oo0. Hence, {¢,}% , is a Cauchy sequence. Now by the completeness

of (R,6,), there exists a point ¥* € N such that

lim §,(9,,9%) = 6,(9*,9%) = lim 0,(9,,95) = 0.

r—0 .80

Clearly d,(9*,9*) = 0. Also, we can write 9, — ¥* and ¥o,—1 — U* as
r — 00, since 9, — 9* as r — oo0. First, we suppose that K, £ are continuous
mappings.

9* = lim Y941 = lim Ky, = K lim 95, = K9*, and
=0 r—®0 %0

19* = lim 1927‘+2 = lim E’l92r+1 = L lim 1927‘+1 = £19*
r—0 =0 %0

—

Now, let us consider the condition (C4) (in place of continuity). Taking ¢ =
9* u = 99,41 in (2.1)), we have

6(05(79*7 ’Cﬁ*)ﬂ(ﬁ?'ﬂrh £1927’+1)6P(K:19*7 ‘C792r+1)7 6p(19*7 1927‘+1)> 6,0(19*7 K:qﬂ*),
5p('l92r+13 £192r+1)) < 0.

Since & is non-decreasing in the first coordinate, thus we have
B0, (K", V27 12), 0,(0*,V2r41), 0, (0%, KI*), 0,(F2r 41, D2rs2)) < 0.
Now, using the continuity of &, we obtain
B(,(K9*,9%),0,6,(9*, K9*),0) <0
= 0,(K9*,9%) < n(0), [by (B2p), where ne @]
= §,(K9*,9%) =0
= 9" = Ko*.
In a similar way, by considering ¥ = ¥9,,u = ¢* in (2.1), we can show that

9* = L£9*. Thus K and £ have a common fixed point, i.e., C(KC,L) # .
Hence, our proof is completed. O

In our next theorem, we deal with the uniqueness of fixed point for the op-
erators IC, L. In order to obtain unique common fixed point, here we consider
the following hypothesis.

(U) : For all 91,92 € C(K, L), suppose that a(d, K1) = 1, B(92, L) = 1.

Theorem 2.11. Suppose that all the hypothesis of Theorem[2.10 are satisfied
together with hypotheses (U). Then the mappings K and L have a unique
common fized point.
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Proof. First of all observe that if ¥ € C(K, L), then 6,(,9) = 0. Now, let us
suppose that 191,199 are two common fixed points of K and L, i.e., ¥, = Kd; =
Li,99 = Ky = L5, By considering ¢ = ¢1,u = 95 in , we obtain

S(a (1, K1) (D2, LU2)0,(KO1, LI2),0,(01,02),0,(01, K1), 0,(02, L82)) <0
= @(5p(191,192),§p(191,192),0,0) S 0.

Clearly, we arrive at a contradiction by (®3) if we assume d,(91,92) > 0.
Thus, we must have 6,(d1,92) = 0 = 1 = ¥2. Consequently, our proof is
completed. O

Remark 1: In Theorem [2.10] we have used implicit relation to discuss
our new fixed point result. One can obtain various types of contractions by
choosing different types of implicit relations. Now, if one chooses a particular
type of implicit relation, i.e., &(&1,&2,83,&4) = &1 — n(max{&s,&3,&4}), where
n(t) € @, satisfying the condition (By) given in (C3) of Theorem [2.10] then our
first main result improves, unifies and extends several well known fixed point
results which we have mentioned below. Also, since the concept of DCMLS
is more general than the concept of the usual metric space, b-metric space,
b-metric like space, extended b-metric space, controlled metric type space etc,
so our first main result can be viewed as an extension and generalization of the
following results:

e The classical Banach contraction principle [8], Kannan’s fixed point the-
orem [12], Reich’s fixed point theorem [19] in the context of metric space;

e Samet et al.’s fixed point theorem [20];
e Shatanawi et al.’s fixed point theorem [24];
e Mlaiki’s fixed point theorem [I5].
2.2. (F,H)-contraction in the context of DCMLS

In this section, motivated by the paper of Popescu [I8], first we introduce
the following definition.

Definition 2.12. Let X be a non-empty set. Let L : X — Nand p: NxX - R,
be two mappings. Then, we say that IC is a p-suborbital admissible mapping
if, for all ¥ € R, we have

w(¥,K9) < 1= pu(Kd,K29) < 1.

