

A-numerical radius inequalities via Dragomir inequalities and related results

Messaoud Guesba¹

Abstract. The purpose of this paper is to establish some new inequalities involving A -numerical radius and A -operator seminorm of semi-Hilbert space operators. For this aim, we generalize some known Dragomir inequalities for Hilbert space operators. In addition, related inequalities on a semi-Hilbert space are also given.

AMS Mathematics Subject Classification (2010): 47B15; 47B20; 47A15

Key words and phrases: positive operator; A -numerical radius; semi-Hilbert space; inequality

1. Introduction and preliminaries

Let $\mathcal{B}(\mathcal{H})$ denote the algebra of all bounded linear operators acting on a non trivial complex Hilbert space \mathcal{H} with inner product $\langle \cdot, \cdot \rangle$ and associated norm $\|\cdot\|$. For every operator $T \in \mathcal{B}(\mathcal{H})$, $\mathcal{N}(T)$, $\mathcal{R}(T)$ and $\overline{\mathcal{R}(T)}$ stand for, respectively, the null space, the range and the closure of the range of T , and the adjoint of T is denoted by T^* . An operator $A \in \mathcal{B}(\mathcal{H})$ is said to be positive if $\langle Ax, x \rangle \geq 0$ for every $x \in \mathcal{H}$.

Let $\mathcal{B}(\mathcal{H})^+$ be the cone of positive (semi-definite) operators i.e.,

$$\mathcal{B}(\mathcal{H})^+ = \{A \in \mathcal{B}(\mathcal{H}) : \langle Ax, x \rangle \geq 0, \forall x \in \mathcal{H}\}.$$

Any positive operator $A \in \mathcal{B}(\mathcal{H})^+$ defines a positive semi-definite sesquilinear form

$$\langle \cdot, \cdot \rangle_A : \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}, \quad \langle x, y \rangle_A = \langle Ax, y \rangle.$$

Naturally, this semi-inner product induces a semi-norm $\|\cdot\|_A$ defined by

$$\|x\|_A = \sqrt{\langle x, x \rangle_A} = \left\| A^{\frac{1}{2}}x \right\|, \quad \forall x \in \mathcal{H}.$$

Observe that $\|x\|_A = 0$ if and only if $x \in \mathcal{N}(A)$. Then $\|\cdot\|_A$ is a norm on \mathcal{H} if and only if A is an injective operator and the semi-normed space $(\mathcal{B}(\mathcal{H}), \|\cdot\|_A)$ is complete if and only if $\mathcal{R}(A)$ is closed. For $T \in \mathcal{B}(\mathcal{H})$, an operator $S \in \mathcal{B}(\mathcal{H})$ is called an A -adjoint of T if for every $x, y \in \mathcal{H}$

$$\langle Tx, y \rangle_A = \langle x, Sy \rangle_A,$$

¹Faculty of Exact Sciences, Department of Mathematics, El Oued University, 39000 Algeria, e-mail: guesbamessaoud2@gmail.com, guesba-messaoud@univ-eloued.dz, ORCID iD: orcid.org/0000-0001-5673-962X

i.e., $AS = T^*A$. Moreover, T is called A -selfadjoint if $AT = T^*A$, and it is called A -positive if AT is positive, and we write $T \geq_A 0$. The existence of an A -adjoint operator is not guaranteed.

Let $\mathcal{B}_{A^{\frac{1}{2}}}(\mathcal{H})$ be the set of all operators admitting $A^{\frac{1}{2}}$ -adjoint. By the Douglas theorem, we have

$$\begin{aligned}\mathcal{B}_{A^{\frac{1}{2}}}(\mathcal{H}) &= \left\{ T \in \mathcal{B}(\mathcal{H}) : \mathcal{R}\left(T^*A^{\frac{1}{2}}\right) \subseteq \mathcal{R}\left(A^{\frac{1}{2}}\right) \right\} \\ &= \left\{ T \in \mathcal{B}(\mathcal{H}) : \exists c > 0; \|Tx\|_A \leq c\|x\|_A, \forall x \in \mathcal{H} \right\}.\end{aligned}$$

An operator in $\mathcal{B}_{A^{\frac{1}{2}}}(\mathcal{H})$ is called an A -bounded operator. Moreover, it was proved in [2] that if $T \in \mathcal{B}_{A^{\frac{1}{2}}}(\mathcal{H})$, then

$$\|T\|_A := \sup_{\substack{x \in \mathcal{R}(A) \\ x \neq 0}} \frac{\|Tx\|_A}{\|x\|_A} = \sup_{\substack{x \in \mathcal{H} \\ \|x\|_A=1}} \|Tx\|_A < \infty.$$

In addition, if T is A -bounded, then $T(\mathcal{N}(A)) \subset \mathcal{N}(A)$ and

$$\|Tx\|_A \leq \|T\|_A \|x\|_A, \forall x \in \mathcal{H}.$$

Moreover, for $T \in \mathcal{B}_{A^{\frac{1}{2}}}(\mathcal{H})$ we have

$$\|T\|_A = \sup \{ |\langle Tx, y \rangle_A| : x, y \in \mathcal{H} \text{ and } \|x\|_A = \|y\|_A = 1 \}.$$

The set of all operators which admit A -adjoints is denoted by $\mathcal{B}_A(\mathcal{H})$. Again, by the Douglas theorem [6], we get

$$\begin{aligned}\mathcal{B}_A(\mathcal{H}) &= \{ T \in \mathcal{B}(\mathcal{H}) : \mathcal{R}(T^*A) \subset \mathcal{R}(A) \} \\ &= \{ T \in \mathcal{B}(\mathcal{H}) : \exists c > 0; \|ATx\| \leq c\|Ax\|, \forall x \in \mathcal{H} \}.\end{aligned}$$

Note that $\mathcal{B}_A(\mathcal{H})$ and $\mathcal{B}_{A^{\frac{1}{2}}}(\mathcal{H})$ are two subalgebras of $\mathcal{B}(\mathcal{H})$ which are neither closed nor dense in $\mathcal{B}(\mathcal{H})$ (see [2, 1]). Moreover, the following inclusions

$$\mathcal{B}_A(\mathcal{H}) \subseteq \mathcal{B}_{A^{\frac{1}{2}}}(\mathcal{H}) \subseteq \mathcal{B}(\mathcal{H}),$$

hold with equality if A is injective and has a closed range.

