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On the Seidel integral graphs which belong to the class
OdKa U ﬁKb

Mirko Lepovi(ﬂ

Abstract. We say that a simple graph G is Seidel integral if its Seidel
spectrum consists entirely of integers. If aK, U SK} is Seidel integral
we show that it belongs to one of the following classes of Seidel integral
graphs

k(2t —1) o + m(2t — 1) Z] K. U {k(% -1)

yo—l—%z (Qn—l)Kb,

where (1) a = (t+2fn — (L +n))k + (20 — 1)m and b = (20 — 1)m; (i7)
t,k,¢,m,n € N such that (m,2n — 1) =1, (2n — 1,2t — 1) = 1 and
(2¢ — 1,2t — 1) = 1; (#5¢) 7 = (a,m(2t — 1)) such that 7 | k (2t — 1);
() (xo,yo) is a particular solution of the linear Diophantine equation
ar —m(2t — 1)y = 7 and (v) z > 2o where zo is the least integer such
that (KC g 4 MEED 20) > 1and (MY yo + £ 20) > 1

2kt
0_,_7 ]KaU {—yo—k—z}nf(b,

{th
where (i) a = (t+€n)k+£m and b = ¢m; (i3) t, k,¢,m,n € N such that
(m,n) =1, (n,t) =1, ({,,t) =1 and (t—&—ﬁn 2) = 1; (i%) 7 = (a,tm) such
that 7 | 2kt; (iv) (o, yo) is a particular solution of the linear Diophantine
equation ax — (tm)y = 7 and (v) z > zo where zo is the least integer such
that (%xo—i— tTmzo) >1 and (%yo—i—%z) > 1.
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1. Introduction

Let G be a simple graph of order n and let Ay > Ay > --- > A, be the
eigenvalues of its (0,1) adjacency matrix of G. The spectrum of G is the set of
its eigenvalues and is denoted by o(G). A graph G is said to be integral if its
spectrum o (G) consists only of integers [I]. We say that A* = [s;;] is the Seidel
adjacency matrix of the graph G if s;; = —1 for any two adjacent vertices %
and j, s;; = 1 for any two non-adjacent vertices 7 and j, and s;; = 0 if i = j.
The Seidel spectrum of G is the set of eigenvalues \j > A5 > .-+ > \¥ of its
(0, —1,1) adjacency matrix A* = A*(G) and is denoted by ¢*(G). A graph G is
said to be Seidel integral if its Seidel spectrum ¢*(G) consists only of integers.
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We say that an eigenvalue y is main if and only if (j, Pj) = ncos? a > 0, where
j is the main vector (with coordinates equal to 1) and P is the orthogonal
projection of the space R™ onto the eigenspace £4(p). The quantity 8 = | cos o
is called the main angle of y. Similarly, we say that a Seidel eigenvalue p* is
the Seidel main eigenvalue if and only if (j, P*j) = ncos?a* > 0, where P* is
the orthogonal projection of the space R™ onto the eigenspace £+ (u*). The
quantity 8* = |cosa*| is called the Seidel main angle of p*. In [I] it was
proved that the graph G and its complement G have the same number of main
eigenvalues. We also know that |M(G)| = |IM*(G)|, where M(G) and M*(G)
denote the sets of all main and the Seidel main eigenvalues of G, respectively.

Let G be a graph of order n with exactly two main eigenvalues pq and po
and let ny = nB? and ny = nB3.

Theorem 1.1 (Lepovié¢ [3]). Let G be a graph of order n with two main eigen-
values p1 and po. Then

n—2—2u; — 24z (2m —2M2+n)2 — 8n1 (1 — p2)
(L1) i, = +
: Hi2 = D) 2 :

Besides, we havcEI
n? + Q(n — 2n1) (ul — ,ug)
2\/(2#1 — 2/142 + TL)2 — 8711 (/,Ll — MQ)

where n} = n(B;)? and n} = n(B3)2.

% n
(1.2) nip= 5+

)

We note that aK, U SK} is an integral graph with two main eigenvalues
w1 =a—1and pus = b—1, for any «, 8,a,b € N with a > b. Of course, K, is the
complete graph on n vertices while mG denotes the m-fold union of the graph
G. As is pointed out in [3], if G is an integral graph then it is Seidel integral
if and only if the main Seidel spectrum of GG contains integral values. In view
of this fact, aK, U 8K is Seidel integral if and only if its largest Seidel main
eigenvalue puj € N. We have established in [4] a characterization of integral
graphs which belong to the class aK, U BK,. We now proceed to establish a
characterization of Seidel integral graphs which belong to the class a K, USKjy,
as follows.