Definition 2.13. Let N be a non-empty set. Let £ : X — Nand p: NxN — R,
be two mappings. Then, we say that /I is a triangular p-suborbital admissible
mapping if K is p-suborbital admissible mapping, and

w(d,u) <1, plu,Ku) < 1= p(d, Ku) <1, for all ¥,u e N.

Lemma 2.14. Let X be a non-empty set. Let K : X — X be a triangular p-
suborbital admissible mapping. Suppose that {9,}7L, is a sequence in X such
that 9,41 = K9, with p(¥1,K91) < 1. Then we have p(9,,9;) < 1, for all
r,s € N with r < s.
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Proof. Similar to Lemma [L.3] O
Next, we move to the definition of (F, H)-contraction.

Definition 2.15. [7] A function H : Ry x R. — R is said to be a subclass of
type-I if
u=z1l= H(1,v) < H(u,v) for all u,veR;.

Definition 2.16. [7] Let H,F : Ry x Ry — R be two given functions. Then
the pair (F,#H) is said to be an upper class of type-I if F is a function, H is a
subclass of type-I, and

0<u<l= F(u,v) <F(1,0),
H(1,y) < F(z,v) =y < av, for all u,v,z,y € Ry.

Definition 2.17. [7] Let H,F : Ry x Ry — R be two given functions. Then
the pair (F,7H) is said to be a special upper class of type-I if F is a function,
‘H is a subclass of type-I, and

0<u<l= Flu,v) < F(1,v),
H(,y) < F(l,v) =y <w, forall u,v,y e R,.
Next, we state the definition of an altering distance function.

Definition 2.18. [I3] A function 6 : R, — R, is said to be an altering
distance function if the following two conditions are satisfied:
(i) 0 is a strictly monotone non-decreasing and continuous;

(ii) O(7) = 0 if and only if 7 = 0.

From now we write © to denote the collection of all altering distance func-
tions. Now, we introduce the following definition in the context of DCMLS.

Definition 2.19. Let (X,6,) be a DCMLS. Let F,H : Ry x Ry — R be
two functions such that the pair (F,H) is a special upper class of type-I. An
operator K : X — N is said to be (a, u, F, H) — (0, &) weakly contractive if there
exist two mappings a, pu : N x X — R, such that

H(o(F, u),0(3,(K9, Ku)))

2.5 u, KCu
B < R, 02D )

) - 6(6P(19? Kﬁ)’ 6P(u’ Ku)))v

for all ¥, u € X with a(9,u) = 1, u(9,u) < 1 wheref e O and £ : R xRy — Ry
is a continuous function such that £(c,d) =0 c=d =0.

Now we state and prove our second main result.

Theorem 2.20. Let (X,0,) be a complete DCMLS. Let K : X — R be a
(a, 0, FyH) — (6,8) weakly contractive mapping satisfying the following con-
ditions:

(D1) there exists a Yo € W such that a(¥g, Kdg) = 1, pu(do, Kdo) < 1;
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(D2) K is triangular a-orbital and triangular p-suborbital admissible mapping;
(D3) K is a continuous mapping or;

(D/E) if {0r}72 is a sequence in X such that o(0, Vry1) = 1, p(dr, ¥ry1) < 1
for all v € {0} UN and 9, — u* as r — o0, then there exists a sub-sequence
{0y} of {9r} such that a(0yny, u™) = 1, (p(ny, u*) < 1 for all n e {0} UN
together with 6,(u*, u) < limsup d,(9,,u) for all u e X.

r—w

Then, K has a fized point 9* € R with 6,(9*,9*) = 0.

Proof. By assumption (D1) there exists a ¥y such that a(dg,Kdg) = 1,

(Do, Kdo)

< 1. Consider v, = Ky and J2 = K. Using induction, we can easily build

up a sequence {0, }7, such that 9,11 = K0, for all r € {0} UN. Again, we have
a(¥9,%1) = 1 and by the given condition (D2) the mapping K is a triangular

a-orbital admissible mapping. Thus, we get

(o, V1) , and
)