If $T \in \mathcal{B}_A(\mathcal{H})$, then T admits A -adjoint operators. Moreover, there exists a distinguished A -adjoint operator of T , namely the reduced solution of the equation $AX = T^*A$, i.e., $T^{\sharp_A} = A^\dagger T^*A$, where A^\dagger is the Moore-Penrose inverse of A . The A -adjoint operator T^{\sharp_A} satisfies

$$AT^{\sharp_A} = T^*A, \mathcal{R}(T^{\sharp_A}) \subset \overline{\mathcal{R}(A)} \text{ and } \mathcal{N}(T^{\sharp_A}) = \mathcal{N}(T^*A).$$

We collect now some properties of T^{\sharp_A} and its relationship with the semi-norm $\|\cdot\|_A$. Let $T \in \mathcal{B}_A(\mathcal{H})$. Then the following statements hold:

(1) If $AT = TA$, then $T^{\sharp_A} = P_{\overline{\mathcal{R}(A)}}T^*$.

(2) $T^{\sharp_A} \in \mathcal{B}_A(\mathcal{H})$, $(T^{\sharp_A})^{\sharp_A} = P_{\overline{\mathcal{R}(A)}}TP_{\overline{\mathcal{R}(A)}}$ and $\left((T^{\sharp_A})^{\sharp_A}\right)^{\sharp_A} = T^{\sharp_A}$.

(3) $T^{\sharp_A}T$ and TT^{\sharp_A} are A -selfadjoint and A -positive.

(4) If $S \in \mathcal{B}_A(\mathcal{H})$, then $TS \in \mathcal{B}_A(\mathcal{H})$ and $(TS)^{\sharp_A} = S^{\sharp_A}T^{\sharp_A}$.

(5) $\|T\|_A = \|T^{\sharp_A}\|_A = \|T^{\sharp_A}T\|_A^{\frac{1}{2}} = \|TT^{\sharp_A}\|_A^{\frac{1}{2}}$.

From now on, to simplify notation, we write P instead of $P_{\overline{\mathcal{R}(A)}}$.

Recall that an operator $T \in \mathcal{B}_A(\mathcal{H})$ is called A -normal if $TT^{\sharp_A} = T^{\sharp_A}T$. It is familiar that every selfadjoint operator is normal. However, an A -selfadjoint operator is not necessarily A -normal. For example, consider the operators $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ and $T = \begin{pmatrix} 2 & 2 \\ 0 & 0 \end{pmatrix}$. By a simple computation show that T is A -selfadjoint and $TT^{\sharp_A} = \begin{pmatrix} 4 & 4 \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} = T^{\sharp_A}T$. For more facts about this class of operators, we refer the reader to [18].

Any operator $T \in \mathcal{B}_A(\mathcal{H})$ can be represented as

$$T = \operatorname{Re}_A(T) + i \operatorname{Im}_A(T),$$

where

$$\operatorname{Re}_A(T) := \frac{T + T^{\sharp_A}}{2} \text{ and } \operatorname{Im}_A(T) := \frac{T - T^{\sharp_A}}{2i}.$$

The concept of the classical numerical radius was generalized to the A -numerical radius as follows

$$\omega_A(T) = \sup \{ |\langle Tx, x \rangle_A| : x \in \mathcal{H}, \|x\|_A = 1 \}.$$

It follows that

$$\omega_A(T) = \omega_A(T^{\sharp_A}) \text{ for any } T \in \mathcal{B}_A(\mathcal{H}).$$

It was shown in [20] that for $T \in \mathcal{B}_A(\mathcal{H})$,

$$(1.1) \quad \omega_A(T) = \frac{1}{2} \sup_{\theta \in \mathbb{R}} \|e^{i\theta}T + e^{-i\theta}T^{\sharp_A}\|_A.$$

Another formula for $\omega_A(T)$ in terms of the operator semi-norm $\|\cdot\|_A$ is the following useful identity that has been recently defined in [20] as follows

$$(1.2) \quad \omega_A(T) = \sup_{\theta \in \mathbb{R}} \|\operatorname{Re}_A(e^{i\theta}T)\|_A = \sup_{\theta \in \mathbb{R}} \|\operatorname{Im}_A(e^{i\theta}T)\|_A.$$

A fundamental inequality for the A -numerical radius is the power inequality (see [4, 17]) which says that for $T \in \mathcal{B}_A(\mathcal{H})$,

$$\omega_A(T^n) \leq \omega_A^n(T), \quad n \in \mathbb{N}.$$

Further, A -numerical radius is a semi-norm on $\mathcal{B}_A(\mathcal{H})$ and that for every $T \in \mathcal{B}_A(\mathcal{H})$,

$$(1.3) \quad \frac{1}{2} \|T\|_A \leq \omega_A(T) \leq \|T\|_A.$$

Moreover, it is known that if T is A -selfadjoint (or A -positive), then

$$(1.4) \quad \omega_A(T) = \|T\|_A.$$

Recently, some refinements of the inequalities (1.3) have been proved by many authors (e.g., see [3, 14, 20], and the references therein). Further generalizations and refinements of A -numerical radius are discussed in [4, 3, 14, 15, 17, 19], and the references therein.

One major topic of the present article is to study some inequalities of semi-Hilbertian space operators involving A -numerical radius and A -operator semi-norm, which generalize some classical numerical radius inequalities of complex Hilbert space operators due to Dragomir. The motivation comes from [7, 9, 12, 8, 11, 10].

2. Main results

In this section, we present our results. We first state the following lemma.

Lemma 2.1. *Let $x, y, z \in \mathcal{H}$. Then, the following two statements are equivalent:*

- (i) $\operatorname{Re}(\langle y - x, x - z \rangle_A) \geq 0$.
- (ii) $\|x - \frac{z+y}{2}\|_A \leq \frac{1}{2} \|y - z\|_A$.

Proof. Utilizing the fact that in any Hilbert space the following two statements are equivalent:

- (i) $\operatorname{Re}(\langle b - a, a - c \rangle) \geq 0$, $a, b, c \in \mathcal{H}$;
- (ii) $\|a - \frac{c+b}{2}\| \leq \frac{1}{2} \|b - c\|$.

Let $x, y, z \in \mathcal{H}$. Putting $x = A^{\frac{1}{2}}a$, $y = A^{\frac{1}{2}}b$ and $z = A^{\frac{1}{2}}c$, then we deduce the desired result. \square

Theorem 2.1. *Let $T \in \mathcal{B}_A(\mathcal{H})$. If $\lambda \in \mathbb{C} \setminus \{0\}$ and $r > 0$ such that*

$$\|T - \lambda I\|_A \leq r,$$

then

$$\|T\|_A \leq \omega_A(T) + \frac{1}{2} \frac{r^2}{|\lambda|}.$$

Proof. Let $x \in \mathcal{H}$ be an A -unit vector i.e., $\|x\|_A = 1$. Notice first that

$$\|Tx - \lambda x\|_A = \|(T - \lambda I)x\|_A \leq \|(T - \lambda I)\|_A \leq r.$$

It follows that

$$\|Tx - \lambda x\|_A^2 \leq r^2.$$

This implies that

$$\begin{aligned}\|Tx\|_A^2 + |\lambda|^2 &\leq 2 \operatorname{Re}(\bar{\lambda} \langle Tx, x \rangle_A) + r^2 \\ &\leq 2|\lambda| |\langle Tx, x \rangle_A| + r^2.\end{aligned}$$

Taking the supremum over $x \in \mathcal{H}$ with $\|x\|_A = 1$, we get

$$(2.1) \quad \|T\|_A^2 + |\lambda|^2 \leq 2|\lambda| \omega_A(T) + r^2.$$

Since, obviously

$$(2.2) \quad 2\|T\|_A |\lambda| \leq \|T\|_A^2 + |\lambda|^2.$$

From the inequalities (2.1) and (2.2), we have

$$\|T\|_A \leq \omega_A(T) + \frac{1}{2} \frac{r^2}{|\lambda|},$$

which proves the inequality of the theorem. \square

As a consequence of Theorem 2.1, we have the following two corollaries.