2. Main results

First, note that o = aa + b is the order of oK, U SK}. Then according to
(1.1) we get implicitly
aa+ pBb+2—2a—2b+6

2.1 *, =
(2.1) H12 2 )

2If G is a graph of order n with k main eigenvalues i1, pi2, . . ., g and Seidel main eigen-
values uy, p3, ..., 1y then ny +na+---+ng =n and ny +n3 +---+ny = n, where n; = n,BiZ
and n} = n(B;‘)2 for i« = 1,2,...,k. Of course, if G is a graph with exactly two main

eigenvalues then according to (1.2) we also have n} +n3 = n.
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where § = \/((a +2)a+ (8 — 2)b)2 —8aa(a —b). Then aK, UBK, is Seidel
integral if and only if («, 8, a, b, d) represents a positive integral solution of the
Diophantine equation

(2.2) ((a+2)a+ (ﬂ—2)b)2 —8aa(a —b) = 6°.

Therefore, the characterization of Seidel integral graphs which are related to
the class aK, U 8K} is reduced to the problem of finding the most general
positive solution of the equation .

Next, pjpus = 4pipe —2(ny — pe — 2(ne — 1)py — (n — 1) for any G with
two main eigenvalues (see [3]). In the case that G = aK, U SK}, this relation
is transformed into

(2.3) (pi—=1)(p5—1) =2ab(2 —a — ).

In the sequel (m, n) denotes the highest common divisor of integers m,n € N
while m | » means that m divides n. With this notation, in order to demon-
strate a method applied in this paper, we prove first the following two results:

Theorem 2.1. If aK,UBK, is Seidel integral with pi = 2ab+1 then it belongs
to the class of Seidel integral graphs

(2.4) tm Kep—1 U (2s —t)n Kgp—1,
where m,n € N and n > m, sm > 2, t < 2s such that (s,t) = 1.

PROOF. Assume that aK, U K} is Seidel integral with ui = 2ab+ 1. Using
(2.3) we obtain ub =3 —a — 8 and § = 2ab+ a + S — 2. Then Diophantine
equation (2.2 is reduced to

(b+1)(2a— (a+B-2)) =ala—b).

Let b+ 1 = ra where 7 = ¢ such that (s,t) = 1. Then from the last relation

we obtain a — b =r(2a — (a + 8 — 2)). In view of this, we get

2s —t

az%(b—i—l) and (= (a+1).

Since (s,t) = 1 it follows that (2s —t,s) = 1. Then it must be s | (b+ 1) and
s|(a+1). Let b+1 = sm and a+1 = sn. So we get « =tm and § = (2s—1t)n,
where t < 2s. O

Theorem 2.2. If aK,UpBK, is Seidel integral with puj = ab+1 then it belongs
to the class of Seidel integral graphs

(2.5) tm Ken—o U (s —t)n Kgpm—a,

where m,n € N and n > m, sm > 3, t < s such that (s,t) = 1.
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PRrROOF. Assume that aK, U SK} is Seidel integral with uj = ab+ 1. Using
(2.3) we obtain pus =5—2a—20 and § = ab+2(a+ S —2). Then Diophantine
equation (2.2)) is reduced to

b+2)(a—(a+B-2)) =a(a—0b).

Let b+ 2 = ra where r = § such that (s,z) = 1. Then from the last relation

we obtain a — b = r(a —(a+p— 2)) In view of this, we get
s—1

azé(b—i—?) and = (a+2).

Since (s,t) = 1 it follows that (s —¢,s) = 1. Then it must be s | (b+ 2) and
s|(a+2). Let b+2 = sm and a+2 = sn. So we get a = tm and 8 = (s —)n,
where t < s. O

Remark 2.3. With the condition a > b note that the parameters «, 3, a,b
determine the graph aK, U 8K}, up to isomorphism.

In what follows, we show that there exists a one-to-one correspondence
between the Seidel integral graphs aK, U 8K, with 4] = 2ab + 1 and the
parameters m,n, s,t.

Proposition 2.4. If aK,U BKy is a Seidel integral graph with pi = 2ab+ 1
then it uniquely determines the parameters m,n,s,t.