= Oé(’C’L?Q,ICQ’&Q) = Oé(’L91,’l92)
CY(’l917 2 =

>1
a(IC191, K:2191) = 01(192,?93,) Z

=1
=1

Proceeding in this way, using (D2), we obtain, a(¢,,9,+1) = 1 for all r €
{0} UN. In a similar way, using triangular p-suborbital admissible property we
can show that p(9,,9,41) < 1 for all r € {0} UN. Without loss of generality, we
may assume that 9, # 9,11, Vr € {0} UN. We can assume that §,(0,, ¥r41) > 0
for r € {0} UN. Suppose, on the contrary, that for some r, §,(9,,9,,1) = 0, then
¥r41 = ¥, implies K9, = ¢,.. Consequently, our proof would be over. Next, we
want to show that 0,(0,,Y,+1) — 0 as r — 00. Now putting ¥ = ¥,_1,u = 0,
in and keeping in mind a(9,,d,4+1) = 1, u(9,, 9,41) < 1 for all r, we have

H(L,0(0,(0r, 0r41)))

= H(la 0(6P(K:19r—1, ’Cﬁr)))

< ,H(a(ﬂrflaﬁr)ve(é (K:’l% 1,’C19 )))

0p(Vr_1, KOy 1)+5p(19T,IC19T)

< F(u(Or-1,9,),0(-"

- 5(5p(19r—17 Kﬁr—l)a 5/)(197*7 Kﬁr)))
8,91, K0y 1) + 6,(9,, KV,
2

)

< F(1,0(

) - §(5p(?9r71, ’C'&rfl)a 5p(/197” ’CﬁT)))
Since the pair (F,H) is a special upper class of type-I, consequently we have

0(8,(KC0,_1,K9,))

3 9(5,,(19,,,17/cq9r,12) + 0,0, 0,),

(2.6) — &(0p(Vr—1, K1), 6, (0, K0;))

6/)(197"—17 197") + 6p(19m 197‘-‘1-1)
2

= 0(5p(19r719r+1)) < 9(
- f((sp(ﬂr—lvﬁr)a5p(79r779r+1))~

)
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Since §,(Vy, ¥ry1) > 0 for all 7 € {0} U N, and 6 is a strictly non-decreasing
function, thus we have

By (0 0y ) < o010 0ol D)

= (Sp('l97-7197‘+1) < 6p(19r7177~97")'

Thus {0,(V,, ¥r4+1)};~o becomes a non-increasing sequence. Hence, it will con-
verge to some non negative real number, say a* € [0,00). We claim a* = 0.
Suppose not, i.e., a* > 0. By considering the limit as r — o in , and
using continuity of 6, &, we obtain

0a*) < 0" ET) —eaa)

= 0(a*) < 0(a*) — £(a®,a®),

a contradiction, since we have assumed a* > 0. Thus, we have lim 6,(9,,¥,41) =
T30

0. Our next goal is to show that lim §,(J,,¥s) = 0. We now show this by

§>7, 11—

using the method of contradiction, i.e., suppose that v>1‘iI'n . 3p(0r,05) # 0.
Then for each 7 > 0, there exist two sub-sequences {r(n)}*_;, {s(n)}*_; such
that 0,(Vr(n), Vsn)) = T,0,(Ur(n)s Vsmy—1) < T, where 7(n) < s(n). Again,
by Lemma and Lemma we have a(9,,9s) = 1, u(d,,9s) < 1 for all
7,5 € {0} U N with r < 5. Considering ¥ = ¥,(ny—1,u = Us)—1 in (2.5)), we
have

H(lv 9(6p(79r(n)7 195(71))))
= H(17 9(6P(K:19'r(n)717 Kﬂs(n)fl)))
S H(a(ﬁT(n)—h 195(77.)—1), 9(60(’C19r(n)—1a Kﬁs(n)—l)))

619rn—7’C19rn— +46 195n—7’c193n—
<]:(/1,(197.(71),1,195(”),1),9( P( (n)—1 (n) 1) 5 P( (n)—1 (n) 1))
= &0 (Or(n) =1, KOr(n)-1), 6 (Vs (n)—1, K s(n)-1)))
5,0 (ﬁT(n)fly ’Cﬁ'r(n)fl) + 5p(19s(n)717 Kﬂs(n)fl))

2
_5(6p(197‘(n)717l<:19'r(n)71)76/)("95(n)717lc’l95(n)71)))-

< F(1,6(

Since the pair (F,H) is a special upper class of type-I, consequently we have

(2.7)

005 (K7 (n)-1, KIs(n)-1))

0o (Dr(ny—1, Kr(ny=1) + 6p(Fs(ny—1, K¥s(ny—1) )
2

- 5(6p (’lgr(n)fly ’C’lgr(n)fl)7 6;)(195(71)717 Kﬁs(n)fl))

= 9(60(19%71)7198(71)))

