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A-numerical radius inequalities via Dragomir inequalities
and related results

Messaoud Guesballl

Abstract. The purpose of this paper is to establish some new inequal-
ities involving A-numerical radius and A-operator seminorm of semi-
Hilbert space operators. For this aim, we generalize some known Dragomir
inequalities for Hilbert space operators. In addition, related inequalities
on a semi-Hilbert space are also given.
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1. Introduction and preliminaries

Let B(H) denote the algebra of all bounded linear operators acting on a
non trivial complex Hilbert space H with inner product (.,.) and associated
norm ||.||. For every operator T € B(H), N(T), R(T) and R(T) stand for,
respectively, the null space, the range and the closure of the range of T, and
the adjoint of T is denoted by T™*. An operator A € B(H) is said to be positive
if (Az,z) > 0 for every x € H.

Let B(H)" be the cone of positive (semi-definite) operators i.e.,

BH)" = {AeB(H): (Az,z) > 0,Vz € H} .

Any positive operator A € B (’r'-l)Jr defines a positive semi-definite sesquilin-
ear form

()4  HXH—=C, (z,y),=(Az,y).

Naturally, this semi-inner product induces a semi-norm ||.|| , defined by

Il =/t ) = 422

Observe that ||z|| , = 0if and only if z € N (A). Then ||.|| , is a norm on H if
and only if A is an injective operator and the semi-normed space (B (), ||.|| 4)
is complete if and only if R (A) is closed. For T' € B(#), an operator S € B(H)
is called an A-adjoint of T if for every x,y € H

, Vo e H.

<T'T7y>A = <x’ Sy>A7
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ie., AS = T*A. Moreover, T is called A-selfadjoint if AT = T*A, and it is
called A-positive if AT is positive, and we write T' >4 0. The existence of an
A-adjoint operator is not guaranteed.

Let BA% (H) be the set of all operators admitting Az-adjoint. By the Dou-

glas theorem, we have

) = {TGB(H): (T*A) R(A)}
= {TeBH):Fec>0;||Tz|| 4, <cllz|,, Ve e H}.

B

An operator in B 1 (H) is called an A-bounded operator. Moreover, it was
proved in [2] that if T € B, 1 (H), then

[T
[T 4 := sup 2= sup |[Tz||, < oo
zeR(A) ” HA zEH
2#0 llz|l ;=1

In addition, if T is A-bounded, then T' (N (A)) C N (A4) and
[Tl < [T o ll]l 4, Vo € H.

Moreover, for T € B 1 (H) we have
A2

1Ty = sup{[(Tz,y) 4|+ 2,y € H and [lx] 4 =y, =1}

The set of all operators which admit A-adjoints is denoted by B4(H). Again,
by the Douglas theorem [G], we get

Ba(H) = {TeBH):R(T"A) CR(A)}
= {TeBH):3c>0;|ATx| < c|Az|| Yz € H}.

Note that Ba(H) and B 1 () are two subalgebras of B(#) which are nei-
ther closed nor dense in B(#H) (see [2, [1]). Moreover, the following inclusions

Ba(H) C B, (M) C BH),

hold with equality if A is injective and has a closed range.

If T € B4(H), then T admits A-adjoint operators. Moreover, there exists
a distinguished A-adjoint operator of T, namely the reduced solution of the
equation AX = T*A, ie., T' = A'T*A, where AT is the Moore-Penrose
inverse of A. The A-adjoint operator T4 satisfies

AT* =T*A, R (T*) C R(A) and NV (T#) = N (T*A).

We collect now some properties of T#4 and its relationship with the semi-
norm || |4 Let T € Ba (’H) Then the following statements hold:

ﬁ
(2) T# € Ba(H), (TﬁA)“ = Pyl Py and. ((1%4)%) = 1%,
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(3) T#AT and TT* are A-selfadjoint and A-positive.
(4) It S € Ba(H), then T'S € Ba(H) and (T'S)™ = 1%,
1 1
G) Ty = T4, = |T* T 3 = | TT* 3.
From now on, to simplify notation, we write P instead of PM .