PROOF. Let us assume that mq,nq, s1,t1 and mo, no, So, ty determine the same
Seidel integral graph oK, U 8K}, with the largest Seidel main eigenvalue pj =
2ab + 1. Then according to Remark [2.3] and relation ([2.4) we have: (i) tym; =

tgmg; (’LZ) (281 — tl)nl = (282 — tg)ng; (ZZ’L) S1N1 — 1= SoMNg — 1 and (ZU)
symy — 1 = samg — 1. Using (i) and (iv) we get % = z—z Since (t1,s1) =1
and (t2,82) = 1 it follows that ¢; = t2 and s; = s5. Consequently, using (4)
and (i1) we obtain m; = mg and ny = na. O

In a quite analogous manner, using Remark and relation (2.5) we can
obtain the following result.

Proposition 2.5. If aK, U BK, is an Seidel integral graph with ui = ab+1
then it uniquely determines the parameters m,n,s,t.

Further, using a procedure similar to the proofs of Theorems [2.1] and 2.2 we
proceed to establish a characterization of Seidel integral graphs for the class
aK, U BK,. The proof is based on the following statement [2].

Theorem 2.6. The linear Diophantine equation ax + by = ¢ has at least one

solution if and only if d | ¢ where d = (a,b). In that case the most general

solution of this equation is given in the form
c

L )
v=_r— -z and y=—yo+ oz

where (zo,yo) represents a particular solutimﬂ of the equation ax + by = d.

(z€2),

3 A particular solution of the equation ax +by = d may be obtained by using the EUCLID
algorithm. In that case the coefficients a and b uniquely determine zg and yq.
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Theorem 2.7. If aK, U Ky is Seidel integral then it belongs to one of the
following classes of Seidel integral graphs

(2.6) k2t 1) xo + m(2t = 1) z} K, U

a
Yo+ —z|(2n— 1)Ky,
T T T

EEER)

where (i) a = (t4+20n—(l+n))k+(20—1)m and b = (20—1)m; (1) t, k,L,m,n €
N such that (m,2n—1) =1, (2n—1,2t—1) =1 and (20—1,2t—1) = 1; (i1i) 7 =
(a,m(2t—1)) such that T | k (2t —1); (iv) (x0,y0) is a particular solution of the
linear Diophantine equation ax —m(2t— 1)y = 7 and (v) z > 2o where 2o is the
least integer such that (k(%f_l) To+ (2t ) ) > 1 and (’C(275 D) Yo+ ) >1;

2kt t 2kt
(27) |:T.’L'0+mZ:|K U|:y0+2:|nKb7

where (i) a = (t + In)k + m and b = ¢m; (ii) t, k,{,m,n € N such that
(m,n) =1, (n t)y =1, ((,t) =1 and (t + ¢n,2) = 1; (iii) 7 = (a,tm) such
that 7 | 2kt (i) (xo,y0) s a particular solution of the linear Diophantine
equation ax — (tm)y = 7 and (v) z > zg where 2z is the least integer such that
(zktx +tmz0)>1and(2kty+ )21.

PROOF. Let us assume that pj € N and let 6 = i so that puj —1 = fa and

(p, ) = 1. Using (2.1)) and ([2.3]) we obtain

2b(a+ 5 —2)

2b -2
=~ ——p——+1 and 5:9a+M.

0

Then by a straightforward calculation it is not difficult to see that (2.2))

may be transformed in the form % = %. Let ¢ be a constant such

that (1) a(a —b) = c¢(@ + 2) and (2) 0a — b(a + 8 — 2) = cf. Combining
(1) and (2) we find that 2¢ = (o — 0)a + (8 — 2)b. Observe that 2c is an
integer because fa = (uf — 1) € N. Consequently, using (1) or (2) we arrive at
2a(a —b) = [(a — 0)a+ (B —2)b] (0 + 2). Hence,

(2.8) (a—b)=r[(a—0a+ (8—2)b] and (6+2)=2ra,

where r = 4 such that (s,t) = 1. Making use of , by an easy calculation
we obtain (3) r8b = (2r — 1)[raa — (a — b)].

Using now the right-hand side of relation , note that 2raa = pj+2a—1,
which shows that (2raa) is integral and 2r — 1 = 2=t > 0. Since 8b =
(2— %) [raa—(a—b)] (see (3)) it turns out that r | (a—b). Let (4) (a—b) =7
and let (5) v = kt. Then (3) is reduced to the form:

_ (25—t) (aa—kt)
b t '

Further, let (2s —¢,b) = ¢ and let m,n € N such that (6) (2s —t) = ¢n and (7)
b = {m, where (m,n) = 1. We note that (2s —¢,¢) =1 or (2s —t,t) = 2. We
shall now consider the following two cases:

(2.9)
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CASE 1. (t is odd). Let t — 2t — 1 where p — ¢ means that ’p is replaced
with ¢’, which provides that (2s — (2t —1),2¢t — 1) = 1. Since 2s — (2t — 1)
is an odd number and 2s — (2t — 1) = ¢n it follows that ¢ and n are two
odd numbers. Setting £ — 2/ — 1 and n — 2n — 1, we find that s —t =
20n — (¢ + n). Then according to (6) we obtain (2n — 1,2t — 1) = 1 and
(2¢ — 1,2t — 1) = 1. Consequently, using l) we have 3 = (o~ kgétl)i)@" D
Since (2n—1,m(2t—1)) = 1 it follows that m(2t—1) | (aa—k(2t—1)). Therefore,
setting (1.1) aa — k(2t — 1) = n(m(2t — 1)) we get (1.2) 8 = n(2n — 1). We
note that (1.1) represents a linear Diophantine equation in variables a and 7.
Of course, if (a,m(2t — 1)) = 7 then (1.1) has at least one solution if and only
if 7| k(2t — 1). In that case, according to Theorem [2.6| we obtain that

k2t — 1 2t —1 k(2t —1
o= ( )x0+m( )z and n:gyo—kgz,
T T T T

where azg — m(2t — 1)yo = 7. Finally, from (4) through (7), and according to
(1.2) and the last relation, we get easily that a = (t+2¢n— (£4+n))k+(20—1)m

and 5 = [@ Yo+ z} (2n —1). So we arrive at the corresponding class of
Seidel integral graphs displayed in ({2.6]).
CASE 2. (t is even). Since (s,t) = 1 it follows that s is an odd number.

Setting t — 2t and s — 2s — 1 we obtain ((2s — 1) — ¢,¢) = 1, which provides
that

((2s—1)—t) (ca — 2kt)

(2.10) 8= ; ;

Further, let ((2s — 1) —¢,b) = £ and let m,n € N such that (2.1) (2s—1)—t =
fn and (2.2) b = ¢m, where (m,n) = 1. Since 2s — 1 = ¢ + ¢n is an odd
number it must be (¢ + ¢n,2) = 1. Using 1.' we get 8 = (O‘ati%t)" Since
((2s = 1) — t,t) = 1 we obtain (¢n,t) = 1, which provides that (¢,¢) = 1 and
(n,t) = 1. In view of this, it follows that tm | (aa — 2kt). Therefore, setting
(2.3) aa — 2kt = n(tm) we get (2.4) S = nn. We note that (2.3) represents a
linear Diophantine equation in variables o and 7. Of course, if (a,tm) = 7 then
(2.3) has at least one solution if and only if 7 | 2kt¢. In that case, according to
Theorem 2.6l we obtain that

2kt 2kt a
o= —xo—k—z and n——yo—k—z
T

where azg — (tm)yo = 7. Finally, using (4), (5) and (2.1), (2.2), (2.3), (2.4),

we get easily that a = (¢t + fn)k + ¢m and 8 = [271“ Yo + & z} n. So we arrive

at the corresponding class of Seidel integral graphs displayed in (2.7), which
completes the proof. O

Proposition 2.8. If aK, U Ky is a Seidel integral graph then it uniquely
determines the parameters 7,t, k, ¢, m,n.
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PROOF. Let us assume that 7,%1, k1, €1, m1,n, and 7o, to, ko, 2, Mo, no deter-
mine the same Seidel integral graph aK,USK}. Since the parameters «, 5, a, b
determine the graph aK, U 8K} up to isomorphism, using the second equality
of we have 2raa = pi — 1+ 2a, which shows that s; = s3 and ¢; =t
because (s,t) = 1. In view of this, we note that the classes represented by
relations , are mutually disjoint. Consequently, without loss of gen-
erality, we can assume that the corresponding Seidel integral graph determined
by the parameters 7,t1, k1,01, m1,n1 and 7o, to, ko, f2, Mo, no belongs to the
class of Seidel integral graphs displayed in relation . Next, using (4) and
(5) we get k1 = ko. Since (2s — (2t — 1),b) = 2¢ — 1 (see Case 1), we also have
0y ={y. Since b = (20 — 1)m and s —t = 2¢n — ({ + n), we find that m; = mo
and n1 = ny. Finally, since (a,m(2t — 1)) = 7 it follows that 7 = 7. O

Remark 2.9. If (xo,y0) is obtained by using the EUCLID algorithm then a
fixed Seidel integral graph aK, USK} also uniquely determines the parameters

X0, Yo, 20, Z-

Proposition 2.10. If aK,UBKy is Seidel integral with pi = 1 then it belongs
to the class of Seidel integral graphs K, U Ky for any a,b € N.