6(197‘71—7197'”)—’_6(19577’—7195774)
s6( : (-t ) 2 g ()1 ) )_g((sp(ﬂr(n)—lvﬁr(n))v5p(193(n)—17195(n)))~

< 6(

Now, for sufficiently large value of n, we can arrive at a contradiction, since
L.H.S of (2.7) is always greater than or equal to 8(7)(> 0) whereas in R.H.S
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8o (Drimy1:Drim +6
g(p( () =1,9r(n)) +6p (Vs (n)—1,9 ()))

— 0 asn — 0 and £(6,(Vrm)—1,Vrn)),
8p(Vs(ny—1, ﬁs(n))) > 0 for all n € {0} U N. Thus, we must have 7 = 0. Hence,

we obtain lim  §,(¥,,9,) = 0. Now, by completeness there exists a point
§>T,r—%

9* € X such that lim 007, 0%) = 6,(0*,9%) = lim §,(9,,95) = 0. Next,
T

§>1,r—00
we wish to show that ¥* = Kd*. To do this, first we suppose that K is
continuous. Then,

9* hm 19T+1 = lim KY, = K lim ¢, = KJ*.
T—>0 T—>
Now we suppose that K is not a continuous mai'ping7 and hence we consider

condition (D3). Putting ¥ = ¥,.(n), u = ¥* in (2.5)), we obtain

H(L,0(3(9r(ny+1, K0%)))
= H(1,0(3, (KO, KI*)))
< H(a(Wr(ny, 9), 000, (KO r(ny, KI¥)))
86 (Fr(nys KOr(ny) + 6, (9%, KI*
< F 0y, 0%), o 22 rte KO0 ) £ 0,07, KOT),
_5(6P(79T(n),l<:19r(n))759("9*7K19 )))
8o (Fr(nys Kr(ny) + 6, (9%, ’Cﬁ*))
2
= E(6p (D), KOr(ny), 6,(0%, O¥))).

< F(1,0(

Since the pair (F,H) is a special upper class of type-I, consequently we have

(8, (K9 (ny, K9¥))

Sp(Vr(n)s Kr(ny) + 8p(9%, K9¥)
2

= 0(5ﬂ(§7'(n)+17 Kﬁ*))

< 0(5p(l9r(n), ﬁr(n)+12) + §p(19*, IC7.9*)

< 4(

) = E(6p(Dr(ny> Kr(ny), 0 (9%, KDI*))
(2.8)

) - 5(613(791"(71)7 'ﬁr(n)+1)’ 613(79*7 ’Cﬂ*))'

Taking limit as n — o0 in 1D and using the fact 6,(0*, K9*) < limsup 6,(¢,, K9*),
r—o

we have

3o (0*, K9*)

0(3,(0%,K9%)) < (-

) - 5(07 6,0(19*7 Kﬂ*))v
a contradiction. Thus, we must have §,(9*, L9*) = 0 = 9* = KJ*. O

Our next theorem deals with the uniqueness of fixed point. First, we state
hypothesis (Uy).

(Uy): For all 97,9% € Fix(K), a(¥F,93) = 1, u(95,95) < 1

Theorem 2.21. Suppose that all the hypotheses of Theorem [2.20 are satisfied
together with (Uy). Then K has a unique fixved point.
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Proof. First of all, observe that if 9* is a fixed point of IC, then we can easily
show that §,(9*,9*) = 0. Now, let us suppose that J7, 95 are two fixed points
of K. Hence, by hypothesis (U;) we have a(9F,9%) = 1, u(9F,9%) < 1. Now,
putting J = 9§, u =95 in , we have

H(L 0(50(’0?‘7 19;)))
= H(a( >1k’ 19;)7 9(5P(’C19,1k7 Kﬁ;)))

0,9, KITF) + 0,(9%, K3
<]_—(’u( ?195"),9( p( 1 1) 5 p( 2 2)

WU AG A

) = &(6, (07, KIY), 0,(93, K5)))

) = &(6, (91, 97), 0, (03, 93))).-
Since the pair (F,H) is a special upper class of type-1, consequently we have

& % ® "
0(6P(19=1k719§)) < 0(61)(191’,191) —;59(1927192)

= 0(6,(V1,73)) < 6(0) — £(0,0).

