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(m, ρ)-quasi Einstein solitons on paracontact geometry

Krishnendu De12 and Uday Chand De3

Abstract. We set the goal to investigate the geometrical properties
of (m, ρ)-quasi Einstein solitons within the context of paracontact met-
ric manifolds (especially in para-Sasakian, para-cosymplectic and para-
Kenmotsu manifolds). Also, we consider a non-trivial example and vali-
date a result of our paper.
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1. Introduction

The investigation of paracontact geometry is performing a crucial role in
the development of modern differential geometry. It has many connections with
other areas of mathematics and mathematical physics. Due to its broad appli-
cations, it became popular among eminent researchers. In 1985, the topic of
paracontact metric structures was introduced in [13]. Since then, the proper-
ties of paracontact metric manifolds have been studied by many investigators.
The significance of paracontact geometry has been indicated minutely in the
previous years by various articles ([14], [16], [15]). We may mention ([1], [6],
[8], [7], [9], [13]) and the references contained in those for more information
about paracontact metric geometry.

The interesting notion, called as generalized quasi-Einstein metric is intro-
duced by Catino [3], for studying harmonic Weyl tensor and defined as follows
(see [3]):

Let a C∞ manifold Nn, n > 2, admit a Riemannian metric g, then the
metric g satisfying

S +∇2γ = αdγ ⊗ dγ + βg

is called a generalized quasi-Einstein metric for some C∞ functions α, γ and β,
where S, ∇2, d and ⊗ denote the Ricci tensor, Hessian operator, exterior deriva-
tive of g and tensor product, respectively. In the current article, we consider
an (m, ρ)-quasi Einstein metric in the 3-dimensional normal almost paracon-
tact metric (briefly, apm) manifolds, which is a particular case of generalized
quasi-Einstein metric, and study its geometrical properties.
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Analogous to Hung and Wei [12], a semi-Riemannian metric g of a semi-
Riemannian manifold N is called as (m, ρ)-quasi Einstein soliton if there exists
a C∞ function γ : Nn → R such that

(1.1) S +∇2γ − 1

m
dγ ⊗ dγ = βg = (ρr + λ)g,

where ρ, λ and m (0 < m ≤ ∞) are real constants, R is the set of real numbers
and r represents the scalar curvature of g. The expression S+∇2γ− 1

mdγ⊗dγ
is the m-Bakry-Emery Ricci tensor, which is proportional to the metric g and
the constant λ [19]. The metric g with constant potential function γ is trivial
and hence the manifold is an Einstein manifold. Furthermore, when m = ∞,
the foregoing equation yields the gradient ρ-Einstein soliton. This notion was
presented in [4], and recently Venkatesha et al. [18] studied ρ- Einstein metrics
on almost Kenmotsu manifolds. In this connection, the properties of (m, ρ)-
quasi Einstein solitons in different geometrical structures have been studied in
detail by ([11], [12]) and others. In [11], the author proved that if a complete
K-contact manifold obeys an (m, ρ)-quasi Einstein metric, then the potential
function is constant for m ̸= 1. Now, an intrinsic question arises: Is the result
true for a paracontact metric?

Motivated by the above discussion, we contribute to investigate (m, ρ)-quasi
Einstein metric in paracontact geometry and it is proved that the result is also
true for paracontact metric but the underlying condition is different.

The current article is constructed as follows: In Section 2, we recall a few
fundamental facts and formulas of normal almost paracontact manifolds, which
are used throughout the manuscript. Starting from Section 3, we will state our
theorems and provide their proofs. Also, we consider a non-trivial example to
verify the result of our article.

2. Preliminaries

In this section, we accumulate the fundamental facts and formulas of the
paracontact manifold which will be needed in later sections.