Corollary 2.1. *Let $T \in \mathcal{B}_A(\mathcal{H})$ and $\alpha, \beta \in \mathbb{C}$ with $\beta \neq -\alpha, \alpha$. If*

$$\operatorname{Re}_A \left((T - \alpha)^{\sharp_A} (\beta - T) \right) \geq_A 0,$$

then

$$\|T\|_A \leq \omega_A(T) + \frac{1}{4} \frac{|\beta - \alpha|^2}{|\beta + \alpha|}.$$

Proof. If $\operatorname{Re}_A \left((T - \alpha)^{\sharp_A} (\beta - T) \right) \geq_A 0$, then

$$\left\langle (T - \alpha)^{\sharp_A} (\beta - T) x, x \right\rangle_A \geq 0.$$

Hence

$$(2.3) \quad \langle (\beta - T) x, (T - \alpha) x \rangle_A \geq 0, \text{ for all } x \in \mathcal{H}.$$

By using Lemma 2.1, we conclude that (2.3) is equivalent to

$$\left\| Tx - \frac{\beta + \alpha}{2} Ix \right\|_A \leq \frac{1}{2} |\beta - \alpha|, \text{ for any } x \in \mathcal{H}.$$

Taking the supremum over $x \in \mathcal{H}$ with $\|x\|_A = 1$, we get

$$\left\| T - \frac{\beta + \alpha}{2} I \right\|_A \leq \frac{1}{2} |\beta - \alpha|.$$

Now, applying Theorem 2.1 for $\lambda = \frac{\beta + \alpha}{2}$ and $r = \frac{1}{2} |\beta - \alpha|$, we deduce the desired result. \square

Corollary 2.2. *Assume that T, λ, r are as in Theorem 2.1. If, in addition, there exists $\rho \geq 0$ such that*

$$|\lambda| - \omega_A(T) \geq \rho,$$

then

$$\|T\|_A^2 - \omega_A^2(T) \leq r^2 - \rho^2.$$

Proof. From (2.1) of Theorem 2.1, we have

$$\begin{aligned} \|T\|_A^2 - \omega_A^2(T) &\leq r^2 - \omega_A^2(T) + 2|\lambda|\omega_A(T) - |\lambda|^2 \\ &= r^2 - (|\lambda| - \omega_A(T))^2 \\ &\leq r^2 - \rho^2. \end{aligned}$$

Hence, we get the desired inequality. \square

Remark 2.1. *In particular, if $\|T - \lambda I\|_A \leq r$ and $|\lambda| = \omega_A(T), \lambda \in \mathbb{C}$, then*

$$\|T\|_A^2 - \omega_A^2(T) \leq r^2.$$

Theorem 2.2. *Let $T \in \mathcal{B}_A(\mathcal{H})$. If $\lambda \in \mathbb{C} \setminus \{0\}$ and $r > 0$ such that*

$$\|T - \lambda I\|_A \leq r,$$

then

$$(2.4) \quad \|T\|_A \leq \frac{|\lambda|}{\sqrt{|\lambda|^2 - r^2}} \omega_A(T).$$

Proof. From the inequality (2.1), we have

$$\|T\|_A^2 + |\lambda|^2 - r^2 \leq 2|\lambda|\omega_A(T),$$

which implies that

$$(2.5) \quad \frac{\|T\|_A^2}{\sqrt{|\lambda|^2 - r^2}} + \sqrt{|\lambda|^2 - r^2} \leq \frac{2|\lambda|}{\sqrt{|\lambda|^2 - r^2}} \omega_A(T).$$

Since, obviously as (2.2) we see that

$$2\|T\|_A \sqrt{|\lambda|^2 - r^2} \leq \|T\|_A^2 + |\lambda|^2 - r^2,$$

which implies

$$(2.6) \quad 2\|T\|_A \leq \frac{\|T\|_A^2}{\sqrt{|\lambda|^2 - r^2}} + \sqrt{|\lambda|^2 - r^2}.$$

Now, from the inequalities (2.5) and (2.6), we get the desired inequality. \square

Remark 2.2. Note that if

$$\frac{1}{2} \leq \frac{\sqrt{|\lambda|^2 - r^2}}{|\lambda|},$$

which is equivalent to $\frac{r}{|\lambda|} \leq \frac{\sqrt{3}}{2}$, then (2.4) is a refinement of the first inequality in (1.3).

The following corollary follows from Theorem 2.2.

Corollary 2.3. Let $\alpha, \beta \in \mathbb{C}$ with $\operatorname{Re}(\beta\bar{\alpha}) > 0$. If $T \in \mathcal{B}_A(\mathcal{H})$ such that $\operatorname{Re}_A((T - \alpha)^{\sharp_A}(\beta - T))$ is an A -positive operator, then

$$(2.7) \quad \frac{2\sqrt{\operatorname{Re}(\beta\bar{\alpha})}}{|\beta + \alpha|} \leq \frac{\omega_A(T)}{\|T\|_A},$$

and

$$\|T\|_A^2 - \omega_A^2(T) \leq \left| \frac{\beta - \alpha}{\beta + \alpha} \right|^2 \|T\|_A^2.$$

Proof. If we put $\lambda = \frac{\beta+\alpha}{2}$ and $r = \frac{1}{2}|\beta - \alpha|$, then

$$|\lambda|^2 - r^2 = \left| \frac{\beta + \alpha}{2} \right|^2 - \left| \frac{\beta - \alpha}{2} \right|^2 = \operatorname{Re}(\beta\bar{\alpha}) > 0.$$

Now, by applying Theorem 2.2, we deduce the desired result. \square

Remark 2.3. If $|\beta - \alpha| \leq \frac{\sqrt{3}}{2}|\beta + \alpha|$ and $\operatorname{Re}(\beta\bar{\alpha}) > 0$, then (2.7) is a refinement of the first inequality in (1.3).