PROOF. Let us assume that aK, U BK; is Seidel integral with pj = 1. Using
(2.3)) we obtain 2ab(2—«— ) = 0, which provides that « = 1 and § = 1. Using
(2.2)) we find that § = a+b. Since 6 = p — b we obtain p5 = —(a+b—1). O

Proposition 2.11. If aK, U SKy is a Seidel integral graph then uj > 1 and
uy < —1 for any o, 5,a,b € N.

ProOOF. We demonstrate first that puf > 1 for any a,8,a,b € N. On the
contrary, assume that pj < 0 for some «, 8,a,b € N. Since uj > p it follows

that u5 < —1. Using (2.3]) we get
(ny —1) 2 (p1 = 1)(1 — p3) = 2ab(a + 5 - 2),

from which we obtain uj > 2ab(a+ 5 —2) +1 > uj, a contradiction.

We now demonstrate that p5 < —1 for any «, 8,a,b € N. On the contrary,
assume that p3 > 0 for some o, 3,a,b € N. Consider the case when p3 > 2.
Then using (2.3) we obtain

(i = 1) < (g = D(p3 — 1) =2ab(2 —a - B),

which provides that & =1 and 8 = 1. Then according to Proposition [2.10] we
find that puf = 1 < p3, a contradiction. The case when p = 1 is also trivial.
Indeed, in this situation we have 2ab(2 —a— ) = 0, which provides that o =1
and 8 = 1, a contradiction. Finally, consider the case when p5 = 0. Using
(2.3) we obtain uj = 2ab(a + 8 — 2) + 1. Using the right-hand side of relation
(2.1) we obtain § = aa+ fb+2—2a—2b. On the other hand, since § = p} — u3
we obtain § = 2ab(a + § — 2) + 1. So we arrive at

(2.11) aa(2b—1) + 6b(2a — 1) = 4ab—2a —2b+ 1.
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In view of Proposition [2.10] it must be o > 2 or 8 > 2. Consider the case when
a > 2. Using relation (2.11)) we obtain

2a(2b — 1) + b(2a — 1) < 4ab—2a —2b+ 1,

from which we obtain 8b(2a — 1) < —2b+ 1 < 0, a contradiction. Consider
the case when 8 > 2. In this situation, using (2.11]) we obtain aa(2b— 1) <
—2a 4+ 1 < 0, a contradiction. This completes the proof. O

In order to demonstrate a procedure for obtaining the Seidel integral graphs
which belong to the class aK, U SK} for a fixed Seidel main eigenvalue puj, we
prove the following two results:

Proposition 2.12. There ezists no Seidel integral graph from the class aK,U
BKy with pi =2 for any o, B,a,b € N.

PROOF. First, according to the proof of Theorem we have pj —1 = fa.
Using that 2s —t > 0 and using the right-hand side of relation (2.8]), we obtain
20+1 2s

=—>1,
aa t

which provides that a =1 or a = 2.
Case 1. (a =1). Since 22t = £ and (2a+1,2a) = 1, (s,t) = 1, we obtain
s =2a+1 and ¢t = 2a. Using (2.9)) we find that a(1 — 2k) < 0, a contradiction.
CASE 2. (a = 2). Since 22t = % and (2a + 1,4a) = 1, (s,t) = 1, we
obtain s = 2a + 1 and ¢t = 4a. Using (2.9) we find that 2a(1 —2k) < 0 a
contradiction. O

Proposition 2.13. If aK, U K} is Seidel integral with puy = 3 then it is
2K3 UK for any o, 8,a,b € N.

ProoF. Using that ,ul —1 = fa and using the right-hand side of relation (2.8)),
we find that 2“+2 = 2% which provides that « =1 or oo = 2.

Cask 1. (a =1). Smce =+ and (a+1,a) =1, (s,t) = 1, we obtain
s=a+1 and t = a. Using (2.9) we find that a(1 — k) <0, a contradiction.

CASE 2. (o =2). We note that (a+1,2a) =1 or (a+ 1,2a) = 2. Consider
the case when (a+1, 2a) = 1. Since 4t! = £ and (s,t) = 1, we obtain s = a+1
and t = 2a. Using (2.9) we find that 2a(1 — k) < 0, a contradiction.