Let N be a (2n + 1)-dimensional smooth differentiable manifold endowed
with a vector field ξ, a (1, 1) tensor field ϕ, and a 1-form η such that

(2.1) ϕ2U = U − η(U)ξ, η(ϕU) = 0, ϕξ = 0, η(ξ) = 1,

hold for all vector fields U on N , and the almost paracomplex structure on
each fibre of D = ker η is induced by the tensor field ϕ. In other words, the
eigendistributions D+

ϕ and D−
ϕ of ϕ corresponding to the eigenvalues 1 and −1,

respectively, have equal dimension. Then the triplet (ϕ, ξ, η) satisfying (2.1) is
named as an almost paracontact structure and the manifold N is an almost
paracontact manifold. In addition, if a semi-Riemannian metric g of N satisfies

(2.2) g(ξ, U) = η(U), g(U, V ) + g(ϕU, ϕV ) = η(U)η(V )

for all vector fields U and V on N , then the quadruple (ϕ, ξ, η, g) is claimed to
be an apm-structure and N an apm-manifold [17].
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The Nijenhuis torsion is defined by

[ϕ, ϕ](U, V ) = [ϕU, ϕV ] + ϕ2[U, V ]− ϕ[U, ϕV ]− ϕ[ϕU, V ]

for all U, V ∈ X(N ), where X(N ) denotes the collection of all smooth vector
fields of N . The almost paracontact manifold is called normal if Nϕ = [ϕ, ϕ]−
2dη ⊗ ξ vanishes. The fundamental 2-form of the apm-manifold is defined by
Φ(U, V ) = g(U, ϕV ). If dη(U, V ) = g(U, ϕV ), then the manifold N endowed
with structure (ϕ, ξ, η, g) is known as a paracontact metric manifold.

A symmetric trace-free operator h = 1
2£ξϕ in a paracontact manifold sat-

isfies hξ = 0 and
∇Uξ = −ϕU + ϕhU, ∀ U ∈ X(N ).

It is to be noted that ξ being Killing is equivalent to the condition h = 0
and (ϕ, ξ, η, g) is called K-paracontact structure. If the normality condition
is satisfied in a paracontact metric manifold, then it is called a para-Sasakian
manifold. It is well circulated that every para-Sasakian manifold is necessarily
K-paracontact. The converse is not true, in general, but it holds when the
manifold is of dimension three [2].

In a para-Sasakian manifold the subsequent relations hold :

(2.3) R(U, V )ξ = η(U)V − η(V )U,

(2.4) (∇Uϕ)V = −g(U, V )ξ + η(V )U,

(2.5) ∇Uξ = −ϕU,

(2.6) R(U, ξ)V = g(U, V )ξ − η(V )U,

(2.7) S(U, ξ) = −(n− 1)η(U), Qξ = −(n− 1)ξ

for all U, V ∈ X(N ), where the Ricci operator Q of the manifold N is defined
by g(QU, V ) = S(U, V ).

It is well-known that a 3-dimensional semi-Riemannian manifold N assumes
the following curvature form

R(U, V )Z = g(V,Z)QU − g(U,Z)QV + S(V,Z)U − S(U,Z)V

−r

2
[g(V,Z)U − g(U,Z)V ](2.8)

for all U, V, Z ∈ X(N ). Replacing V = Z = ξ in the preceding equation and
utilizing (2.3) and (2.7), we obtain (see [15])

QU =
1

2
[(r + 2)U − (r + 6)η(U)ξ].(2.9)

In view of (2.9) the Ricci tensor is written as

2S = [(r + 2)g − (r + 6)η ⊗ η].(2.10)
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3. (m, ρ)-quasi Einstein solitons on 3-dimensional para-
Sasakian manifolds

This section investigates the 3-dimensional para-Sasakian manifold N 3 with
(m, ρ)-quasi Einstein metric. Now, before introducing the detailed proof of our
prime theorem, we first state the following result [15]:

Lemma 3.1. On N 3, ξr = 0.

Lemma 3.2. Every N 3 satisfies

R(U, V )Dγ = (∇V Q)U − (∇UQ)V +
β

m
{(V γ)U − (Uγ)V }

+
1

m
{(Uγ)QV − (V γ)QU}+ {(Uβ)V − (V β)U},(3.1)

for all U, V ∈ X(N ).

Proof of Lemma 3.2. Let us assume that the semi-Riemannian metric g of N 3

is a (m, ρ)-quasi Einstein metric. Then the equation (1.1) may be expressed as

(3.2) ∇UDγ +QU =
1

m
g(U,Dγ)Dγ + βU.