) = &(6, (07, 97),0,(93,93))

Clearly, we arrive at a contradiction if we assume J,(97,95) > 0. Thus we
have 6,(9F,95) = 0 = 9F = ¥5. Hence our proof is completed. O

Remark 2: In Definition if one consider H(s,t) = ¢, F(s,t) = t with
0(1) =1,&(c,d) = (% —g) (c+d), where g € [0, 1) then the contraction becomes
famous Kannan-type [I2] contraction in setting of DCMLS.

Example 2.22. Let & = {—1} UR,. Let d, : X x 8 — R, be a mapping,
defined as
0,(0,9) =0, if ¥ e Ry,

69(_17 _1) = 276;)(197_1) = 5/7(_1719) = 1a
0,(9,u) = max{v,u} if ¥,u e R;.

Here §, is a continuous complete DCMLS. Let v, A : X x & — [1,00) be two
mappings given by y(9,u) = 1+ |[9] + |u|, A(V,u) = 1 + |[9]|ul, for all ¥, u € N.
Let a, pp : X x X = R, be two mappings defined by

(9, u) = 1, if u<9and u,ve]l0,1],
o 0, otherwise.

2, if Yu >0 and u,v € [0,1],

0, otherwise.

6(197u) = {

We now define two mappings K, L : X — N as

9, i 9 = 1,
K(9) = 10921 ¥ g) if 9 € [0,1],

log(1+%) +(W=1), ifde(l,m).
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9, if9 = —1,
£) = {log 1+%), if 9 € [0,1],
log(1+ %) +log(9), if9e (1,00).

Clearly, IC, £ are both continuous mappings. Let us consider a particular form

of &, ie., B(&1,82,83,84) = & — n(max{&y, &3, &}), where 7(t) = T, 7 € (0,1).
Thus, we have to show

(2.9) a(¥,K9)B(u, Lu)d,(KI, Lu) < gmax{ép(ﬂ,u),ép(ﬁ,lCﬂ),ép(u,Eu)},

for all ¥,u € N. Observe that inequality holds trivially for all 9, u € N for
which either a(¢,K9) = 0 or B(u, Lu) = 0. Thus, we have to verify inequality
for all those ¥,u € N for which both a(d,Kd) # 0 and B(u, Lu) # 0
implies ¥, u € [0, 1]. Consequently, we have the following

a9, K9)B(u, Lu)d,(KY, Lu)

= 1-2-max{log<1 + %),109(1 + %)}

S ma‘X{dl)(rHa U), 5/’(195 ’C’&)7 6[’(“7 ,CU)}

Taking 99 = 1 then a(1,K1) = a(1,log(1 + §)) = 1. Now, starting from
Jp, one can easily construct a sequence {¥,} such that ¥5.,1 = Koo, and
"92r+2 = £'l92r+1 with Oé(’lggr,’lggr_;,_l) = 1,ﬁ(192r+1,192,~+2) > 1 for all r € N,
where 9, is given by

Y, = log(l + %197_1)

=9, = log(l + %log(l +

)
nf1+50.)

T
6
=9, = log(l + %log(l +%

=4, = log(l +§log<l + %log(l + 4+ %log(l + %90) >,)

(1)

Again, we have
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. 7(197"+1719r+2) 77T+1(6ﬂ(190’191))
lim —————— A1, Vrps) o
r=%0 W(ﬁraﬁwrl) ( * i ) nr(ép(ﬁmﬂl))

. Tr+1 T
IR R T
=z<1.

2

Also, it can be easily verified that {y(¢,,¥,+1)} is a bounded sequence.
Here all the conditions of Theorem [2.10|are satisfied and 0 is a fixed point of
and L. Observe that the fixed point is not unique as -1 is another fixed point.
This happens since a((—1),K(-1)) * 1,6((-1),£(-1)) * 1. Next, we give
numerical iteration for 7 = 0.87 and 0.32 with initial point ¥¢ = 0.3,0.5,0.7, 1.