Recall that an operator T' € B4 (H) is called A-normal if TT%4 = T#AT. It
is familiar that every selfadjoint operator is normal. However, an A-selfadjoint
operator is not necessarily A-normal. For example, consider the operators

A= ( 1 } ) and T = < (2) (2) ) By a simple computation show that T'

is A-selfadjoint and TTH#4 = ( 3 g ) #* ( g ; ) = T*AT. For more facts
about this class of operators, we refer the reader to [I8].
Any operator T' € B4 (H) can be represented as

T =Rea (T) +iTIma (T),

where . .
T+ T#4 T —TF4a
Rea (T) := +T and Imy (T) := —
i

The concept of the classical numerical radius was generalized to the A-
numerical radius as follows

wa (T) =sup{|[(Tz,z) 4| :x €H, |||, =1}.
It follows that
wa (T) =wa (T*) for any T € Ba(H).

It was shown in [20] that for T' € Ba(H),

1 . ,
(L.1) wa (T) = 5 sup [T + e T , .
2 oer
Another formula for w4 (T) in terms of the operator semi-norm || - || 4 is the

following useful identity that has been recently defined in [20] as follows
(1.2) wa (T) =sup HReA (eieT) HA = sup ||ImA (ewT) HA .
0eR OeR

A fundamental inequality for the A-numerical radius is the power inequality
(see [l [17]) which says that for T' € Ba(H),

wa (T") <wWi(T), neN.

Further, A-numerical radius is a semi-norm on B4 () and that for every
T e Ba(H),

1
(1.3) S ITls s wa(T) <74
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Moreover, it is known that if T is A-selfadjoint (or A-positive), then
(1.4) wa(T) =Tl 4-

Recently, some refinements of the inequalities have been proved by
many authors (e.g., see [3| [14], 20], and the references therein). Further gener-
alizations and refinements of A-numerical radius are discussed in [4, 3| [14] [I5]
17, 19], and the references therein.

One major topic of the present article is to study some inequalities of semi-
Hilbertian space operators involving A-numerical radius and A-operator semi-
norm, which generalize some classical numerical radius inequalities of com-
plex Hilbert space operators due to Dragomir. The motivation comes from
17, 9, 12, [, [T, [10].

2. Main results

In this section, we present our results. We first state the following lemma.

Lemma 2.1. Let z,y,z € H. Then, the following two statements are equiva-
lent:

() Re ((y — 2.0 = 2),) 2 0.

(i) [lo = 252, < 5 ly = 2ll4-

Proof. Utilizing the fact that in any Hilbert space the following two statements
are equivalent:

(i) Re((b —a,a—¢)) >0, a,b,c € H;

(i) [|a — =52 < & b= el

Let x,y,2 € ‘H. Putting z = A%a,y = A2b and z = A%c, then we deduce
the desired result. O

Theorem 2.1. Let T € Ba(H) . If A € C\ {0} and r > 0 such that
1T = A4 <,

then

172

< ——
HT”A S WA (T) + 2 |A‘

Proof. Let x € 1 be an A-unit vector i.e, ||z|| , = 1. Notice first that
[Tz = Azl 4 = (T = Al zll, < (T = AD)ll4 <7

It follows that
| Tz — Az < 72
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This implies that
1Tz + A 2Re (X (T, ) ,) +r?

2\ (T, z) | + 72

IN A

Taking the supremum over z € H with ||z||, =1, we get
(2.1) ITI% + A < 2\ wa (T) + 772,
Since, obviously
2 2
(2.2) 2(| TN 4 A< TN + 1A
From the inequalities (2.1)) and (2.2)), we have

[Tl < wa (T) + 37
ASEAT ANy
which proves the inequality of the theorem. O

As a consequence of Theorem we have the following two corollaries.

Corollary 2.1. Let T € By(H) and «, f€ C with 8 # —a,a. If

Rey ((T —a)t (- T)) >4 0,
then
1|8 —af

< - .
Il < 0a (1) + 35

Proof. Tf Reu ((T —a)t (- T)) >4 0, then

<(T - a)n“ (8 — T)x,x>A > 0.
Hence
(2.3) (B=T)z,(T —a)x), >0, for all z € H.
By using Lemma we conclude that is equivalent to

ﬁ+alm

<

1
HTCL’— —
A 2

|8 — al, for any x € H.
Taking the supremum over z € H with ||z]| , = 1, we get

16— af.

i
2

1

4 2
Now, applying Theorem ﬂ for A = ﬂ% and 7 = % |8 — af, we deduce the
desired result. O
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Corollary 2.2. Assume that T,\,r are as in Theorem [21 If, in addition,
there exists p > 0 such that

Al =wa (T)| = p,

then
T — w% (T) <2 = p2.

