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A-numerical radius inequalities via Dragomir inequalities
and related results

Messaoud Guesba1

Abstract. The purpose of this paper is to establish some new inequal-
ities involving A-numerical radius and A-operator seminorm of semi-
Hilbert space operators. For this aim, we generalize some known Dragomir
inequalities for Hilbert space operators. In addition, related inequalities
on a semi-Hilbert space are also given.
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1. Introduction and preliminaries

Let B(H) denote the algebra of all bounded linear operators acting on a
non trivial complex Hilbert space H with inner product ⟨., .⟩ and associated
norm ∥.∥. For every operator T ∈ B(H), N (T ), R(T ) and R(T ) stand for,
respectively, the null space, the range and the closure of the range of T , and
the adjoint of T is denoted by T ∗. An operator A ∈ B(H) is said to be positive
if ⟨Ax, x⟩ ≥ 0 for every x ∈ H.

Let B(H)+ be the cone of positive (semi-definite) operators i.e.,

B (H)
+
= {A ∈ B (H) : ⟨Ax, x⟩ ≥ 0,∀x ∈ H} .

Any positive operator A ∈ B (H)
+
defines a positive semi-definite sesquilin-

ear form
⟨., .⟩A : H×H → C, ⟨x, y⟩A = ⟨Ax, y⟩ .

Naturally, this semi-inner product induces a semi-norm ∥.∥A defined by

∥x∥A =
√
⟨x, x⟩A =

∥∥∥A 1
2x
∥∥∥ , ∀x ∈ H.

Observe that ∥x∥A = 0 if and only if x ∈ N (A). Then ∥.∥A is a norm onH if
and only if A is an injective operator and the semi-normed space (B (H) , ∥.∥A)
is complete if and only if R (A) is closed. For T ∈ B(H), an operator S ∈ B(H)
is called an A-adjoint of T if for every x, y ∈ H

⟨Tx, y⟩A = ⟨x, Sy⟩A,
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i.e., AS = T ∗A. Moreover, T is called A-selfadjoint if AT = T ∗A, and it is
called A-positive if AT is positive, and we write T ≥A 0. The existence of an
A-adjoint operator is not guaranteed.

Let B
A

1
2
(H) be the set of all operators admitting A

1
2 -adjoint. By the Dou-

glas theorem, we have

B
A

1
2
(H) =

{
T ∈ B(H) : R

(
T ∗A

1
2

)
⊆ R

(
A

1
2

)}
= {T ∈ B(H) : ∃ c > 0; ∥Tx∥A ≤ c ∥x∥A ,∀x ∈ H} .

An operator in B
A

1
2
(H) is called an A-bounded operator. Moreover, it was

proved in [2] that if T ∈ B
A

1
2
(H), then

∥T∥A := sup
x∈R(A)

x ̸=0

∥Tx∥A
∥x∥A

= sup
x∈H

∥x∥A=1

∥Tx∥A < ∞.

In addition, if T is A-bounded, then T (N (A)) ⊂ N (A) and

∥Tx∥A ≤ ∥T∥A ∥x∥A , ∀x ∈ H.

Moreover, for T ∈ B
A

1
2
(H) we have

∥T∥A = sup {|⟨Tx, y⟩A| : x, y ∈ H and ∥x∥A = ∥y∥A = 1 } .

The set of all operators which admitA-adjoints is denoted by BA(H). Again,
by the Douglas theorem [6], we get

BA(H) = {T ∈ B(H) : R (T ∗A) ⊂ R (A)}
= {T ∈ B(H) : ∃ c > 0; ∥ATx∥ ≤ c ∥Ax∥ ,∀x ∈ H} .

Note that BA(H) and B
A

1
2
(H) are two subalgebras of B(H) which are nei-

ther closed nor dense in B(H) (see [2, 1]). Moreover, the following inclusions

BA(H) ⊆ B
A

1
2
(H) ⊆ B(H),

hold with equality if A is injective and has a closed range.
If T ∈ BA(H), then T admits A-adjoint operators. Moreover, there exists

a distinguished A-adjoint operator of T , namely the reduced solution of the
equation AX = T ∗A, i.e., T ♯A = A†T ∗A, where A† is the Moore-Penrose
inverse of A. The A-adjoint operator T ♯A satisfies

AT ♯A = T ∗A, R
(
T ♯A

)
⊂ R (A) and N

(
T ♯A

)
= N (T ∗A) .