Consider the case when (a+1,2a) = 2. In this situation a is an odd number.
Let a = 2e 41 where e € N. Since £t5 = % and (26 + 1,e+1) =1, (s,1) = 1,
we obtain s = e+ 1 and ¢t = 2¢ + 1. Then (aa — kt) = (2 — k)(2e + 1), which

provides that & = 1. Using (2.9 we get

2e+1)—(2c+1) (2—-1)(2¢e+1)
b 241

8=

from which we obtain b =1 and 8 = 1. Finally, using (4) and (5) we find that
a=(e+ 1)+ 1. Since a = 2¢ + 1 it follows that ¢ = 1. O
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Theorem 2.14. If aK,UBKy is Seidel integral with pi = 2a+1 then it belongs
to one of the following classes of Seidel integral graphs: (1°) K(2g+3)m B+
3)K3,, or (29) Kopgi1ym U 3(B + 1)Ky, or (39 2K (g41ym U (B + 2) K,y or
(4%) 3K(2511ym U (B + 1)Ky, for any 8, m € N.

PROOF. Let us assume that aK, U K} is Seidel integral with puj = 2a + 1.
Using that pi — 1 = 6a we obtain § = 2. Using the right-hand side of relation
(2.8), we find that 2ra = 4. Since (2r) > 1 it follows that & = 1 or a = 2 or
a=3.

CASE 1. (a = 1). In this situation r = 2, which means that s = 2 and
t = 1. Using (4) and (5) we find that a = 2k + b. Using we obtain

3((2k +b) — k)
-

Consider the case when 3 | b. Setting b = 3m it follows that m | (k + 3m).
Setting k = ¢m we obtain 8 = ¢ + 3. Replacing ¢ with 5 we obtain the
corresponding class of Seidel integral graphs displayed in (1°).

Consider the case when 3 t b. In this situation b | k. Setting k = ¢b, we
obtain = 3(¢ + 1). Replacing ¢ with 8 and replacing b with m we obtain the
corresponding class of Seidel integral graphs displayed in (2°).

8=

CASE 2. (a = 2). In this situation r = 1, Which means that s = 1 and
t = 1. Using (4) and (5) we find that a = k+b. Usmg we obtain 3 = ££2b,
Setting k = ¢b, we obtain 8 = £+ 2. Replacing ¢ with g and replacing b with m
we obtain the corresponding class of Seidel integral graphs displayed in (3°).

CASE 3. (a = 3). In this 51tuat10n s =2 and t = 3. Using (4) and (5)
we find that a = 2k + b. Using (2.9) we obtain g = k"‘b. Setting k = £b, we
obtain # = ¢ + 1. Replacing ¢ With B and replacing b With m we obtain the
corresponding class of Seidel integral graphs displayed in (4Y). O

Theorem 2.15. If aK,UBKy is Seidel integral with i = a+1 then it belongs
to one of the following classes of Seidel integral graphs: (1°) K(35+2)m B+
2)K27n or (20) K(S,BJrl)(mel) U2(6+ 1)K27n—1 or (3 ) 2K(35+1 (6"" 1) m
for any B, m € N.

PROOF. Let us assume that oK, U K} is Seidel integral with puj = a + 1.
Using that u —1 = fa we obtain # = 1. Using the right-hand side of relation
(2.8]), we find that 2ra = 3. Since (2r) > 1 it follows that @« =1 or a = 2.

CASE 1. (a =1). In this 51tuat10n s =3 and t = 2. Using (4) and (5) we
find that a = 3k + b. Using (2.9)) we obtain

2((3k + b) — 2k)
5 .
Consider the case when 2 | b. Setting b = 2m it follows that m | (k + 2m).

Setting £ = ¢m, we obtain § = ¢ + 2. Replacing ¢ with S we obtain the
corresponding class of Seidel integral graphs displayed in (1°).

B =
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Consider the case when 2 1 b. Then b is an odd number. Setting b = 2m —1
it follows that (2m — 1) | (k + (2m — 1)). Setting k = ¢(2m — 1), we obtain
B =2({+1). Replacing ¢ with 8 we obtain the corresponding class of Seidel
integral graphs displayed in (2°).

CASE 2. (a = 2). In this situation s = 3 and ¢ = 4. Using (4) and (5)
we find that a = 3k + b. Using we obtain 8 = %. Setting k = (b, we
obtain 8 = £+ 1. Replacing ¢ with # and replacing b with m we obtain the
corresponding class of Seidel integral graphs displayed in (3). O

Theorem 2.16. If aK,UBKjy is Seidel integral with pj = a then it is 2K3 UK,
for any o, B,a,b € N.

PROOF. Let us assume that aK, U BK} is Seidel integral with uj = a. Using
that puj — 1 = fa and using the right-hand side of relation (2.8)), we find that
2ra = 3¢=1_ Since (2r) > 1 it follows that o =1 or v = 2.