Theorem 2.3. Let $T \in \mathcal{B}_A(\mathcal{H})$. Then, for any $\alpha \in [0, 1]$ and $t \in \mathbb{R}$, we have

$$\|T\|_A^2 \leq \left[(1 - \alpha)^2 + \alpha^2 \right] \omega_A^2(T) + \alpha \|T - tI\|_A^2 + (1 - \alpha) \|T - itI\|_A^2.$$

Proof. We use the following inequality was obtained on a Hilbert space in [7]

$$\|x\|^2 \|y\|^2 \leq \left[(1 - \alpha)^2 + \alpha^2 \right] |\langle x, y \rangle|^2 + \alpha \|ty - x\|^2 + (1 - \alpha) \|ity - x\|^2,$$

for any $x, y \in \mathcal{H}$, $\alpha \in [0, 1]$ and $t \in \mathbb{R}$.

Putting $x = A^{\frac{1}{2}}a$, $y = A^{\frac{1}{2}}b$ and $z = A^{\frac{1}{2}}c$, we deduce that

$$\|a\|_A^2 \|b\|_A^2 \leq \left[(1 - \alpha)^2 + \alpha^2 \right] |\langle a, b \rangle_A|^2 + \alpha \|tb - a\|_A^2 + (1 - \alpha) \|itb - a\|_A^2.$$

Let $x \in \mathcal{H}$ with $\|x\|_A = 1$, we take $a = Tx$, $b = x$ in the above inequality, we get

$$\|Tx\|_A^2 \leq \left[(1 - \alpha)^2 + \alpha^2 \right] |\langle Tx, x \rangle_A|^2 + \alpha \|tx - Tx\|_A^2 + (1 - \alpha) \|itx - Tx\|_A^2.$$

Taking the supremum over $x \in \mathcal{H}$ with $\|x\|_A = 1$, we get

$$\|T\|_A^2 \leq \left[(1 - \alpha)^2 + \alpha^2 \right] \omega_A^2(T) + \alpha \|T - tI\|_A^2 + (1 - \alpha) \|T - itI\|_A^2,$$

as required. \square

Corollary 2.4. *Let $T \in \mathcal{B}_A(\mathcal{H})$. Then*

$$0 \leq \|T\|_A^2 - \omega_A^2(T) \leq \begin{cases} \inf_{t \in \mathbb{R}} \|T - tI\|_A^2 \\ \inf_{t \in \mathbb{R}} \|T - itI\|_A^2 \end{cases}$$

and

$$\|T\|_A^2 \leq \frac{1}{2} \omega_A^2(T) + \frac{1}{2} \inf_{t \in \mathbb{R}} \left(\|T - tI\|_A^2 + \|T - itI\|_A^2 \right).$$

Theorem 2.4. *Let $T, S \in \mathcal{B}_A(\mathcal{H})$ and let $r > 0$. If*

$$\|T - S\|_A \leq r,$$

then

$$\left\| \frac{T^{\sharp_A} T + S^{\sharp_A} S}{2} \right\|_A \leq \omega_A(S^{\sharp_A} T) + \frac{1}{2} r^2.$$

Proof. Since $\|T - S\|_A \leq r$, then for any $x \in \mathcal{H}$ with $\|x\|_A = 1$, it follows that

$$\begin{aligned} \|Tx\|_A^2 + \|Sx\|_A^2 &\leq 2 \operatorname{Re}(\langle Tx, Sx \rangle_A) + r^2 \\ &\leq 2 |\langle S^{\sharp_A} Tx, x \rangle_A| + r^2. \end{aligned}$$

However

$$\|Tx\|_A^2 + \|Sx\|_A^2 = \langle (T^{\sharp_A} T + S^{\sharp_A} S) x, Sx \rangle_A.$$

Therefore, we infer that

$$\langle (T^{\sharp_A} T + S^{\sharp_A} S) x, Sx \rangle_A \leq 2 |\langle S^{\sharp_A} Tx, x \rangle_A| + r^2.$$

Taking the supremum over $x \in \mathcal{H}$ with $\|x\|_A = 1$, we get

$$\omega_A(T^{\sharp_A} T + S^{\sharp_A} S) \leq 2 \omega_A(S^{\sharp_A} T) + r^2.$$

Since $T^{\sharp_A} T + S^{\sharp_A} S$ is A -positive operator, so by (1.4) we obtain

$$\omega_A(T^{\sharp_A} T + S^{\sharp_A} S) = \|T^{\sharp_A} T + S^{\sharp_A} S\|_A.$$

Therefore, we obtain

$$\left\| \frac{T^{\sharp_A} T + S^{\sharp_A} S}{2} \right\|_A \leq \omega_A(S^{\sharp_A} T) + \frac{1}{2} r^2,$$

as required. \square

For $S = \lambda T^{\sharp_A}$, $\lambda \in \mathbb{C}$ in Theorem 2.4, we get the following result.

Corollary 2.5. *Let $T \in \mathcal{B}_A(\mathcal{H})$ and let $r > 0$, $\lambda \in \mathbb{C}$. If*

$$\|T - \lambda T^{\sharp_A}\|_A \leq r,$$

then

$$\left\| \frac{T^{\sharp_A} T + |\lambda|^2 T T^{\sharp_A}}{2} \right\|_A - |\lambda| \omega_A(T^2) \leq \frac{1}{2} r^2.$$

Proof. Letting $S = \lambda T^{\sharp_A}$ in Theorem 2.4, we obtain

$$\left\| \frac{T^{\sharp_A} T + |\lambda|^2 T^{\sharp_A} T^{\sharp_A}}{2} \right\|_A - |\lambda| \omega_A(T^{\sharp_A} T) \leq \frac{1}{2} r^2.$$

Using the facts $\|X\|_A = \|X^{\sharp_A}\|_A$, $(X^{\sharp_A})^{\sharp_A} = X^{\sharp_A}$ and $(XY)^{\sharp_A} = Y^{\sharp_A} X^{\sharp_A}$ for every $X, Y \in \mathcal{B}_A(\mathcal{H})$, we have

$$\begin{aligned} \left\| \frac{T^{\sharp_A} T + |\lambda|^2 T^{\sharp_A} T^{\sharp_A}}{2} \right\|_A &= \left\| \left(\frac{T^{\sharp_A} T + |\lambda|^2 T^{\sharp_A} T^{\sharp_A}}{2} \right)^{\sharp_A} \right\|_A \\ &= \left\| \frac{T^{\sharp_A} T^{\sharp_A} + |\lambda|^2 T^{\sharp_A} (T^{\sharp_A})^{\sharp_A}}{2} \right\|_A \\ &= \left\| \frac{T^{\sharp_A} T^{\sharp_A} + |\lambda|^2 T^{\sharp_A} T^{\sharp_A}}{2} \right\|_A \\ &= \left\| \left(\frac{T^{\sharp_A} T + |\lambda|^2 T T^{\sharp_A}}{2} \right)^{\sharp_A} \right\|_A \\ &= \left\| \frac{T^{\sharp_A} T + |\lambda|^2 T T^{\sharp_A}}{2} \right\|_A. \end{aligned}$$