We collect now some properties of T ♯A and its relationship with the semi-
norm ∥.∥A . Let T ∈ BA(H). Then the following statements hold:

(1) If AT = TA, then T ♯A = Pℜ(A)
T ∗.

(2) T ♯A ∈ BA(H),
(
T ♯A

)♯A
= Pℜ(A)

TPℜ(A)
and

((
T ♯A

)♯A)♯A
= T ♯A .
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(3) T ♯AT and TT ♯A are A-selfadjoint and A-positive.

(4) If S ∈ BA(H), then TS ∈ BA(H) and (TS)
♯A

= S
♯AT

♯A .

(5) ∥T∥A =
∥∥T ♯A

∥∥
A
=
∥∥T ♯AT

∥∥ 1
2

A
=
∥∥TT ♯A

∥∥ 1
2

A
.

From now on, to simplify notation, we write P instead of Pℜ(A)
.

Recall that an operator T ∈ BA(H) is called A-normal if TT ♯A = T ♯AT . It
is familiar that every selfadjoint operator is normal. However, an A-selfadjoint
operator is not necessarily A-normal. For example, consider the operators

A =

(
1 1
1 1

)
and T =

(
2 2
0 0

)
. By a simple computation show that T

is A-selfadjoint and TT ♯A =

(
4 4
0 0

)
̸=
(

2 2
2 2

)
= T ♯AT . For more facts

about this class of operators, we refer the reader to [18].
Any operator T ∈ BA(H) can be represented as

T = ReA (T ) + i ImA (T ) ,

where

ReA (T ) :=
T + T ♯A

2
and ImA (T ) :=

T − T ♯A

2i
.

The concept of the classical numerical radius was generalized to the A-
numerical radius as follows

ωA (T ) = sup {|⟨Tx, x⟩A| : x ∈ H, ∥x∥A = 1 } .

It follows that

ωA (T ) = ωA

(
T ♯A

)
for any T ∈ BA(H).

It was shown in [20] that for T ∈ BA(H),

(1.1) ωA (T ) =
1

2
sup
θ∈R

∥∥eiθT + e−iθT ♯A
∥∥
A
.

Another formula for ωA(T ) in terms of the operator semi-norm ∥ · ∥A is the
following useful identity that has been recently defined in [20] as follows

(1.2) ωA (T ) = sup
θ∈R

∥∥ReA (eiθT )∥∥A = sup
θ∈R

∥∥ImA

(
eiθT

)∥∥
A
.

A fundamental inequality for the A-numerical radius is the power inequality
(see [4, 17]) which says that for T ∈ BA(H),

ωA (Tn) ≤ ωn
A (T ) , n ∈ N.

Further, A-numerical radius is a semi-norm on BA(H) and that for every
T ∈ BA(H),

(1.3)
1

2
∥T∥A ≤ ωA (T ) ≤ ∥T∥A .
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Moreover, it is known that if T is A-selfadjoint (or A-positive), then

(1.4) ωA (T ) = ∥T∥A .

Recently, some refinements of the inequalities (1.3) have been proved by
many authors (e.g., see [3, 14, 20], and the references therein). Further gener-
alizations and refinements of A-numerical radius are discussed in [4, 3, 14, 15,
17, 19], and the references therein.

One major topic of the present article is to study some inequalities of semi-
Hilbertian space operators involving A-numerical radius and A-operator semi-
norm, which generalize some classical numerical radius inequalities of com-
plex Hilbert space operators due to Dragomir. The motivation comes from
[7, 9, 12, 8, 11, 10].

2. Main results

In this section, we present our results. We first state the following lemma.

Lemma 2.1. Let x, y, z ∈ H. Then, the following two statements are equiva-
lent:

(i) Re (⟨y − x, x− z⟩A) ≥ 0.
(ii)

∥∥x− z+y
2

∥∥
A
≤ 1

2 ∥y − z∥A.

Proof. Utilizing the fact that in any Hilbert space the following two statements
are equivalent:

(i) Re (⟨b− a, a− c⟩) ≥ 0, a, b, c ∈ H;
(ii)

∥∥a− c+b
2

∥∥ ≤ 1
2 ∥b− c∥.

Let x, y, z ∈ H. Putting x = A
1
2 a, y = A

1
2 b and z = A

1
2 c, then we deduce

the desired result.

Theorem 2.1. Let T ∈ BA(H) . If λ ∈ C\ {0} and r > 0 such that

∥T − λI∥A ≤ r,

then

∥T∥A ≤ ωA (T ) +
1

2

r2

|λ|
.