After executing covariant derivative of (3.2) along V , we get

∇V ∇UDγ = −∇V QU +
1

m
∇V g(U,Dγ)Dγ

+
1

m
g(U,Dγ)∇V Dγ + β∇V U + (V β)U.(3.3)

Exchanging U and V in (3.3), we acquire

∇U∇V Dγ = −∇UQV +
1

m
∇Ug(V,Dγ)Dγ

+
1

m
g(V,Dγ)∇UDγ + β∇UV + (Uβ)V(3.4)

and

∇[U,V ]Dγ = −Q[U, V ] +
1

m
g([U, V ], Dγ)Dγ + β[U, V ].(3.5)

Using (3.2)-(3.5) and the symmetric property of the Levi-Civita connection
together with R(U, V )Dγ = ∇U∇V Dγ −∇V ∇UDγ −∇[U,V ]Dγ, we obtain

R(U, V )Dγ = (∇V Q)U − (∇UQ)V +
β

m
{(V γ)U − (Uγ)V }

+
1

m
{(Uγ)QV − (V γ)QU}+ {(Uβ)V − (V β)U}.
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Theorem 3.3. The potential function of the (m, ρ)-quasi Einstein soliton on
N 3 is constant, provided β = −2.

Proof of Theorem 3.3. Executing the inner product operation of (3.1) with ξ
and using (2.9), we have

g(R(U, V )Dγ, ξ)

=
β

m
{(V γ)η(U)− (Uγ)η(V )}

+
1

m
{(Uγ)η(QV )− (V γ)η(QU)}+ {(Uβ)η(V )− (V β)η(U)}.(3.6)

Again, by a simple calculation we get from(2.3) that

(3.7) g(R(U, V )Dγ, ξ) = −{(V γ)η(U)− (Uγ)η(V )}.

Combining equations (3.6) and (3.7) reveals that

−{(V γ)η(U)− (Uγ)η(V )} =
β

m
{(V γ)η(U)− (Uγ)η(V )}

+
1

m
{(Uγ)η(QV )− (V γ)η(QU)}

+{(Uβ)η(V )− (V β)η(U)}.(3.8)

Replacing V by ξ in the foregoing equation we infer

(3.9) d(γ − β) = ξ(γ − β)η,

in which the exterior differentiation is indicated by d, provided β = −2. This
concludes that γ − β is invariant along the distribution D, which is defined by
D =ker η. In other words, U(γ − β) = 0 for any vector field U ∈ D. Taking
into account the above fact and using β = −2, we infer

(3.10) (Uγ) = (Uβ) = 0.

Since (Uγ) = 0, then we get γ = constant.
This completes the proof.

Using γ = constant, we get from (3.2) that the manifold is an Einstein
manifold. Since the manifold under consideration is of dimension 3, hence N 3

has a constant sectional curvature.

Corollary 3.4. An N 3 endowed with a (m, ρ)-quasi Einstein metric possesses
a constant sectional curvature, provided β = −2.

We know that when m = ∞, the (m, ρ)-quasi Einstein soliton gives the gra-
dient ρ-Einstein soliton. Putting the value m = ∞ in (3.8) and by a straightfor-
ward calculation, we find that the manifold is of constant sectional curvature.
Thus, we can state:

Corollary 3.5. Let N 3 admit a gradient ρ-Einstein metric. Then it has a
constant sectional curvature.
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4. (m, ρ)-quasi Einstein solitons on 3-dimensional
para-cosymplectic manifolds

Throughout the section, we suppose that the 3-dimensional para-cosym-
plectic manifold N 3 admits a (m, ρ)-quasi Einstein metric.