CasE 1. (a = 1). In this situation we have £ = 3¢=1 We note that
(3a—1,2a) =1 or (3a — 1,2a) = 2. Consider the case when (3a — 1,2a) = 1.
Then a is an even number. Let a = 2¢ where ¢ € N. Since (s,t) = 1 we find
that s = 6e — 1 and t = 4e. Using (4) and (5) we find that a = (6e — 1)k + b.

So we arrive at

26 =(6e —1)k+b> (be)k+ b,
a contradiction. Consider the case when (3a — 1,2a) = 2. Then a is an odd
number. Let a = 2¢ + 1 where ¢ € N. Since § = giﬁ and (s,t) = 1,
(3e+1,2¢ +1) = 1, we find that s = 3¢ + 1 and ¢t = 2¢ + 1. Using (4) and
(5) we find that @ = (3¢ + 1)k +b. So we obtain 26 +1 = (3e + 1)k + b, a
contradiction.

CASE 2. (o = 2). In this situation we have £ = 3¢=1_ Consider the case
when a is an even number. Let a = 2¢ where ¢ € N. Since ¢ = %=1 and

(s,t) =1, (6 — 1,8¢) = 1, we find that s = 6e — 1 and ¢ = 8. Using (4) and
(5) we find that a = (6 —1)k+b. So we get 2¢ = (6 — 1)k +b, a contradiction.

Consider the case when a is an odd number. Setting a = 2¢ + 1 we obtain
= 24l where e € N. We note that (3 +1,2(2¢ +1)) = 1 or (3¢ +

+ln

2(2e+1)°
1,2(2e + 1)) = 2. Consider the case when (3¢ + 1,2(2¢ + 1)) = 1. Then € is
an even number. Let ¢ = 2¢* where ¢* € N. Since § = 2?4155'111) and (s,t) =1,

(6®+1,2(4e*+1)) = 1, we find that s = 6e®*+1 and t = 2(4e®*+1). Using (4)
and (5) we find that a = (6® + 1)k +b. So we obtain 4e® +1 = (6¢® + 1)k + b,
a contradiction

Consider the case when (32+1,2(2¢+1)) = 2. Then ¢ is an odd number. Let
€ = 2e* —1 where ¢* € N. Since § = iz:j and (s,t) =1, (3e*—1,4e*—1) =1,
we find that s = 3¢®* — 1 and t = 4¢®* — 1. Using (4) and (5) we find that
a = (3¢®*—1)k+0b. So we obtain 2(2e®* — 1)+ 1 = (3¢®* — 1)k + b, which provides
that k£ = 1. In view of this, we obtain b = ¢® and a = 4¢®* — 1. Finally, using

(2.9) we have

5= (2e*—1) (2(4e® —1) — (4e®* — 1)) 7

e® 4e® — 1
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from which we obtain ¢®* = 1 and 8 = 1. This completes the proof. O

Theorem 2.17. If aK,UBK} is Seidel integral with pj = 2b+1 then it belongs
to the class of Seidel integral graphs 2K3,, U K,, for any m € N.

PROOF. Let us assume that aK, U K} is Seidel integral with pj = 2b+ 1.
Using that puj —1 = 6a we obtain 6a = 2b. Using the right-hand side of relation
1) we find that 2ra = 2(”1’ . Since (2r) > 1 and a > b it follows that o = 1
ora=2ora=23.

CAse 1. (a = 1). In this situation r = ¢2. Since (s,t) = 1 it follows that
there exists £ € N so that a + b= (s and a = ¢t. Using (4) and (5) we find that
a = ks + (s —t)¢. Using (2.9) we obtain
= (2s—1t) (k+4)

L t
Since b = (s — t)¢ note that s > t and s > 2. Next, since a = ¢t and a =
ks + (s — t)f we obtain 20t = (k + £)s. So we arrive at § = @ Since
(2s —t,s) = 1 we obtain s | 2, which means that s = 2 and ¢t = 1. In view of
this, we have 2¢ = 2(k + £), a contradiction because k € N.
CASE 2. (o =2). In this situation r = %2, Since (s,t) = 1 it follows that

there exists ¢ € N so that a + b = s and 2 = 1. Using (4) and (5) we find
that 2a = 2ks + (2s — t)¢. Using (22.9) we obtain

2(2s — 1) (k+0)

8=

1 t
Since 2a = ¢t and 2a = 2ks + (2s — t){ we obtain £t = (k + £)s. So we arrive
at B =222 Since (25 —t,s) = 1 we obtain s | 2, which means that s = 1

or s = 2. Consider the case when s = 1. Then ¢t = 1 and £ = (k + {), a
contradiction.