Proof. Let x ∈ H be an A-unit vector i.e, ∥x∥A = 1. Notice first that

∥Tx− λx∥A = ∥(T − λI)x∥A ≤ ∥(T − λI)∥A ≤ r.

It follows that

∥Tx− λx∥2A ≤ r2.
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This implies that

∥Tx∥2A + |λ|2 ≤ 2Re
(
λ ⟨Tx, x⟩A

)
+ r2

≤ 2 |λ| |⟨Tx, x⟩A|+ r2.

Taking the supremum over x ∈ H with ∥x∥A = 1, we get

(2.1) ∥T∥2A + |λ|2 ≤ 2 |λ|ωA (T ) + r2.

Since, obviously

(2.2) 2 ∥T∥A |λ| ≤ ∥T∥2A + |λ|2 .

From the inequalities (2.1) and (2.2), we have

∥T∥A ≤ ωA (T ) +
1

2

r2

|λ|
,

which proves the inequality of the theorem.

As a consequence of Theorem 2.1, we have the following two corollaries.

Corollary 2.1. Let T ∈ BA(H) and α, β∈ C with β ̸= −α, α. If

ReA

(
(T − α)

♯A (β − T )
)
≥A 0,

then

∥T∥A ≤ ωA (T ) +
1

4

|β − α|2

|β + α|
.

Proof. If ReA

(
(T − α)

♯A (β − T )
)
≥A 0, then〈

(T − α)
♯A (β − T )x, x

〉
A
≥ 0.

Hence

(2.3) ⟨(β − T )x, (T − α)x⟩A ≥ 0, for all x ∈ H.

By using Lemma 2.1, we conclude that (2.3) is equivalent to∥∥∥∥Tx− β + α

2
Ix

∥∥∥∥
A

≤ 1

2
|β − α| , for any x ∈ H.

Taking the supremum over x ∈ H with ∥x∥A = 1, we get∥∥∥∥T − β + α

2
I

∥∥∥∥
A

≤ 1

2
|β − α| .

Now, applying Theorem 2.1 for λ = β+α
2 and r = 1

2 |β − α|, we deduce the
desired result.
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Corollary 2.2. Assume that T, λ, r are as in Theorem 2.1. If, in addition,
there exists ρ ≥ 0 such that

||λ| − ωA (T )| ≥ ρ,

then
∥T∥2A − ω2

A (T ) ≤ r2 − ρ2.

Proof. From (2.1) of Theorem 2.1, we have

∥T∥2A − ω2
A (T ) ≤ r2 − ω2

A (T ) + 2 |λ|ωA (T )− |λ|2

= r2 − (|λ| − ωA (T ))
2

≤ r2 − ρ2.

Hence, we get the desired inequality.

Remark 2.1. In particular, if ∥T − λI∥A ≤ r and |λ| = ωA (T ) , λ ∈ C, then

∥T∥2A − ω2
A (T ) ≤ r2.

Theorem 2.2. Let T ∈ BA(H). If λ ∈ C\ {0} and r > 0 such that

∥T − λI∥A ≤ r,

then

(2.4) ∥T∥A ≤ |λ|√
|λ|2 − r2

ωA (T ) .

Proof. From the inequality (2.1), we have

∥T∥2A + |λ|2 − r2 ≤ 2 |λ|ωA (T ) ,

which implies that

(2.5)
∥T∥2A√
|λ|2 − r2

+

√
|λ|2 − r2 ≤ 2 |λ|√

|λ|2 − r2
ωA (T ) .

Since, obviously as (2.2) we see that

2 ∥T∥A
√
|λ|2 − r2 ≤ ∥T∥2A + |λ|2 − r2,

which implies

(2.6) 2 ∥T∥A ≤
∥T∥2A√
|λ|2 − r2

+

√
|λ|2 − r2.

Now, from the inequalities (2.5) and (2.6), we get the desired inequality.
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Remark 2.2. Note that if

1

2
≤

√
|λ|2 − r2

|λ|
,

which is equivalent to r
|λ| ≤

√
3
2 , then (2.4) is a refinement of the first inequality

in (1.3).

The following corollary follows from Theorem 2.2.

Corollary 2.3. Let α, β ∈ C with Re (βα) > 0. If T ∈ BA(H) such that

ReA

(
(T − α)

♯A (β − T )
)
is an A-positive operator, then

(2.7)
2
√

Re (βα)

|β + α|
≤ ωA (T )

∥T∥A
,

and

∥T∥2A − ω2
A (T ) ≤

∣∣∣∣β − α

β + α

∣∣∣∣2 ∥T∥2A .