Proof. From (12.1)) of Theorem we have

ITI =% (T) < 7 —wi (T) +2|Mwa (T) — A
= = (A —wa (D))’
< r27p2.

Hence, we get the desired inequality. O
Remark 2.1. In particular, if |T — M|, <7 and [A\| =wa (T), X € C, then
ITI = wh () <%,

Theorem 2.2. Let T € Bo(H). If A € C\{0} and r > 0 such that
1T = A, <7,

then

(2.4) IT]l4 <

Proof. From the inequality (2.1)), we have
2 2
ITN% + A7 = < 2Awa (T),
which implies that

2
||T||A + /‘)\|2—7‘2< 2‘)\|

VAP = RV

Since, obviously as (2.2 we see that

(255) wa (T).

2 2 2
2| T4 VAP =2 < TI5 + A =72,

which implies
2
714

Now, from the inequalities (2.5)) and (2.6]), we get the desired inequality. O

2
(2.6) 2(|IT) 4 < S VAL
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Remark 2.2. Note that if
(ERVIRREE
<X
27 A
which is equivalent to ﬁ < @, then is a refinement of the first inequality
The following corollary follows from Theorem 2.2

Corollary 2.3. Let o, € C with Re(fa) > 0. If T € Ba(H) such that
Rey ((T - oz)ﬁA (8- T)) 1s an A-positive operator, then

2/Re(5a) _ wa(T)

7
@7 Bra =TTl

and )
B —a
8+«

Proof. If we put A = MTQ and r = % |8 — al, then

2 2
ﬂu—wiavs\ I

2 2
A2 =2 = '5”‘ - ’5‘0‘ = Re (Ba) > 0.
2 2
Now, by applying Theorem we deduce the desired result. O

Remark 2.3. If | —a| < ? |8 + a and Re (B@) > 0, then is a refine-
ment of the first inequality in .

Theorem 2.3. Let T € Ba(H). Then, for any o € [0,1] and t € R, we have
2 2 2 p—
171 < [(1 = ) + ] Wi (T) + a1 — 1|15 + (1= o) | T —it1 .
Proof. We use the following inequality was obtained on a Hilbert space in [7]
ol lgll” < [(1 = @) + 02| [, ) + allty = 2ll” + (1 = o) |lity — =),

for any x,y € H, « € [0,1] and t € R.
Putting x = A%a,y = Aband 2z = A%c, we deduce that

lall% 160 < [0 = @) + ] {a, b4+ [1tb — aly + (1 = a) lith — all,.

Let € H with ||z||, = 1, we take a = Tz, b = x in the above inequality,
we get

172l < [(1 = @) + 2| (T, ) 4> + a [t = Tall}, + (1 - o) [ita — Tall;
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Taking the supremum over z € H with ||z||, = 1, we get
ITIE < [ - o) + 0] (1) + @7 — 411 + (1 ) | — eI,

as required. O

Corollary 2.4. Let T € Bs(H). Then

inf |7 — ¢1]’

. inf | [

0<||T|% — A (T) < inf |1 - itI|%
S

and
2 1 1 . 2 . 2
ITI < 54 () + 5 inf (IT =23 + 1T — it

Theorem 2.4. Let T, S € Bao(H) and let r > 0. If
1T = Sl[a <,

then
H THAT 4 S#a g

1
: <wa (S1T) + 572

A
Proof. Since | T — S|| 4, < r, then for any x € H with ||z|| , = 1, it follows that

Tl + 1152 2Re (T, Sx) 4) + 12

<
< 2 ’<SuATx,x>A| + 2.

However
T + 1Sl = ((T*T + $*45) &, Sz, .