Assume that α can be a function or constant on N . If the 1-form η and
2-form Φ of an apm-manifold N satisfy the following:

(4.1) dη = 0 and dΦ = 2αη ∧ Φ,

then the manifold N is said to be an almost α-para-cosymplectic manifold.
Particularly, if we take α = 0 in (4.1), then we get almost para-cosymplectic
manifolds. The manifold is said to be para-cosymplectic if further the normality
condition is satisfied. For instance (see [5],[14]) and references contained in
those for more interesting facts about para-cosymplectic manifolds. Noted
that N 3 satisfies the following relations:

(4.2) R(U, V )ξ = 0,

(4.3) (∇Uϕ)V = 0,

(4.4) ∇Uξ = 0,

(4.5) S(U, ξ) = 0 ⇐⇒ Qξ = 0

for all U, V ∈ X(N ).
In N 3, utilizing (4.2) and (4.5) in (2.8), we obtain

QU =
r

2
[U − η(U)ξ].(4.6)

In view of equation (4.6), the Ricci tensor is written as

S(U, V ) =
r

2
[g(U, V )− η(U)η(V )].(4.7)

In a 3-dimensional para-cosymplectic manifold, Lemma 3.1 and Lemma 3.2 are
also valid.

Theorem 4.1. Let the (m, ρ)-quasi Einstein metric be a semi-Riemannian
metric of N 3. Then, N 3 possesses a constant sectional curvature, provided
β = m− 2.

Proof of Theorem 4.1. Using the Lemma 3.2, equation (4.6) and maintaining
the same procedure as in the proof of Theorem 3.1, we can easily obtain

(4.8) d(γ − β) = ξ(γ − β)η,

provided β = m− 2 and hence

(4.9) (Uγ) = (Uβ) = 0.

If (Uγ) = 0, then we get γ = constant.
This finishes the proof.
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The forthcoming corollary can be found by following the same logic used in
Corollary 3.4.

Corollary 4.2. If N 3 admits a (m, ρ)-quasi Einstein soliton, then N 3 is of
constant sectional curvature, provided β = m− 2.

Remark 4.3. In a 3-dimensional para-cosymplectic manifold, the Corollary 3.5
is also true.

5. (m, ρ)-quasi Einstein solitons on 3-dimensional
para-Kenmotsu manifolds

This section deals with the study of 3-dimensional para-Kenmotsu manifold
N 3 equipped with a (m, ρ)-quasi Einstein metric.

If we consider the function α = 1 in (4.1) we get almost para-Kenmotsu
manifolds. The manifolds are called para-Kenmotsu if, additionally, the nor-
mality condition is satisfied. For more details, we cite ([10], [14]) and references
contained in that for more fascinating facts about para-Kenmotsu manifolds.
In a para-Kenmotsu manifold the following relations hold :

(5.1) R(U, V )ξ = η(U)V − η(V )U,

(5.2) (∇Uϕ)V = g(ϕU, V )ξ − η(V )ϕU,

(5.3) ∇Uξ = U − η(U)ξ,

(5.4) R(U, ξ)V = g(U, V )ξ − η(V )U,

(5.5) S(U, ξ) = −(n− 1)η(U), Qξ = −(n− 1)ξ,

for all U, V ∈ X(N ). By straightforward calculations, we can easily show that
Lemma 3.2 also holds on N 3.

It is noticed that in N 3 the following relation holds (see [15]):

QU =
1

2
[(r + 2)U − (r + 6)η(U)ξ].(5.6)

In view of (5.6), it is observed that the Ricci tensor S of N 3 satisfies the
equation (4.7).

Now, before introducing the detailed proof of our key theorem, we first state
the following result [15]:

Lemma 5.1. On N 3, we have

ξr = −2(r + 6).(5.7)
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Theorem 5.2. If N 3 admits a (m, ρ)-quasi Einstein soliton, then it is a man-
ifold of constant sectional curvature, provided r ̸= −(λ+ 2).

Proof of Theorem 5.2. Using Lemma 3.2, equation (5.6) and maintaining the
same procedure as in the proof of Theorem 3.1, we can easily obtain

(5.8) d(γ − β) = ξ(γ − β)η

and

(5.9) (ξγ) = (ξβ) = ρ(ξr) = −2ρ(r + 6).