Proof. If we put λ = β+α
2 and r = 1

2 |β − α|, then

|λ|2 − r2 =

∣∣∣∣β + α

2

∣∣∣∣2 − ∣∣∣∣β − α

2

∣∣∣∣2 = Re (βα) > 0.

Now, by applying Theorem 2.2, we deduce the desired result.

Remark 2.3. If |β − α| ≤
√
3
2 |β + α| and Re (βα) > 0, then (2.7) is a refine-

ment of the first inequality in (1.3).

Theorem 2.3. Let T ∈ BA(H). Then, for any α ∈ [0, 1] and t ∈ R, we have

∥T∥2A ≤
[
(1− α)

2
+ α2

]
ω2
A (T ) + α ∥T − tI∥2A + (1− α) ∥T − itI∥2A .

Proof. We use the following inequality was obtained on a Hilbert space in [7]

∥x∥2 ∥y∥2 ≤
[
(1− α)

2
+ α2

]
|⟨x, y⟩|2 + α ∥ty − x∥2 + (1− α) ∥ity − x∥2 ,

for any x, y ∈ H, α ∈ [0, 1] and t ∈ R.
Putting x = A

1
2 a, y = A

1
2 b and z = A

1
2 c, we deduce that

∥a∥2A ∥b∥2A ≤
[
(1− α)

2
+ α2

]
|⟨a, b⟩A|

2
+ α ∥tb− a∥2A + (1− α) ∥itb− a∥2A .

Let x ∈ H with ∥x∥A = 1, we take a = Tx, b = x in the above inequality,
we get

∥Tx∥2A ≤
[
(1− α)

2
+ α2

]
|⟨Tx, x⟩A|

2
+ α ∥tx− Tx∥2A + (1− α) ∥itx− Tx∥2A .
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Taking the supremum over x ∈ H with ∥x∥A = 1, we get

∥T∥2A ≤
[
(1− α)

2
+ α2

]
ω2
A (T ) + α ∥T − tI∥2A + (1− α) ∥T − itI∥2A ,

as required.

Corollary 2.4. Let T ∈ BA(H). Then

0 ≤ ∥T∥2A − ω2
A (T ) ≤


inf
t∈R

∥T − tI∥2A
inf
t∈R

∥T − itI∥2A

and

∥T∥2A ≤ 1

2
ω2
A (T ) +

1

2
inf
t∈R

(
∥T − tI∥2A + ∥T − itI∥2A

)
.

Theorem 2.4. Let T, S ∈ BA(H) and let r > 0. If

∥T − S∥A ≤ r,

then ∥∥∥∥T ♯AT + S♯AS

2

∥∥∥∥
A

≤ ωA

(
S♯AT

)
+

1

2
r2.

Proof. Since ∥T − S∥A ≤ r, then for any x ∈ H with ∥x∥A = 1, it follows that

∥Tx∥2A + ∥Sx∥2A ≤ 2Re (⟨Tx, Sx⟩A) + r2

≤ 2
∣∣〈S♯ATx, x

〉
A

∣∣+ r2.

However
∥Tx∥2A + ∥Sx∥2A =

〈(
T ♯AT + S♯AS

)
x, Sx

〉
A
.

Therefore, we infer that〈(
T ♯AT + S♯AS

)
x, Sx

〉
A
≤ 2

∣∣〈S♯ATx, x
〉
A

∣∣+ r2.

Taking the supremum over x ∈ H with ∥x∥A = 1, we get

ωA

(
T ♯AT + S♯AS

)
≤ 2ωA

(
S♯AT

)
+ r2.

Since T ♯AT + S♯AS is A-positive operator, so by (1.4) we obtain

ωA

(
T ♯AT + S♯AS

)
=
∥∥T ♯AT + S♯AS

∥∥
A
.

Therefore, we obtain∥∥∥∥T ♯AT + S♯AS

2

∥∥∥∥
A

≤ ωA

(
S♯AT

)
+

1

2
r2,

as required.
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For S = λT ♯A , λ ∈ C in Theorem 2.4, we get the following result.

Corollary 2.5. Let T ∈ BA(H)and let r > 0, λ ∈ C. If∥∥T − λT ♯A
∥∥
A
≤ r,

then ∥∥∥∥∥T ♯AT + |λ|2 TT ♯A

2

∥∥∥∥∥
A

− |λ|ωA

(
T 2
)
≤ 1

2
r2.