Table 1: Iteration of w,, for 7 = 0.87

Iterate for 7 = 0.87 up=0.3 up=0.5 uo=0.7 up=1
U1 0.0426 0.0700 0.0967 0.1354
Us 0.0062 0.0101 0.0139 0.0194
U3 8.9210e-04 0.0015 0.0020 0.0028
m 1.2935e-04 2.1213e-04 2.9234e-04 4.0814e-04
Uus 1.8755e-05 3.0758e-05 4.2388e-05 5.9178e-05
Ug 2.7195e-06 4.4599¢-06 6.1462e-06 8.5808e-06
U7 3.9433e-07  6.4668e-07 8.9120e-07 1.2442e-06

Table 2: Iteration of u,, for 7 = 0.32

Iterate for 7 = 0.32 up=0.3 up=0.5 uo=0.7 up=1
U1 0.0159 0.0263 0.0367 0.0520
Ug 8.4622¢-04 0.0014 0.0020 0.0028
U3 4.5131e-05 7.4803e-05 1.0415e-04 1.4758e-04
o 2.4070e-06  3.9895e-06 5.5547e-06 7.8710e-06
Uus 1.2837e-07 2.1277e-07 2.9625e-07 4.1979e-07
Ug 6.8465¢-09 1.1348e-08 1.5800e-08  2.2389¢-08
U7 3.6515e-10  6.0522¢-10 8.4267e-10 1.1941e-09

Example 2.23. Let X = {e;,ez,e3,e4}. Let 0, : R x X > R, be a mapping,
defined as

dp(er,e1) = 0,8,(e2,e2) = 2,0,(e3,e3) = 4,0,(eq,e4) = 5,
dp(e1,e2) = 6p(ea,e1) = 8,0,(e1,e3) = dy(e3,e1) = 3,0,(e1,e4) = dp(ea,e1) = 6,

dp(ea, e3) = dp(es, e2) = 9,0,(e2,e4) = dy(eq,e2) = 1,9,(e3,e4) = dy(ea,€3) = 2.

Now we define a mapping K : X — N as

lC(el) = 61,’(:(62) = 63,]C(63) = el,IC(e4) = é€4.
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lCDVErgEI'II:E behaviour for r = 0.87

lCnvergen:e behaviour for r = 0.32
1
L — % —Initial point u, =1 i — = —Initial point u, =1
i - | -
BEl — s — Initial point uy = 0.7 e 08y — < — Initial point uy = 0.7
; — 4 —Initial paint u, = 0.5 | — 4 — Initial point u, = 0.5
i E | — == —Initial point u, = 0.3 B “1 — == —Initial point u, = 0.3
o6t 0.6 So6(h
g M £ [N
s T\ 5 14
= L = \?
o4l 0.4 040
514 & i
i\ WM il
02N 0.2 02"
Ny \\Jﬁ
\gg\ o
£, ke
0 ' 0 0 R S
0 2 4 6 8 o] 2 4 5] 8
Number of iteration Number of iteration
Figure 1: Interpolation for Data 1 Figure 2: Interpolation for Data 2
Next, we define two mappings a, p: X x X > R, as

a0, u) = {1, if 9,u € {e1,eq,e3},

0, otherwise.

(0, 1) = {0.9, if 9,u € {e1,e2,e3},

2, otherwise.

Finally, we define two mappings v,\ : R x X — [1,00) as y(e;,e;) =
Aei,e;) =1, forallie {1,2,3,4},

y(er,e2) = v(ez,e1) = 2,7(e1,e3) = v(es, e1) = 3,7(e1,e4) = y(eq, e1) = 4,

v(e2,€3) = (e, e2) = 3,7(e2, €4) = (e, €2) = 7,7(e3, €4) = y(es, €3) = 6,
and

Aer,e2) = AMeg,e1) = 1, Meg, e3) = A(es,e1) = 5, A(e1,e4) = Aeg,e1) = 2,

Aea,e3) = Mes, ea) = 3, Mea, e4) = Aeq, e2) =4, A(e3,eq) = A(eq, e3) = 3.

The reader can check that §, is a continuous complete DCMLS, which is not
a partial metric space (since d,(es,es) € d,(eq,€2)) as well as not a metric
like space (since d,(e1,e4) € dp(e1,e3) + 0,(es,e4)). Now we verify that K
is a (o, pu, F,H) — (0,€) weakly contractive mapping for 6(t) = 2t,&(c,d) =
1 max{c,d} with H(r,s) = s, F(r,s) = s. Basically, we want to show that the
weak contraction is valid for all 9, u € R with a9, u) = 1, u(¢,u) < 1. Clearly,

a(¥,u) = 1, u(¥,u) < 1 implies ¥, u € {e1,ea,e3}. Now we have the following
cases.

Case I: If {0, u} < {e1, ez}, then 6,(K9, Ku) = §,(e1,e1) = 0, and inequality
(2.5) holds trivially.