The contraction of the equation (3.1) along U and applying Lemma 5.1, we get

S(V,Dγ) =
1

2
(V r) +

2β

m
(V γ)

− 1

m
{r(V γ)− g(QV,Dγ)} − 2(V β).(5.10)

Clearly, comparing the above equation with (4.7) yields

−(V r)− 4β

m
(V γ) +

2

m
{r(V γ)− g(QV,Dγ)}

+4(V β) + (r + 2)(V f)− (r + 6)η(V )ξγ = 0.(5.11)

By a straightforward calculation, replacing V by ξ in (5.11) and using (5.9),
we can easily obtain

(5.12) (ξγ) =
2m(r + 6)

4β − 2r − 4
.

Comparing the antecedent relation with (5.9) gives

(5.13) 2(r + 6){ρ+ m

4β − 2r − 4
} = 0.

This shows that either r = −6 or ρ+ m
4β−2r−4 = 0.

Case (i): If r = −6, then from (4.7) we find that g is an Einstein metric,
i.e., S = −2g. Hence, by using (2.8) we say that N 3 is of constant sectional
curvature −1.

Case (ii): If ρ+ m
4β−2r−4 = 0, then by a simple calculation we get

(5.14) r =
4λ− 4− 4ρλ− 4ρ+m

2(2ρ2 − 3ρ+ 1)
= constant,

provided ρ ̸= 1, 1
2 . Hence by applying Lemma 5.1 we can easily get r =

−6. Therefore, from Case (i) we see that the manifold is of constant sectional
curvature −1. After combining the two conditions namely, β = −2 and ρ ̸=
1, 1

2 , we can write r ̸= −(λ+ 2).
This completes the proof.
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Putting the value m = ∞ in (3.8) and by a straightforward calculation we
find that the manifold is of constant sectional curvature −1. Thus, we can
state:

Corollary 5.3. An N 3 equipped with a gradient ρ-Einstein metric possesses a
constant sectional curvature −1.

6. Example

Here we consider an example of the paper [15]. In this paper, the author
considers a 3-dimensional manifold N = {(u, v, w) ∈ R3, w ̸= 0} and the vector
fields

δ1 =
∂

∂u
, ϕδ1 = δ2 =

∂

∂v
, ξ = (u+ 2v)

∂

∂u
+ (2u+ v)

∂

∂v
+

∂

∂w
.

and shows that the manifold is a para-Kenmotsu manifold. Further, Koszul’s
formula yields

∇δ1δ3 = δ1, ∇δ1δ2 = 0, ∇δ1δ1 = −δ3,

∇δ2δ3 = δ2, ∇δ2δ2 = δ3, ∇δ2δ1 = 0,

∇δ3δ3 = 0, ∇δ3δ2 = −2δ1, ∇δ3δ1 = −2δ2.(6.1)

Also, the author has obtained the expressions of the curvature tensor and the
Ricci tensor, respectively, as follows:

R(δ1, δ2)ξ = 0, R(δ2, ξ)ξ = −δ2, R(δ1, ξ)ξ = −δ1,

R(δ1, δ2)δ2 = δ1, R(δ2, ξ)δ2 = −ξ, R(δ1, ξ)δ2 = 0,

R(δ1, δ2)δ1 = δ2, R(δ2, ξ)δ1 = 0, R(δ1, ξ)δ1 = ξ

and

S(δ1, δ1) = −g(R(δ1, δ2)δ2, δ1) + g(R(δ1, δ3)δ3, δ1)

= −2

= −2g(δ1, δ1).(6.2)

Similarly, we have

S(δ2, δ2) = −2g(δ2, δ2) and S(δ3, δ3) = −2g(δ3, δ3).

From the expressions of the Ricci tensor we find that N is an Einstein manifold.
Let us assume that f : N 3 → R is a smooth function such that f = u. Then
we can easily get

Df =
∂

∂u
= δ1.
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Using (6.1) we infer
Hessf(δ1, δ1) = 0.

Thus gradient ρ-Einstein soliton equation satisfies

Hessf(δ1, δ1) + S(δ1, δ1) + 2g(δ1, δ1) = 0.

Hence N 3 satisfies

Hessf(U, V ) + S(U, V ) + 2g(U, V ) = 0.

Thus g is a gradient ρ-Einstein soliton with f = u and β = −2. Hence Corol-
lary 5.3 is verified.
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