Proof. Letting S = λT ♯A in Theorem 2.4, we obtain∥∥∥∥∥T ♯AT + |λ|2 T ♯
♯A
A T ♯A

2

∥∥∥∥∥
A

− |λ|ωA

(
T ♯

♯A
A T

)
≤ 1

2
r2.

Using the facts ∥X∥A =
∥∥X♯A

∥∥
A
,
(
X♯

♯A
A

)♯A
= X♯A and (XY )

♯A = Y ♯AX♯A

for every X,Y ∈ BA(H), we have∥∥∥∥∥T ♯AT + |λ|2 T ♯
♯A
A T ♯A

2

∥∥∥∥∥
A

=

∥∥∥∥∥∥
(
T ♯AT + |λ|2 T ♯

♯A
A T ♯A

2

)♯A
∥∥∥∥∥∥
A

=

∥∥∥∥∥∥∥
T ♯AT ♯

♯A
A + |λ|2 T ♯

♯A
A

(
T ♯

♯A
A

)♯A
2

∥∥∥∥∥∥∥
A

=

∥∥∥∥∥T ♯AT ♯
♯A
A + |λ|2 T ♯

♯A
A T ♯A

2

∥∥∥∥∥
A

=

∥∥∥∥∥∥
(
T ♯AT + |λ|2 TT ♯A

2

)♯A
∥∥∥∥∥∥
A

=

∥∥∥∥∥T ♯AT + |λ|2 TT ♯A

2

∥∥∥∥∥
A

.

Also, by using the facts ωA (X) = ωA

(
X♯A

)
and

(
X♯

♯A
A

)♯A
= X♯A for every

X ∈ BA(H), we can observe that

ωA

(
T ♯

♯A
A T

)
= ωA

(
T ♯A

(
T ♯

♯A
A

)♯A)
= ωA

((
T ♯A

)2)
= ωA

(
T 2
)
.

Therefore, we get the required result.

Corollary 2.6. Let T ∈ BA(H) and let r > 0, λ ∈ C. If

∥T − λI∥A ≤ r,

then ∥∥∥∥∥T ♯AT + |λ|2 I
2

∥∥∥∥∥
A

− λωA (T ) ≤ 1

2
r2.
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Theorem 2.5. Let T, S ∈ BA(H) and let r ≥ 1. If ∥Sx∥A ≤ ∥Tx∥A for any
x ∈ H, then∥∥∥∥T ♯AT + S♯AS

2

∥∥∥∥r
A

≤ (∥T∥A ∥S∥A)
r−1

ωA

(
S♯AT

)
+

1

2
r2 ∥T∥2r−2

A ∥T − S∥2A .

Proof. The following inequality obtained on a Hilbert space in [13]

∥x∥2r + ∥y∥2r ≤ 2 ∥x∥r−1 ∥y∥r−1
Re (⟨x, y⟩) + r2 ∥x∥2r−2 ∥x− y∥2A ,

for all x, y ∈ H with ∥y∥ ≤ ∥x∥.
Putting x = A

1
2 a, y = A

1
2 b then, we deduce that

∥a∥2rA + ∥b∥2rA ≤ 2 ∥a∥r−1
A ∥b∥r−1

A Re (⟨a, b⟩A) + r2 ∥a∥2r−2
A ∥a− b∥2A ,

for all a, b ∈ H with ∥b∥A ≤ ∥a∥A.
Let x ∈ H, if we take a = Tx, b = Sx in the above inequality, then we get

(2.8)

∥Tx∥2rA +∥Sx∥2rA ≤ 2 ∥Tx∥r−1
A ∥Sx∥r−1

A Re (⟨Tx, Sx⟩A)+r2 ∥Tx∥2r−2
A ∥Tx− Sx∥2A ,

such that ∥Sx∥A ≤ ∥Tx∥A.
Now, by using the elementary inequality αq+βq

2 ≥
(

α+β
2

)q
for α, β ≥ 0 and

q ≥ 1, we can see that

∥Tx∥2rA + ∥Sx∥2rA
2

≥

(
∥Tx∥2A + ∥Sx∥2A

2

)r

=

(〈(
T ♯AT + S♯AS

2

)
x, x

〉
A

)r

.

Thus

(2.9)

(〈(
T ♯AT + S♯AS

2

)
x, x

〉
A

)r

≤
∥Tx∥2rA + ∥Sx∥2rA

2
.