Therefore, we infer that
((T*AT + 5%48) x, Sz) , <2[(S*Tx,z) | +1°.
Taking the supremum over z € H with ||z||, =1, we get
wa (TFAT + 5*48) < 2w (S#4T) + 2.
Since T#AT + S%4 S is A-positive operator, so by we obtain
wa (T*T + S 8) = ||[T*T + S*49, -

Therefore, we obtain

1
<wagy (S’“T) + 57”2,

HTﬁAT+sﬁAs
2

A

as required. O
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For S = AT*#4,\ € C in Theorem we get the following result.
Corollary 2.5. Let T € Ba(H)and let r >0, A€ C. If
1T =21, <7,

then
THAT + |\ TTH
2

CMwa (T2) < 202,

1
2

A

Proof. Letting S = AT*4 in Theorem m, we obtain

THAT + | A2 TH Tha
2

2.

~ A wa (Tﬁi“T) < %

221

:
Using the facts | X[, = || X%+, (Xﬁi’*) Y= Xt and (XY)M = viaxta

for every X, Y € Ba(H), we have

THAT 4 |\ THL Tt
2

A

#
Also, by using the facts w4 (X) = w4 (X*4) and (XﬁﬁAA> * X4 for every

X € Ba(H), we can observe that

i (T5T) = (Tm ()

(TﬁAT + AP T TEa ) .
2

A
TEaTES 4+ AP T (Tﬂi“)m
2

A
THATER 4 |\ 7L Tt
2

!
(TﬁAT + AP TTﬁA> !
2

A

A
THAT + | A TTH
2

A

”") = ((19)”) = wa (1%).

Therefore, we get the required result.

Corollary 2.6. Let T € Bo(H) and let r >0, A€ C. If
[T = M|, <,

then
TAT + [N T
2

A
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Theorem 2.5. Let T, S € Ba(H) and let v > 1. If ||Sz||, < [|Tx||, for any
r € H, then
HTﬁATJrSﬁAS
2

T

r—1 1 2r—2 2
< (ITMAIS14)" wa (S54T) + 5 I IT = ST
A

Proof. The following inequality obtained on a Hilbert space in [13]
2r 2r —1 r—1 2r—2 2
I+ Myll™ < 202" lyl™ Re (@) + 2 llz = ylly
for all z,y € H with |ly|| < ||z||.
Putting x = Aza, Y= Azb then, we deduce that
2 2 -1 -1 2r—2 2
lalid” + 1015 < 2l 1617 Re (a, b)) + % ally ™ la = bl ,

for all a,b € H with ||b]| , < |la| 4-

Let z € H, if we take a = Tz, b = Sz in the above inequality, then we get
(2.8)

2r 2r r—1 r—1 2r—2 2

T2y +1Saly < 2(|Tlly " 1Sl Re (T, Sz) o)+r* |Tz|3 " [Tz — Szl ,

such that ||[Sz||, < [|[Tz| 4.

. . . al+B1 atpB q

Now, by using the elementary inequality =5~ > (T) for o, f > 0 and

q > 1, we can see that

2r 2 2 2\ "
Tl + ISzl <||Tx||A+||Sx||A>

2 - 2

(7)) )
= T,T .
2 A
Thus

fa fa T 2r 2r
29) <<(T T+5 s> ”> ) Tl + Szl
2 A 2

Therefore, from (2.8) and (2.9), we deduce that

((552)=))

r—1 r—1 1 2r—2 2
1Tzl 1Sz’ Re((T1?7590>A)+§7“2HT$||A [Tz — Sz’

IN

IN

—1 1 1 2r—2 2
Tl 1Sy (S5 T, @) [+ Sr® [Tl [T — Sally
Taking the supremum over x € H with ||z, = 1 in the above inequality,
we get

. (TﬁAT 4L Stag

1 1 292 2
i (T ) < TSI woa (947) + 32 ITIE 21T = S

So, by (|1.4) we the deduce desired result. O
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Corollary 2.7. If T € Bo(H) is an A-hyponormal operator, then

T

TﬁAT —+ TTﬁA 2r—2 2 1 2
| < 712 (i + 5 - 7).
A

2

for any r > 1.