Also, by using the facts $\omega_A(X) = \omega_A(X^{\sharp_A})$ and $(X^{\sharp_A})^{\sharp_A} = X^{\sharp_A}$ for every $X \in \mathcal{B}_A(\mathcal{H})$, we can observe that

$$\omega_A(T^{\sharp_A} T) = \omega_A\left(T^{\sharp_A} \left(T^{\sharp_A}\right)^{\sharp_A}\right) = \omega_A\left((T^{\sharp_A})^2\right) = \omega_A(T^2).$$

Therefore, we get the required result. \square

Corollary 2.6. *Let $T \in \mathcal{B}_A(\mathcal{H})$ and let $r > 0$, $\lambda \in \mathbb{C}$. If*

$$\|T - \lambda I\|_A \leq r,$$

then

$$\left\| \frac{T^{\sharp_A} T + |\lambda|^2 I}{2} \right\|_A - \lambda \omega_A(T) \leq \frac{1}{2} r^2.$$

Theorem 2.5. Let $T, S \in \mathcal{B}_A(\mathcal{H})$ and let $r \geq 1$. If $\|Sx\|_A \leq \|Tx\|_A$ for any $x \in \mathcal{H}$, then

$$\left\| \frac{T^{\sharp_A}T + S^{\sharp_A}S}{2} \right\|_A^r \leq (\|T\|_A \|S\|_A)^{r-1} \omega_A(S^{\sharp_A}T) + \frac{1}{2} r^2 \|T\|_A^{2r-2} \|T - S\|_A^2.$$

Proof. The following inequality obtained on a Hilbert space in [13]

$$\|x\|^{2r} + \|y\|^{2r} \leq 2 \|x\|^{r-1} \|y\|^{r-1} \operatorname{Re}(\langle x, y \rangle) + r^2 \|x\|^{2r-2} \|x - y\|_A^2,$$

for all $x, y \in \mathcal{H}$ with $\|y\| \leq \|x\|$.

Putting $x = A^{\frac{1}{2}}a, y = A^{\frac{1}{2}}b$ then, we deduce that

$$\|a\|_A^{2r} + \|b\|_A^{2r} \leq 2 \|a\|_A^{r-1} \|b\|_A^{r-1} \operatorname{Re}(\langle a, b \rangle_A) + r^2 \|a\|_A^{2r-2} \|a - b\|_A^2,$$

for all $a, b \in \mathcal{H}$ with $\|b\|_A \leq \|a\|_A$.

Let $x \in \mathcal{H}$, if we take $a = Tx, b = Sx$ in the above inequality, then we get

$$(2.8) \quad \|Tx\|_A^{2r} + \|Sx\|_A^{2r} \leq 2 \|Tx\|_A^{r-1} \|Sx\|_A^{r-1} \operatorname{Re}(\langle Tx, Sx \rangle_A) + r^2 \|Tx\|_A^{2r-2} \|Tx - Sx\|_A^2,$$

such that $\|Sx\|_A \leq \|Tx\|_A$.

Now, by using the elementary inequality $\frac{\alpha^q + \beta^q}{2} \geq \left(\frac{\alpha + \beta}{2}\right)^q$ for $\alpha, \beta \geq 0$ and $q \geq 1$, we can see that

$$\begin{aligned} \frac{\|Tx\|_A^{2r} + \|Sx\|_A^{2r}}{2} &\geq \left(\frac{\|Tx\|_A^2 + \|Sx\|_A^2}{2} \right)^r \\ &= \left(\left\langle \left(\frac{T^{\sharp_A}T + S^{\sharp_A}S}{2} \right) x, x \right\rangle_A \right)^r. \end{aligned}$$

Thus

$$(2.9) \quad \left(\left\langle \left(\frac{T^{\sharp_A}T + S^{\sharp_A}S}{2} \right) x, x \right\rangle_A \right)^r \leq \frac{\|Tx\|_A^{2r} + \|Sx\|_A^{2r}}{2}.$$

Therefore, from (2.8) and (2.9), we deduce that

$$\begin{aligned} &\left(\left\langle \left(\frac{T^{\sharp_A}T + S^{\sharp_A}S}{2} \right) x, x \right\rangle_A \right)^r \\ &\leq \|Tx\|_A^{r-1} \|Sx\|_A^{r-1} \operatorname{Re}(\langle Tx, Sx \rangle_A) + \frac{1}{2} r^2 \|Tx\|_A^{2r-2} \|Tx - Sx\|_A^2 \\ &\leq \|Tx\|_A^{r-1} \|Sx\|_A^{r-1} |\langle S^{\sharp_A}Tx, x \rangle_A| + \frac{1}{2} r^2 \|Tx\|_A^{2r-2} \|Tx - Sx\|_A^2. \end{aligned}$$

Taking the supremum over $x \in \mathcal{H}$ with $\|x\|_A = 1$ in the above inequality, we get

$$\omega_A^r \left(\frac{T^{\sharp_A}T + S^{\sharp_A}S}{2} \right) \leq (\|T\|_A \|S\|_A)^{r-1} \omega_A(S^{\sharp_A}T) + \frac{1}{2} r^2 \|T\|_A^{2r-2} \|T - S\|_A^2.$$

So, by (1.4) we deduce desired result. \square

Corollary 2.7. *If $T \in \mathcal{B}_A(\mathcal{H})$ is an A -hyponormal operator, then*

$$\left\| \frac{T^{\sharp_A}T + TT^{\sharp_A}}{2} \right\|_A^r \leq \|T\|_A^{2r-2} \left(\|T\|_A^2 + \frac{1}{2}r^2 \|T - T^{\sharp_A}\|_A^2 \right),$$

for any $r \geq 1$.