Therefore, from (2.8) and (2.9), we deduce that(〈(
T ♯AT + S♯AS

2

)
x, x

〉
A

)r

≤ ∥Tx∥r−1
A ∥Sx∥r−1

A Re (⟨Tx, Sx⟩A) +
1

2
r2 ∥Tx∥2r−2

A ∥Tx− Sx∥2A

≤ ∥Tx∥r−1
A ∥Sx∥r−1

A

∣∣〈S♯ATx, x
〉
A

∣∣+ 1

2
r2 ∥Tx∥2r−2

A ∥Tx− Sx∥2A .

Taking the supremum over x ∈ H with ∥x∥A = 1 in the above inequality,
we get

ωr
A

(
T ♯AT + S♯AS

2

)
≤ (∥T∥A ∥S∥A)

r−1
ωA

(
S♯AT

)
+

1

2
r2 ∥T∥2r−2

A ∥T − S∥2A .

So, by (1.4) we the deduce desired result.
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Corollary 2.7. If T ∈ BA(H) is an A-hyponormal operator, then∥∥∥∥T ♯AT + TT ♯A

2

∥∥∥∥r
A

≤ ∥T∥2r−2
A

(
∥T∥2A +

1

2
r2
∥∥T − T ♯A

∥∥2
A

)
,

for any r ≥ 1.

Proof. We recall that an operator T ∈ BA(H) is A-hyponormal if
∥∥T ♯Ax

∥∥
A
≤

∥Tx∥A for all x ∈ H (see [16]). Now, if we choose in Theorem 2.4, S = T ♯A

then, we obtain∥∥∥∥∥T ♯AT + T ♯
♯A
A T ♯A

2

∥∥∥∥∥
r

A

≤
(
∥T∥A

∥∥T ♯A
∥∥
A

)r−1
ωA

(
T ♯

♯A
A T

)
+

1

2
r2 ∥T∥2r−2

A

∥∥T − T ♯A
∥∥2
A

≤ ∥T∥2r−2
A

∥∥∥T ♯
♯A
A T

∥∥∥
A
+

1

2
r2 ∥T∥2r−2

A

∥∥T − T ♯A
∥∥2
A

(using the facts ∥X∥A =
∥∥X♯A

∥∥
A

and ωA (X) ≤ ∥X∥A for any X ∈ BA(H))

≤ ∥T∥2r−2
A

∥∥∥T ♯
♯A
A

∥∥∥
A
∥T∥A +

1

2
r2 ∥T∥2r−2

A

∥∥T − T ♯A
∥∥2
A

(using the fact ∥XY ∥A ≤ ∥X∥A ∥Y ∥A for any X,Y ∈ BA(H))

= ∥T∥2r−2
A

(
∥T∥2A +

1

2
r2
∥∥T − T ♯A

∥∥2
A

)
.

(since
∥∥∥T ♯

♯A
A

∥∥∥
A
= ∥T∥A )

Therefore, we have∥∥∥∥∥T ♯AT + T ♯
♯A
A T ♯A

2

∥∥∥∥∥
r

A

≤ ∥T∥2r−2
A

(
∥T∥2A +

1

2
r2
∥∥T − T ♯A

∥∥2
A

)
.

Also, by using the fact ∥X∥A =
∥∥X♯A

∥∥
A

for any X ∈ BA(H), we can
observe that∥∥∥T ♯AT + T ♯

♯A
A T ♯A

∥∥∥
A

=

∥∥∥∥(T ♯AT + T ♯
♯A
A T ♯A

)♯A∥∥∥∥
A

=

∥∥∥∥T ♯AT ♯
♯A
A + T ♯

♯A
A

(
T ♯

♯A
A

)♯A∥∥∥∥
A

=
∥∥∥T ♯AT ♯

♯A
A + T ♯

♯A
A T ♯A

∥∥∥
A

(since
(
T ♯

♯A
A

)♯A
= T ♯A)

=
∥∥∥(T ♯AT + TT ♯A

)♯A∥∥∥
A

=
∥∥T ♯AT + TT ♯A

∥∥
A
.
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Therefore, we infer that∥∥∥∥T ♯AT + TT ♯A

2

∥∥∥∥r
A

≤ ∥T∥2r−2
A

(
∥T∥2A +

1

2
r2
∥∥T − T ♯A

∥∥2
A

)
,

as required.

The following lemma plays a crucial role in our next proof, which can be
found in [5].

Lemma 2.2. Let T ∈ B(H) be an A-positive operator and let x ∈ H be such
that ∥x∥A = 1. Then

⟨Tx, x⟩nA ≤ ⟨Tnx, x⟩A for all n ∈ N∗.