Proof. We recall that an operator T' € Ba(H) is A-hyponormal if HTﬁAmHA <

|Tz| 4 for all z € H (see [16]). Now, if we choose in Theorem S =Tk
then, we obtain

ThaT 4 TH: Ta
2
A
r— # 1 r
< T fIT5 )" wa (THT) 4 5o I |7 =75
< TR+ o I T - T

(using the facts [| X, = || X* ||, and wa (X) < [|X]|, for any X € Ba(H))

< TR

1 _
A T+ 52 T2 |17 =75

(using the fact || XY, < || X|[4|Y]|4 for any X, Y € Bs(H))
2r—2 2 1 2
= 1 (1 + 5 e - T )

#
(since HTﬁAA

=||T
| =Tl

Therefore, we have

T

TEaT 4 TEA Tha
2

. 1
< 712 (il + 5 7 -7 )
A

Also, by using the fact [|X||, = [|X*
observe that

HA for any X € Ba(H), we can

HTﬂAT—FTﬁ?“ATﬁA (TﬁAT + Tﬂi{‘ TﬁA)ﬁA
A

A
fa

= ||t Tﬁﬁ{‘ + TﬁﬁAA (TﬁuAA>

A
— Tha Tﬂﬁ{‘ + TuﬁqA Tha
A

#
(Since (TﬁﬁAA) ! = TﬁA)

= (Tt 4 TR .,

|T*4T + TT* ||, .
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Therefore, we infer that

r

THAT 4+ TTHA 9r—2 s 1 2
H < I (I + 2T =751 )
A

2

as required. O

The following lemma plays a crucial role in our next proof, which can be
found in [5].

Lemma 2.2. Let T € B(H) be an A-positive operator and let z € H be such
that ||z||, = 1. Then

(Tx,z)y < (T"x,z), for all n € N*.

Theorem 2.6. Let T, S,W,R € Bo(H) and n,m € N*. Then

Es 1
2 n m

(T#aT)" + (WEaW)"
2

(S#48)™ + (RF4R)™
2

H SﬁAT+ Riaw
A

2

A A

Proof. Let x,y € H, we have
2

(ST + R4 W) 2,y ,|

= [($T)2,y), + (R W) ),
2

([{(S*T) 2,9) 4| + [((REAW) 2, 9) )

1 1 1 142
(<TﬁATx, :5>f4 <SﬁASy, y>i1 + <WﬁAWx, :5>f4 <RﬁARy, y>z> .
(by the Cauchy-Schwarz inequality)

| 2

IN

IA

Now, on utilizing the elementary inequality:
(ab+ cd)? < (a*+¢*) (b* + d?) for a,b,c,d € R,
it follows that

1 1 1 1\2
<<TﬁATx, :L’>Z <SﬁASy, y>j‘ + <WﬁAWx, I>Z <RﬁARy, y>j‘)
< (<TﬁAT:c,x>A + <WﬁAWx,x>A) (<SﬁASy’y>A + <RﬁARy’ y>A) )

for all z,y € H.
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Therefore, we have

(7)),

- <<TﬁATz,x>A + <WﬁAW:z:,:17>A> <<SﬁASy,y>A + <RﬁARy,y>A>
< 5 2

2

((T“T% )+ (WhaWa,z) ) "] g

2

X
2

<<S”*‘Sy,y>A + <R“Ry,y>A>m] *

1

(<TﬁAT:v,x>2 + <WﬁAWx,x>2> "

2

y <<5“5M>Zf + <R”"Ryvy>f> "
2

q q q
(as (a—;—ﬂ) §a ;—B for a, 4 >0 and g > 1)

< <<(TﬁAT)n:c’x>A + <(WﬁAW)nz7x>A> 1

2

1

ba @\ fa R\ "
X(((S S) y,y>AJ;<(R R) y’y>A> (by Lemma[2.2)

2

) <<[(TnAT)n T (Whaw)"] x,x>A> :

3|~

) <<[<sﬂAS)m 4 (R y,y>A>

2

Thus
(ST + B4 W) 2,y) |

< <<[(TﬁAT)n L (W) x7m>A> L

2

2

x <<[(S“S)m + (B R)"] yay>A> "

Taking the supremum over x,y € H with ||z||, = ||y, = 1 in the above
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inequality, we get

(T#aT)" + (WhaW)" (S#48)™ + (R#aR)™

H SEAT + RiaW ||?