Proof. We recall that an operator $T \in \mathcal{B}_A(\mathcal{H})$ is A -hyponormal if $\|T^{\sharp_A}x\|_A \leq \|Tx\|_A$ for all $x \in \mathcal{H}$ (see [16]). Now, if we choose in Theorem 2.4, $S = T^{\sharp_A}$ then, we obtain

$$\begin{aligned} & \left\| \frac{T^{\sharp_A}T + T^{\sharp_A}T^{\sharp_A}}{2} \right\|_A^r \\ & \leq (\|T\|_A \|T^{\sharp_A}\|_A)^{r-1} \omega_A(T^{\sharp_A}T) + \frac{1}{2}r^2 \|T\|_A^{2r-2} \|T - T^{\sharp_A}\|_A^2 \\ & \leq \|T\|_A^{2r-2} \left\| T^{\sharp_A}T \right\|_A + \frac{1}{2}r^2 \|T\|_A^{2r-2} \|T - T^{\sharp_A}\|_A^2 \\ & \quad (\text{using the facts } \|X\|_A = \|X^{\sharp_A}\|_A \text{ and } \omega_A(X) \leq \|X\|_A \text{ for any } X \in \mathcal{B}_A(\mathcal{H})) \\ & \leq \|T\|_A^{2r-2} \left\| T^{\sharp_A} \right\|_A \|T\|_A + \frac{1}{2}r^2 \|T\|_A^{2r-2} \|T - T^{\sharp_A}\|_A^2 \\ & \quad (\text{using the fact } \|XY\|_A \leq \|X\|_A \|Y\|_A \text{ for any } X, Y \in \mathcal{B}_A(\mathcal{H})) \\ & = \|T\|_A^{2r-2} \left(\|T\|_A^2 + \frac{1}{2}r^2 \|T - T^{\sharp_A}\|_A^2 \right). \\ & \quad (\text{since } \left\| T^{\sharp_A} \right\|_A = \|T\|_A) \end{aligned}$$

Therefore, we have

$$\left\| \frac{T^{\sharp_A}T + T^{\sharp_A}T^{\sharp_A}}{2} \right\|_A^r \leq \|T\|_A^{2r-2} \left(\|T\|_A^2 + \frac{1}{2}r^2 \|T - T^{\sharp_A}\|_A^2 \right).$$

Also, by using the fact $\|X\|_A = \|X^{\sharp_A}\|_A$ for any $X \in \mathcal{B}_A(\mathcal{H})$, we can observe that

$$\begin{aligned} \left\| T^{\sharp_A}T + T^{\sharp_A}T^{\sharp_A} \right\|_A &= \left\| (T^{\sharp_A}T + T^{\sharp_A}T^{\sharp_A})^{\sharp_A} \right\|_A \\ &= \left\| T^{\sharp_A}T^{\sharp_A} + T^{\sharp_A} \left(T^{\sharp_A} \right)^{\sharp_A} \right\|_A \\ &= \left\| T^{\sharp_A}T^{\sharp_A} + T^{\sharp_A}T^{\sharp_A} \right\|_A \\ & \quad (\text{since } \left(T^{\sharp_A} \right)^{\sharp_A} = T^{\sharp_A}) \\ &= \left\| (T^{\sharp_A}T + TT^{\sharp_A})^{\sharp_A} \right\|_A \\ &= \left\| T^{\sharp_A}T + TT^{\sharp_A} \right\|_A. \end{aligned}$$

Therefore, we infer that

$$\left\| \frac{T^{\sharp_A}T + TT^{\sharp_A}}{2} \right\|_A^r \leq \|T\|_A^{2r-2} \left(\|T\|_A^2 + \frac{1}{2}r^2 \|T - T^{\sharp_A}\|_A^2 \right),$$

as required. \square

The following lemma plays a crucial role in our next proof, which can be found in [5].

Lemma 2.2. *Let $T \in \mathcal{B}(\mathcal{H})$ be an A -positive operator and let $x \in \mathcal{H}$ be such that $\|x\|_A = 1$. Then*

$$\langle Tx, x \rangle_A^n \leq \langle T^n x, x \rangle_A \text{ for all } n \in \mathbb{N}^*.$$

Theorem 2.6. *Let $T, S, W, R \in \mathcal{B}_A(\mathcal{H})$ and $n, m \in \mathbb{N}^*$. Then*

$$\left\| \frac{S^{\sharp_A}T + R^{\sharp_A}W}{2} \right\|_A^2 \leq \left\| \frac{(T^{\sharp_A}T)^n + (W^{\sharp_A}W)^n}{2} \right\|_A^{\frac{1}{n}} \left\| \frac{(S^{\sharp_A}S)^m + (R^{\sharp_A}R)^m}{2} \right\|_A^{\frac{1}{m}}.$$

Proof. Let $x, y \in \mathcal{H}$, we have

$$\begin{aligned} & |\langle (S^{\sharp_A}T + R^{\sharp_A}W)x, y \rangle_A|^2 \\ &= |\langle (S^{\sharp_A}T)x, y \rangle_A + \langle (R^{\sharp_A}W)x, y \rangle_A|^2 \\ &\leq (|\langle (S^{\sharp_A}T)x, y \rangle_A| + |\langle (R^{\sharp_A}W)x, y \rangle_A|)^2 \\ &\leq \left(\langle T^{\sharp_A}Tx, x \rangle_A^{\frac{1}{2}} \langle S^{\sharp_A}Sy, y \rangle_A^{\frac{1}{2}} + \langle W^{\sharp_A}Wx, x \rangle_A^{\frac{1}{2}} \langle R^{\sharp_A}Ry, y \rangle_A^{\frac{1}{2}} \right)^2. \\ &\quad (\text{by the Cauchy-Schwarz inequality}) \end{aligned}$$

Now, on utilizing the elementary inequality:

$$(ab + cd)^2 \leq (a^2 + c^2)(b^2 + d^2) \text{ for } a, b, c, d \in \mathbb{R},$$

it follows that

$$\begin{aligned} & \left(\langle T^{\sharp_A}Tx, x \rangle_A^{\frac{1}{2}} \langle S^{\sharp_A}Sy, y \rangle_A^{\frac{1}{2}} + \langle W^{\sharp_A}Wx, x \rangle_A^{\frac{1}{2}} \langle R^{\sharp_A}Ry, y \rangle_A^{\frac{1}{2}} \right)^2 \\ &\leq (\langle T^{\sharp_A}Tx, x \rangle_A + \langle W^{\sharp_A}Wx, x \rangle_A) (\langle S^{\sharp_A}Sy, y \rangle_A + \langle R^{\sharp_A}Ry, y \rangle_A), \end{aligned}$$

for all $x, y \in \mathcal{H}$.