Case II: If ¥ = ex,u = ey, then 6,(K0,Ku) = d,(es,e1) = 3,6,(9,K9) =
dp(ea,e3) = 9,8,(u, Ku) = d,(e1,e1) = 0. Now MW = 2. Hence,
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0(5,(K0, Ku)) = 6, 0(°el2ADE0wkuy _ g and £(6,(9,K9), 6,(u, Ku)) = 2.
Consequently, we have

3,(0, KI) + 8,(u, Ku)
2

0(6,(K, Ku)) < 6( ) = &(6,(9, K9), 6, (u, Ku)).
Case III: If ¥ = e, u = ea, then 0,(K9,Ku) = d,(e3,e3) = 4,0,(9,KVI) =
dp(e2,e3) = 9,0,(u, Ku) = d,(e2,e3) = 9. Now w = 9. Hence,
0(5,(KC0, Ku)) = 8, 9(2el0KNT00uku)y _ 18 - and £(5,(9, K0), 6, (u, Ku)) = 2.
Consequently, we have

0(5,(K9, Ku)) < 9(6P(19JC19) ;—5p(u,lCu)

) - 5(59(197 ]Cﬁ)a §p(ua ’CU))

Case IV: If ¥ = ey, u = e3, then 0,(K9,Ku) = d,(e3,e1) = 3,9,(9,K9) =
dp(e2,e3) = 9,0,(u, Ku) = d,(e3,e1) = 3. Now w = 6. Hence,
0(5,(KC0, Ku)) = 6, (20K 200Ky _ 19 - and (8,(9, K0), 6, (u, Ku)) = 2.
Consequently, we have

0,(9, KF) + 8, (u, Ku)

0(5,(K9, Ku)) < 6 .

) - 5(5;7(197 Kﬁ)? 6P(ua ICU’))

Thus, K is a (a, u, F, H) — (6, ) weakly contractive mapping. Observe that in
this example the inequality given by does not hold if one does not consider
J,u € X with a(d,u) = 1, u(¥,u) < 1. To check this consider ¥ = e1,u = ey.
Then a(er,eq) # 1, u(er, eq) € 1, and we have

3,(K9, Ku) = d,(e1,e4) =6,0,(0,K9) =6,(e1,e1) =0,0,(u, Cu) = d,(eq,e4) = 5.

Now —6”(19’Kﬁ);rép(u”€u) = 2. Hence, 0(6,(K9, Ku)) = 12, 9(—@’(19”&9);6”(””(:”)) =
5, and £(6,(9,K0),6,(u,Ku)) = 2. Consequently, we have

9, K0) + 6, (u, Ku)
2

06,09, Ku) £ 022! ) — €(5,(9,K9), 5, (u, Ku).

Clearly, K is a continuous function and all the conditions of Theorem [2.20] are
satisfied with o = es. Here, €; is a fixed point of IC with d,(eq,e;) = 0.

Note: In our main results, we explore the idea of orbital admissible map-
pings. Consequently, the following fixed point results can be derived as a
corollaries from our main results.

e fixed point results in DCMLS endowed with a graph;
e fixed point results in DCMLS endowed with a partial order;
e fixed point results in DCMLS endowed with a binary relation;

e fixed point results for cyclic mappings via closed subsets of a DCMLS.
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3. Application

To show the applicability of our obtained results, here we consider the
following integral equations.

d
ur) = [ A (s, uls)is:
(3.1) ¢

d
u(r) = J A(r, 8)Qa (s, u(s))ds,

where Q1,5 : [0,1] x R —» R, are continuous functions and A is measurable
at r € [0,1] for every s € [0,1] and A € C’([O, 1]2,R+>(= R). Next, we define
two operators K, L : X — N as

d
Ku(r) = j A(r, ) (s, ul(s))ds;
(3.2) y

d

Lu(r) = f A(r, 5)Qa(s, u(s))ds,

with DCMLS as

Sp(u,v) = sup (u(r) +v(r)? y(u,v) =2+ sup (Ju(r)]* + Jo(r)]?),
refe,d] rele,d]

SUPyefe,a ([u(r)[[o(r)])

M) = 2 e (WD

It can be easily verified that (R,d,) is a complete continuous DCMLS. Suppose
N is endowed with a partial order o defined by

uov<ev(r)<u(r), for all r € [¢,d].