A ‘

2 2 2
A A
as required. O
Remark 2.4. If n = m, then we have
SEAT 4 RéaTV ||? (T8T)" + (WEaW)" || || (S#45)" + (R*4R)"
2 A 2 2
A A

Theorem includes several A-operator seminorm inequalities. Some of
these inequalities are demonstrated in the following corollaries.

Corollary 2.8. IfS,R € Ba(H) and n € N*, then

HS+R

H (5%48)" + (R*4R)"
2

A

Proof. If we take T = W = I, then we get

2n
<

A

($848)" + (R#4R)"
2

H Sta 4 Rita
2

A

Therefore, by using the fact || X, = || X#]||, for every X € Ba(H), we
deduce the desired result. O

Putting R =T and W = S in Theorem we get the following corollary.
Corollary 2.9. Let T,S € Ba(H) and n,m € N*. Then

(TﬂAT)” + (SﬁA S)"
2

(TﬁAT)m =+ (SﬁAS)m
2

H SiaT + TEa 5|2
2 Lo

A A
In particular, we have
HSMT”“S @) (ss)
2 W 2 )

Corollary 2.10. IfT € Bao(H) and T = Rea (T) +ilmy (T), then

I < 2207 | (Rea (7)) + (I (7))

, for all m € N*.
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Proof. If we take S = Rea (T) and R = Im4 (T) in Corollary then we see
that

on ) (ReA (T)ﬁA Rey (T))n + (ImA (T)ﬁA Imy (T))n
N 2

T
2

A
This implies that

n

)% < 920 H (ReA (T)* Rea (T))n + (ImA (T) Tm (T))

K
One can easily check that

ta

f

Rea (T)** = Rea (T)*4 and Tmy (T)* = Ima (T)%4
Moreover, by using the fact || X||, = HXﬁAHA for every X € Bu(H), we can
observe that

n

H (Rea (7) Rea (T))n + (Tma (1) T (7))

A

fa

A

_ (ReA (T)”A)zn + <ImA (T)“)%

A
fa

(since Req (T)** = Rey (T)ﬁ?“A and Imy (T)* =TImy (7))
= (e ()" + s (™)™

A

= ||(Rea (T)*" + (Ima (T))*"

A

Therefore, we infer that

I < 2207 | (Rea (7)) + (T (7))

K
Hence, the proof is complete. O

Remark 2.5. Using similar arguments as used in Corollary[2.10, we have

N TiaT)" 4 (TTHA)"
[Rea (T)|1 %" < ( ) 5 ( ) ,
A
and ﬁ ﬁ
TRaT\" 4+ (TTEA)"
[Ty (T)|| % < ( ) 5 ( ) A,

for any n € N*.



228

Messaoud Guesba

Acknowledgment

The author would like to thank the referee for careful reading and kind

suggestions.

References

[1]

M. Laura Arias, Gustavo Corach, and M. Celeste Gonzalez. Metric properties
of projections in semi-Hilbertian spaces. Integral Equations Operator Theory,
62(1):11-28, 2008. doi:10.1007/s00020-008-1613-6.

M. Laura Arias, Gustavo Corach, and M. Celeste Gonzalez. Partial isometries
in semi-Hilbertian spaces. Linear Algebra Appl., 428(7):1460-1475, 2008. |doi:
10.1016/j.1aa.2007.09.031.

Pintu Bhunia, Raj Kumar Nayak, and Kallol Paul. Refinements of A-numerical
radius inequalities and their applications. Adv. Oper. Theory, 5(4):1498-1511,
2020. [doi:10.1007/s43036-020-00056-8.

Pintu Bhunia, Kallol Paul, and Raj Kumar Nayak. On inequalities for A-
numerical radius of operators. FElectron. J. Linear Algebra, 36:143-157, 2020.

C. Conde and K. Feki. On some inequalities for the generalized joint numerical
radius of semi-hilbert space operators. Ricerche Mat., 73(2):661-679, 2024. ldoi:
10.1007/s11587-021-00629-6.

R. G. Douglas. On majorization, factorization, and range inclusion of operators
on Hilbert space. Proc. Amer. Math. Soc., 17:413-415, 1966. |doi:10.2307/
2035178

S. S. Dragomir. A potpourri of Schwarz related inequalities in inner product
spaces. I1I. JIPAM. J. Inequal. Pure Appl. Math., 7(1):Article 14, 11, 2006.