Therefore, we have

$$\begin{aligned}
& \left| \left\langle \left(\frac{S^{\sharp_A} T + R^{\sharp_A} W}{2} \right) x, y \right\rangle_A \right|^2 \\
& \leq \left(\frac{\langle T^{\sharp_A} T x, x \rangle_A + \langle W^{\sharp_A} W x, x \rangle_A}{2} \right) \left(\frac{\langle S^{\sharp_A} S y, y \rangle_A + \langle R^{\sharp_A} R y, y \rangle_A}{2} \right) \\
& = \left[\left(\frac{\langle T^{\sharp_A} T x, x \rangle_A + \langle W^{\sharp_A} W x, x \rangle_A}{2} \right)^n \right]^{\frac{1}{n}} \\
& \quad \times \left[\left(\frac{\langle S^{\sharp_A} S y, y \rangle_A + \langle R^{\sharp_A} R y, y \rangle_A}{2} \right)^m \right]^{\frac{1}{m}} \\
& \leq \left(\frac{\langle T^{\sharp_A} T x, x \rangle_A^n + \langle W^{\sharp_A} W x, x \rangle_A^n}{2} \right)^{\frac{1}{n}} \\
& \quad \times \left(\frac{\langle S^{\sharp_A} S y, y \rangle_A^m + \langle R^{\sharp_A} R y, y \rangle_A^m}{2} \right)^{\frac{1}{m}} \\
& \quad (\text{as } \left(\frac{\alpha + \beta}{2} \right)^q \leq \frac{\alpha^q + \beta^q}{2} \text{ for } \alpha, \beta \geq 0 \text{ and } q \geq 1) \\
& \leq \left(\frac{\langle (T^{\sharp_A} T)^n x, x \rangle_A + \langle (W^{\sharp_A} W)^n x, x \rangle_A}{2} \right)^{\frac{1}{n}} \\
& \quad \times \left(\frac{\langle (S^{\sharp_A} S)^m y, y \rangle_A + \langle (R^{\sharp_A} R)^m y, y \rangle_A}{2} \right)^{\frac{1}{m}} \quad (\text{by Lemma 2.2}) \\
& = \left(\frac{\langle [(T^{\sharp_A} T)^n + (W^{\sharp_A} W)^n] x, x \rangle_A}{2} \right)^{\frac{1}{n}} \\
& \quad \times \left(\frac{\langle [(S^{\sharp_A} S)^m + (R^{\sharp_A} R)^m] y, y \rangle_A}{2} \right)^{\frac{1}{m}}
\end{aligned}$$

Thus

$$\begin{aligned}
& |\langle (S^{\sharp_A} T + R^{\sharp_A} W) x, y \rangle_A|^2 \\
& \leq \left(\frac{\langle [(T^{\sharp_A} T)^n + (W^{\sharp_A} W)^n] x, x \rangle_A}{2} \right)^{\frac{1}{n}} \\
& \quad \times \left(\frac{\langle [(S^{\sharp_A} S)^m + (R^{\sharp_A} R)^m] y, y \rangle_A}{2} \right)^{\frac{1}{m}}.
\end{aligned}$$

Taking the supremum over $x, y \in \mathcal{H}$ with $\|x\|_A = \|y\|_A = 1$ in the above

inequality, we get

$$\left\| \frac{S^{\sharp_A} T + R^{\sharp_A} W}{2} \right\|_A^2 \leq \left\| \frac{(T^{\sharp_A} T)^n + (W^{\sharp_A} W)^n}{2} \right\|_A^{\frac{1}{n}} \left\| \frac{(S^{\sharp_A} S)^m + (R^{\sharp_A} R)^m}{2} \right\|_A^{\frac{1}{m}},$$

as required. \square

Remark 2.4. If $n = m$, then we have

$$\left\| \frac{S^{\sharp_A} T + R^{\sharp_A} W}{2} \right\|_A^{2n} \leq \left\| \frac{(T^{\sharp_A} T)^n + (W^{\sharp_A} W)^n}{2} \right\|_A \left\| \frac{(S^{\sharp_A} S)^n + (R^{\sharp_A} R)^n}{2} \right\|_A.$$

Theorem 2.6 includes several A -operator seminorm inequalities. Some of these inequalities are demonstrated in the following corollaries.

Corollary 2.8. If $S, R \in \mathcal{B}_A(\mathcal{H})$ and $n \in \mathbb{N}^*$, then

$$\left\| \frac{S + R}{2} \right\|_A^{2n} \leq \left\| \frac{(S^{\sharp_A} S)^n + (R^{\sharp_A} R)^n}{2} \right\|_A.$$

Proof. If we take $T = W = I$, then we get

$$\left\| \frac{S^{\sharp_A} + R^{\sharp_A}}{2} \right\|_A^{2n} \leq \left\| \frac{(S^{\sharp_A} S)^n + (R^{\sharp_A} R)^n}{2} \right\|_A.$$

Therefore, by using the fact $\|X\|_A = \|X^{\sharp_A}\|_A$ for every $X \in \mathcal{B}_A(\mathcal{H})$, we deduce the desired result. \square

Putting $R = T$ and $W = S$ in Theorem 2.6, we get the following corollary.

Corollary 2.9. Let $T, S \in \mathcal{B}_A(\mathcal{H})$ and $n, m \in \mathbb{N}^*$. Then

$$\left\| \frac{S^{\sharp_A} T + T^{\sharp_A} S}{2} \right\|_A^2 \leq \left\| \frac{(T^{\sharp_A} T)^n + (S^{\sharp_A} S)^n}{2} \right\|_A^{\frac{1}{n}} \left\| \frac{(T^{\sharp_A} T)^m + (S^{\sharp_A} S)^m}{2} \right\|_A^{\frac{1}{m}}.$$

In particular, we have

$$\left\| \frac{S^{\sharp_A} T + T^{\sharp_A} S}{2} \right\|_A^n \leq \left\| \frac{(T^{\sharp_A} T)^n + (S^{\sharp_A} S)^n}{2} \right\|_A.$$

Corollary 2.10. If $T \in \mathcal{B}_A(\mathcal{H})$ and $T = \operatorname{Re}_A(T) + i \operatorname{Im}_A(T)$, then

$$\|T\|_A^{2n} \leq 2^{2n-1} \left\| (\operatorname{Re}_A(T))^{2n} + (\operatorname{Im}_A(T))^{2n} \right\|_A, \text{ for all } n \in \mathbb{N}^*.$$

Proof. If we take $S = \text{Re}_A(T)$ and $R = \text{Im}_A(T)$ in Corollary 2.8 then we see that

$$\left\| \frac{T}{2} \right\|_A^{2n} \leq \left\| \frac{\left(\text{Re}_A(T)^{\sharp_A} \text{Re}_A(T) \right)^n + \left(\text{Im}_A(T)^{\sharp_A} \text{Im}_A(T) \right)^n}{2} \right\|_A.$$

This implies that

$$\|T\|_A^{2n} \leq 2^{2n-1} \left\| \left(\text{Re}_A(T)^{\sharp_A} \text{Re}_A(T) \right)^n + \left(\text{Im}_A(T)^{\sharp_A} \text{Im}_A(T) \right)^n \right\|_A.$$

One can easily check that

$$\text{Re}_A(T)^{\sharp_A} = \text{Re}_A(T)^{\sharp_A^{\sharp_A}} \quad \text{and} \quad \text{Im}_A(T)^{\sharp_A} = \text{Im}_A(T)^{\sharp_A^{\sharp_A}}.$$