Theorem 3.1. Let K, L be two operators defined by . Assume that the
operators satisfy the following properties:
(P1) Q1,Q9 are two continuous functions from [c,d] x R — Ry such that

[Qu(r,s) + Qa(r,1)]* < C(r)o([s +11%),

where ¢ : [e,d] — Ry is a continuous function that satisfies the following

condition
d 1
sup (J ((r)dr) < —,
refe,d] c w

where w € (0,00), and ¢ is a continuous function such that ¢ € ®;
(Py) A:[e,d)?> - R, is measurable as well as continuous at r € [c,d] for every
s € [e,d] such that

d
J A(r, s)%ds < w;

c
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(P3) for each s,t € [c,d]

(Ps, j A(s, t)Q0a(s J’ A(s, t)Q (t, u(t))dt)d J A(s, 1) (t, u(t))dt whenever

u o Ku, and

(Ps,,) J A(s, 1) (s J A(s, t)Qa(t, u(t))dt)ds J A(s, t)Qa(t, u(t))dt whenever

u o Lu;

i+1
(Py) suppose there exists a ug € R such that ugoKug with lim 0" (9 (uo, Kuo)) <
) % ¢ (6p(uo, Kuo))

3 .
Then, the system of integral equations has a solution in N.

Proof. First, we define a mapping o : 8?2 —» R, as

(u, ) 1, ifuow,
a(u,v) = .
0, otherwise.

Here we assume o = 3. To show the pair (K, £) is a («, «)-orbital cyclic
admissible pair, let a(u,Ku) > 1 = u 0 Ku. Now we show that LKu(t) <
Ku(t), for all ¢ € [c, d].

d
Ku(r) = J A(r, 8)Q1(s,u(s))ds
d d
> f A(r, $)0a (s, f Als, )0 (+ u(t))dt)ds [since u o Ku]

A(r, $)Q2(s, Ku(s))dt = LEu(r) = a(Ku, LKu) =1

Il
—
ISH

c

In a similar way, using (Ps,,), we can show that a(u, Lu) = 1 = a(Lu, KLu) =
1. Thus, the pair (K, £) is an («, «)-orbital cyclic admissible pair. By (Py) there
exists a ug € N such that upoKuo, i.e., a(ug, Kug) = 1. Next, using ugoKug, we
can construct a sequence {u,};” ; such that ug, 1 = Kuoy, g 10 = Lugyp1with
Ugouougo - - -, i.e., the sequence {u,} becomes a decreasing sequence. Also,
observe that a(ur,urﬂ) > 1 for all » € N. Since, {u,};2, is a decreasing
sequence, consequently it will converge to some u* € N. Let us take m* =
SUP, e[e,q] U* (). Now, we have

(it Uig2) ¢i+1(5p(uo,u1))

lim ——————=A — T

1i>n;}, fy(ui,ui+1) ¢z(6p(u07u1))
o200+ m?) m*? N ¢ (S, (uo, )
—1151} 2(1 + m*?) <2+ 1—|—m*2) 9" (8, (uo, u1))

(Ui+1, Ui+s)

< 1.

Next, we verify the following inequality

a(u, Ku)B(v, Lv)o,(Ku, Lv) < ¢(0,(u, v)).
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Suppose that either u is not related to Ku or v is not related to Lv by the
relation o, then we are done, by the definition of o. Next, we suppose that
uoKu and vo Lo then it will be sufficient to show that 6,(Ku, Lv) < ¢(d,(u,v)).
Now, using the Cauchy—Schwarz inequality, we have

[Ku(r) + Lo(r) (r,8)Q1(s,u(s)) ds—i—fArng(sv( ))ds]

d

Pl f
(J A(r. )25, u(s) —i—Qg(s,v(s))]ds)
<[(
- (J 40

dA )1<Jd (Ql(s,u(s)) +Qg(s,v(s)))2ds)%]2

c c

J’Cd (Ql(s,u(s)) + QQ(S,U(S)))QCZS)

( j C(5) - 8([u(s) + v(s)]*)ds)
<w - 6(0,(u,0)) - ( f d<<s>ds) <w- % - 6(8,(u,v)) < BB, (u,v
Considering supremum over 7 € [¢, d], we have
0,(Ku, Lv) < ¢(6,(u,v)) < ¢p(max{d,(u,v),d,(u, Ku),d,(v, Lv)}).

Also, K, L are both continuous functions. In fact, it can be easily checked
that all the conditions of Theorem are satisfied with &(&1,&2,83,&4) =
&1 — ¢p(max{&s,&3,€4}). Consequently, we obtain a common fixed point, i.e.,
the system has a solution. O
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