S. S. Dragomir. Some inequalities for the norm and the numerical radius of
linear operators in Hilbert spaces. Tamkang J. Math., 39(1):1-7, 2008.

S. S. Dragomir. Power inequalities for the numerical radius of a product of two
operators in Hilbert spaces. Sarajevo J. Math., 5(18)(2):269-278, 20009.

Sever S. Dragomir. Advances in inequalities of the Schwarz, triangle and Heisen-
berg type in inner product spaces. Nova Science Publishers, Inc., New York, 2007.

Sever S. Dragomir. A survey of some recent inequalities for the norm and numer-
ical radius of operators in Hilbert spaces. Banach J. Math. Anal., 1(2):154-175,
2007. doi:10.15352/bjma/1240336213.

Silvestru Sever Dragomir. Inequalities for the numerical radius of linear oper-
ators in Hilbert spaces. SpringerBriefs in Mathematics. Springer, Cham, 2013.
doi:10.1007/978-3-319-01448-7.

A. A. Goldstein, J. V. Ryff, and L. E. Clarke. Problems and Solutions: Solutions
of Advanced Problems: 5473. Amer. Math. Monthly, 75(3):309-310, 1968. |doi:
10.2307/2314992.

Messaoud Guesba. Some generalizations of A-numerical radius inequalities for
semi-Hilbert space operators. Boll. Unione Mat. Ital., 14(4):681-692, 2021. |doi:
10.1007/s40574-021-00307-3.


https://doi.org/10.1007/s00020-008-1613-6
https://doi.org/10.1016/j.laa.2007.09.031
https://doi.org/10.1016/j.laa.2007.09.031
https://doi.org/10.1007/s43036-020-00056-8
https://doi.org/10.1007/s11587-021-00629-6
https://doi.org/10.1007/s11587-021-00629-6
https://doi.org/10.2307/2035178
https://doi.org/10.2307/2035178
https://doi.org/10.15352/bjma/1240336213
https://doi.org/10.1007/978-3-319-01448-7
https://doi.org/10.2307/2314992
https://doi.org/10.2307/2314992
https://doi.org/10.1007/s40574-021-00307-3
https://doi.org/10.1007/s40574-021-00307-3

A-numerical radius inequalities via Dragomir 229

[15]

[18]

[19]

[20]

Messaoud Guesba, Pintu Bhunia, and Kallol Paul. A-numerical radius in-
equalities and A-translatable radii of semi-Hilbert space operators. Filomat,
37(11):3443-3456, 2023. doi:10.2298/fi12306741s.

Ould Ahmed Mahmoud Sid Ahmed and Abdelkader Benali. Hyponormal and
k-quasi-hyponormal operators on semi-Hilbertian spaces. Aust. J. Math. Anal.
Appl., 13(1):Art. 7, 22, 2016.

M. S. Moslehian, Q. Xu, and A. Zamani. Seminorm and numerical radius in-
equalities of operators in semi-Hilbertian spaces. Linear Algebra Appl., 591:299—
321, 2020. doi:10.1016/j.1aa.2020.01.015,

Adel Saddi. A-normal operators in semi Hilbertian spaces. Aust. J. Math. Anal.
Appl., 9(1):Art. 5, 12, 2012.

Qingxiang Xu, Zhongming Ye, and Ali Zamani. Some upper bounds for the
A-numerical radius of 2 x 2 block matrices. Adv. Oper. Theory, 6(1):Paper No.
1, 13, 2021. doi:10.1007/s43036-020-00102-5.

Ali Zamani. A-numerical radius inequalities for semi-Hilbertian space operators.
Linear Algebra Appl., 578:159-183, 2019. |doi:10.1016/j.1aa.2019.05.012.

Received by the editors April 15, 2023
First published online August 25, 2023


https://doi.org/10.2298/fil2306741s
https://doi.org/10.1016/j.laa.2020.01.015
https://doi.org/10.1007/s43036-020-00102-5
https://doi.org/10.1016/j.laa.2019.05.012

	Introduction and preliminaries
	Main results