Theorem 2.6. Let T, S,W,R ∈ BA(H) and n,m ∈ N∗. Then

∥∥∥∥S♯AT +R♯AW

2

∥∥∥∥2
A

≤

∥∥∥∥∥
(
T ♯AT

)n
+
(
W ♯AW

)n
2

∥∥∥∥∥
1
n

A

∥∥∥∥∥
(
S♯AS

)m
+
(
R♯AR

)m
2

∥∥∥∥∥
1
m

A

.

Proof. Let x, y ∈ H, we have∣∣〈(S♯AT +R♯AW
)
x, y
〉
A

∣∣2
=

∣∣〈(S♯AT
)
x, y
〉
A
+
〈(
R♯AW

)
x, y
〉
A

∣∣2
≤

(∣∣〈(S♯AT
)
x, y
〉
A

∣∣+ ∣∣〈(R♯AW
)
x, y
〉
A

∣∣)2
≤

(〈
T ♯ATx, x

〉 1
2

A

〈
S♯ASy, y

〉 1
2

A
+
〈
W ♯AWx, x

〉 1
2

A

〈
R♯ARy, y

〉 1
2

A

)2
.

(by the Cauchy-Schwarz inequality)

Now, on utilizing the elementary inequality:

(ab+ cd)
2 ≤

(
a2 + c2

) (
b2 + d2

)
for a, b, c, d ∈ R,

it follows that(〈
T ♯ATx, x

〉 1
2

A

〈
S♯ASy, y

〉 1
2

A
+
〈
W ♯AWx, x

〉 1
2

A

〈
R♯ARy, y

〉 1
2

A

)2
≤

(〈
T ♯ATx, x

〉
A
+
〈
W ♯AWx, x

〉
A

) (〈
S♯ASy, y

〉
A
+
〈
R♯ARy, y

〉
A

)
,

for all x, y ∈ H.
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Therefore, we have∣∣∣∣〈(S♯AT +R♯AW

2

)
x, y

〉
A

∣∣∣∣2
≤

(〈
T ♯ATx, x

〉
A
+
〈
W ♯AWx, x

〉
A

2

)(〈
S♯ASy, y

〉
A
+
〈
R♯ARy, y

〉
A

2

)

=

[(〈
T ♯ATx, x

〉
A
+
〈
W ♯AWx, x

〉
A

2

)n] 1
n

×

[(〈
S♯ASy, y

〉
A
+
〈
R♯ARy, y

〉
A

2

)m] 1
m

≤

(〈
T ♯ATx, x

〉n
A
+
〈
W ♯AWx, x

〉n
A

2

) 1
n

×

(〈
S♯ASy, y

〉m
A
+
〈
R♯ARy, y

〉m
A

2

) 1
m

(as

(
α+ β

2

)q

≤ αq + βq

2
for α, β ≥ 0 and q ≥ 1)

≤

(〈(
T ♯AT

)n
x, x

〉
A
+
〈(
W ♯AW

)n
x, x

〉
A

2

) 1
n

×

(〈(
S♯AS

)m
y, y
〉
A
+
〈(
R♯AR

)m
y, y
〉
A

2

) 1
m

(by Lemma 2.2)

=

(〈[(
T ♯AT

)n
+
(
W ♯AW

)n]
x, x

〉
A

2

) 1
n

×

(〈[(
S♯AS

)m
+
(
R♯AR

)m]
y, y
〉
A

2

) 1
m

Thus ∣∣〈(S♯AT +R♯AW
)
x, y
〉
A

∣∣2
≤

(〈[(
T ♯AT

)n
+
(
W ♯AW

)n]
x, x

〉
A

2

) 1
n

×

(〈[(
S♯AS

)m
+
(
R♯AR

)m]
y, y
〉
A

2

) 1
m

.

Taking the supremum over x, y ∈ H with ∥x∥A = ∥y∥A = 1 in the above
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inequality, we get

∥∥∥∥S♯AT +R♯AW

2

∥∥∥∥2
A

≤

∥∥∥∥∥
(
T ♯AT

)n
+
(
W ♯AW

)n
2

∥∥∥∥∥
1
n

A

∥∥∥∥∥
(
S♯AS

)m
+
(
R♯AR

)m
2

∥∥∥∥∥
1
m

A

,

as required.

Remark 2.4. If n = m, then we have∥∥∥∥S♯AT +R♯AW

2

∥∥∥∥2n
A

≤

∥∥∥∥∥
(
T ♯AT

)n
+
(
W ♯AW

)n
2

∥∥∥∥∥
A

∥∥∥∥∥
(
S♯AS

)n
+
(
R♯AR

)n
2

∥∥∥∥∥
A

.