Moreover, by using the fact $\|X\|_A = \|X^{\sharp_A}\|_A$ for every $X \in \mathcal{B}_A(\mathcal{H})$, we can observe that

$$\begin{aligned} & \left\| \left(\text{Re}_A(T)^{\sharp_A} \text{Re}_A(T) \right)^n + \left(\text{Im}_A(T)^{\sharp_A} \text{Im}_A(T) \right)^n \right\|_A \\ &= \left\| \left(\text{Re}_A(T)^{\sharp_A} \text{Re}_A(T)^{\sharp_A^{\sharp_A}} \right)^n + \left(\text{Im}_A(T)^{\sharp_A} \text{Im}_A(T)^{\sharp_A^{\sharp_A}} \right)^n \right\|_A \\ &= \left\| \left(\text{Re}_A(T)^{\sharp_A} \right)^{2n} + \left(\text{Im}_A(T)^{\sharp_A} \right)^{2n} \right\|_A \\ & \quad (\text{since } \text{Re}_A(T)^{\sharp_A} = \text{Re}_A(T)^{\sharp_A^{\sharp_A}} \text{ and } \text{Im}_A(T)^{\sharp_A} = \text{Im}_A(T)^{\sharp_A^{\sharp_A}}) \\ &= \left\| \left((\text{Re}_A(T))^{2n} + (\text{Im}_A(T))^{2n} \right)^{\sharp_A} \right\|_A \\ &= \left\| (\text{Re}_A(T))^{2n} + (\text{Im}_A(T))^{2n} \right\|_A. \end{aligned}$$

Therefore, we infer that

$$\|T\|_A^{2n} \leq 2^{2n-1} \left\| (\text{Re}_A(T))^{2n} + (\text{Im}_A(T))^{2n} \right\|_A.$$

Hence, the proof is complete. \square

Remark 2.5. *Using similar arguments as used in Corollary 2.10, we have*

$$\|\text{Re}_A(T)\|_A^{2n} \leq \left\| \frac{(T^{\sharp_A} T)^n + (T T^{\sharp_A})^n}{2} \right\|_A,$$

and

$$\|\text{Im}_A(T)\|_A^{2n} \leq \left\| \frac{(T^{\sharp_A} T)^n + (T T^{\sharp_A})^n}{2} \right\|_A,$$

for any $n \in \mathbb{N}^*$.

Acknowledgment

The author would like to thank the referee for careful reading and kind suggestions.

References

- [1] M. Laura Arias, Gustavo Corach, and M. Celeste Gonzalez. Metric properties of projections in semi-Hilbertian spaces. *Integral Equations Operator Theory*, 62(1):11–28, 2008. doi:10.1007/s00020-008-1613-6.
- [2] M. Laura Arias, Gustavo Corach, and M. Celeste Gonzalez. Partial isometries in semi-Hilbertian spaces. *Linear Algebra Appl.*, 428(7):1460–1475, 2008. doi:10.1016/j.laa.2007.09.031.
- [3] Pintu Bhunia, Raj Kumar Nayak, and Kallol Paul. Refinements of A -numerical radius inequalities and their applications. *Adv. Oper. Theory*, 5(4):1498–1511, 2020. doi:10.1007/s43036-020-00056-8.
- [4] Pintu Bhunia, Kallol Paul, and Raj Kumar Nayak. On inequalities for A -numerical radius of operators. *Electron. J. Linear Algebra*, 36:143–157, 2020.
- [5] C. Conde and K. Feki. On some inequalities for the generalized joint numerical radius of semi-hilbert space operators. *Ricerche Mat.*, 73(2):661–679, 2024. doi:10.1007/s11587-021-00629-6.
- [6] R. G. Douglas. On majorization, factorization, and range inclusion of operators on Hilbert space. *Proc. Amer. Math. Soc.*, 17:413–415, 1966. doi:10.2307/2035178.
- [7] S. S. Dragomir. A potpourri of Schwarz related inequalities in inner product spaces. II. *JIPAM. J. Inequal. Pure Appl. Math.*, 7(1):Article 14, 11, 2006.
- [8] S. S. Dragomir. Some inequalities for the norm and the numerical radius of linear operators in Hilbert spaces. *Tamkang J. Math.*, 39(1):1–7, 2008.
- [9] S. S. Dragomir. Power inequalities for the numerical radius of a product of two operators in Hilbert spaces. *Sarajevo J. Math.*, 5(18)(2):269–278, 2009.
- [10] Sever S. Dragomir. *Advances in inequalities of the Schwarz, triangle and Heisenberg type in inner product spaces*. Nova Science Publishers, Inc., New York, 2007.
- [11] Sever S. Dragomir. A survey of some recent inequalities for the norm and numerical radius of operators in Hilbert spaces. *Banach J. Math. Anal.*, 1(2):154–175, 2007. doi:10.15352/bjma/1240336213.
- [12] Silvestru Sever Dragomir. *Inequalities for the numerical radius of linear operators in Hilbert spaces*. SpringerBriefs in Mathematics. Springer, Cham, 2013. doi:10.1007/978-3-319-01448-7.
- [13] A. A. Goldstein, J. V. Ryff, and L. E. Clarke. Problems and Solutions: Solutions of Advanced Problems: 5473. *Amer. Math. Monthly*, 75(3):309–310, 1968. doi:10.2307/2314992.
- [14] Messaoud Guesba. Some generalizations of A -numerical radius inequalities for semi-Hilbert space operators. *Boll. Unione Mat. Ital.*, 14(4):681–692, 2021. doi:10.1007/s40574-021-00307-3.

- [15] Messaoud Guesba, Pintu Bhunia, and Kallol Paul. A-numerical radius inequalities and A -translatable radii of semi-Hilbert space operators. *Filomat*, 37(11):3443–3456, 2023. doi:10.2298/fil2306741s.
- [16] Ould Ahmed Mahmoud Sid Ahmed and Abdelkader Benali. Hyponormal and k -quasi-hyponormal operators on semi-Hilbertian spaces. *Aust. J. Math. Anal. Appl.*, 13(1):Art. 7, 22, 2016.
- [17] M. S. Moslehian, Q. Xu, and A. Zamani. Seminorm and numerical radius inequalities of operators in semi-Hilbertian spaces. *Linear Algebra Appl.*, 591:299–321, 2020. doi:10.1016/j.laa.2020.01.015.
- [18] Adel Saddi. A -normal operators in semi Hilbertian spaces. *Aust. J. Math. Anal. Appl.*, 9(1):Art. 5, 12, 2012.
- [19] Qingxiang Xu, Zhongming Ye, and Ali Zamani. Some upper bounds for the \mathbb{A} -numerical radius of 2×2 block matrices. *Adv. Oper. Theory*, 6(1):Paper No. 1, 13, 2021. doi:10.1007/s43036-020-00102-5.
- [20] Ali Zamani. A -numerical radius inequalities for semi-Hilbertian space operators. *Linear Algebra Appl.*, 578:159–183, 2019. doi:10.1016/j.laa.2019.05.012.

Received by the editors April 15, 2023

First published online August 25, 2023