Theorem 2.6 includes several A-operator seminorm inequalities. Some of
these inequalities are demonstrated in the following corollaries.

Corollary 2.8. If S,R ∈ BA(H) and n ∈ N∗, then∥∥∥∥S +R

2

∥∥∥∥2n
A

≤

∥∥∥∥∥
(
S♯AS

)n
+
(
R♯AR

)n
2

∥∥∥∥∥
A

.

Proof. If we take T = W = I, then we get∥∥∥∥S♯A +R♯A

2

∥∥∥∥2n
A

≤

∥∥∥∥∥
(
S♯AS

)n
+
(
R♯AR

)n
2

∥∥∥∥∥
A

.

Therefore, by using the fact ∥X∥A =
∥∥X♯A

∥∥
A

for every X ∈ BA(H), we
deduce the desired result.

Putting R = T and W = S in Theorem 2.6, we get the following corollary.

Corollary 2.9. Let T, S ∈ BA(H) and n,m ∈ N∗. Then

∥∥∥∥S♯AT + T ♯AS

2

∥∥∥∥2
A

≤

∥∥∥∥∥
(
T ♯AT

)n
+
(
S♯AS

)n
2

∥∥∥∥∥
1
n

A

∥∥∥∥∥
(
T ♯AT

)m
+
(
S♯AS

)m
2

∥∥∥∥∥
1
m

A

.

In particular, we have∥∥∥∥S♯AT + T ♯AS

2

∥∥∥∥n
A

≤

∥∥∥∥∥
(
T ♯AT

)n
+
(
S♯AS

)n
2

∥∥∥∥∥
A

.

Corollary 2.10. If T ∈ BA(H) and T = ReA (T ) + i ImA (T ), then

∥T∥2nA ≤ 22n−1
∥∥∥(ReA (T ))

2n
+ (ImA (T ))

2n
∥∥∥
A
, for all n ∈ N∗.
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Proof. If we take S = ReA (T ) and R = ImA (T ) in Corollary 2.8 then we see
that ∥∥∥∥T2

∥∥∥∥2n
A

≤

∥∥∥∥∥∥
(
ReA (T )

♯A ReA (T )
)n

+
(
ImA (T )

♯A ImA (T )
)n

2

∥∥∥∥∥∥
A

.

This implies that

∥T∥2nA ≤ 22n−1
∥∥∥(ReA (T )

♯A ReA (T )
)n

+
(
ImA (T )

♯A ImA (T )
)n∥∥∥

A
.

One can easily check that

ReA (T )
♯A = ReA (T )

♯
♯A
A and ImA (T )

♯A = ImA (T )
♯
♯A
A .

Moreover, by using the fact ∥X∥A =
∥∥X♯A

∥∥
A

for every X ∈ BA(H), we can
observe that∥∥∥(ReA (T )

♯A ReA (T )
)n

+
(
ImA (T )

♯A ImA (T )
)n∥∥∥

A

=

∥∥∥∥(ReA (T )
♯A ReA (T )

♯
♯A
A

)n

+

(
ImA (T )

♯A ImA (T )
♯
♯A
A

)n∥∥∥∥
A

=

∥∥∥∥(ReA (T )
♯A
)2n

+
(
ImA (T )

♯A
)2n∥∥∥∥

A

(since ReA (T )
♯A = ReA (T )

♯
♯A
A and ImA (T )

♯A = ImA (T )
♯
♯A
A )

=

∥∥∥∥((ReA (T ))
2n

+ (ImA (T ))
2n
)♯A∥∥∥∥

A

=
∥∥∥(ReA (T ))

2n
+ (ImA (T ))

2n
∥∥∥
A
.

Therefore, we infer that

∥T∥2nA ≤ 22n−1
∥∥∥(ReA (T ))

2n
+ (ImA (T ))

2n
∥∥∥
A
.

Hence, the proof is complete.

Remark 2.5. Using similar arguments as used in Corollary 2.10, we have

∥ReA (T )∥2nA ≤

∥∥∥∥∥
(
T ♯AT

)n
+
(
TT ♯A

)n
2

∥∥∥∥∥
A

,

and

∥ImA (T )∥2nA ≤

∥∥∥∥∥
(
T ♯AT

)n
+
(
TT ♯A

)n
2

∥∥∥∥∥
A

,

for any n ∈ N∗.
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