Consider the case when s = 2. Then ¢t =1 or ¢t =2 or t = 3. Consider the
case when ¢t = 1. Then ¢ = 2(k + ¢), a contradiction. Consider the case when
t = 2. Then 2¢ = 2(k + {), a contradiction. Consider the case when ¢ = 3.
Then 3¢ = 2(k + ¢) from which we obtain £ = 2k. So we obtain that 8 = 1,
a = 3k and b = k. Replacing k with m we obtain the corresponding class of
Seidel integral graphs represented in Theorem [2.17

CASE 3. (o= 3). In this situation r = %2, Since (s,t) = 1 it follows that
there exists £ € N so that a +b = Ks and 3a = (t. Using (4) and (5) we find
that 3a = 3ks + (3s — t)£. Using (2.9) we obtain

3(2s—1) (k+0)

P=" t
Since 3a = £t and 3a = 3ks + (3s — t)¢ we obtain 2/t = 3(k + £)s. So we arrive
at B =222 Since (2s —t,s) = 1 we obtain s | 2, which means that s = 1

ors = 2. Consider the case when s = 1. Then t = 1 and 2¢ = 3(k + ¢), a
contradiction.
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Consider the case when s = 2. Thent =1 or ¢t = 2 or t = 3. Consider the
case when t = 1. Then ¢ = 3(k + ¢), a contradiction. Consider the case when
t = 2. Then 2¢ = 3(k + {), a contradiction. Consider the case when ¢t = 3.
Then ¢ = (k + £), a contradiction. This completes the proof. O

Theorem 2.18. There exists no Seidel integral graph from the class aK,UBK,
with u7 =b+1 for any o, B,a,b € N.

PROOF. Let us assume that oK, U SK}; is Seidel integral with ui = b + 1.
Using that u —1 = 6a we obtain a = b. Using the right-hand side of relation
(2-8)), we find that 2ra = 22t Since (2r) > 1 and a > b it follows that a = 1
or a = 2.

CasE 1. (a = 1). In this situation r = 242 Since (s,¢) = 1 it follows that

there exists £ € N so that 2a + b = (s and 2a = ¢t. Using (4) and (5) we find
that @ = ks + (s — t)¢. Using (2.9) we obtain

(25—1) (k+0)

=
Since b = (s — ¢)¢ note that s > ¢t and s > 2. Next, since 2a = ¢t and
a = ks+ (s — t)¢ we obtain 3¢t = 2(k + £)s. So we arrive at § = Lt) Since

(2s —t,s) = 1 and (3,2) = 1 it follows that s | 3 and 2 | (2s — ¢t). In view of
this, we find that s = 3 and ¢ = 2. Then we have 6/ = 6(k+{), a contradiction.

CASE 2. (o = 2). In this situation r = 24+2_ Since (s,¢) = 1 it follows that
there exists ¢ € N so that 2a +b = Es and 4a = (t. Using (4) and (5) we find
that 2a = 2ks + (25 — t)¢. Using (2.9) we obtain

22s—t) (k+19)
¢t

8=

Since 4a = ¢t and 2a = 2ks + (2s — t)¢ we obtain 3¢t = 4(k + £)s. So we arrive
at 8 = 3(25 3221 - Since (2s —t,s) =1 and (3,2) = 1 it follows that s | 3 and
2| (2s — t) In view of this, we find that s = 3 and ¢ = 2. Then we have
6¢ = 12(k + ¢), a contradiction. This completes the proof. O

Theorem 2.19. There exists no Seidel integral graph from the class aK,UBKj,
with uy = b for any a,B,a,b € N and a > b > 2.

PROOF. Let us assume that oK, U K} is Seidel integral with u = b. Using
that u — 1 = fa we obtain fa = b — 1. Using the right-hand side of relation
(2.8), we find that 2ra = Q‘L‘ZA. Since (2r) > 1 and a > b it follows that
a=1ora=2.

CaSE 1. (a = 1). In this situation *7t = %=1, Since (s —t,t) = 1 it follows
that there exists £ € N so that (i) b—1={(s— ) d (i) 2a = ¢t. Using (2.3))
we obtai (wd) |ps|+1 = tb(f_;”. Since (b,b—1) = 1 we obtain (tb,s —1t) = 1,

4If b = 1 then we find that 8 = 1, which provides the class of Seidel integral graphs
Ko U K7 with pf =0 for any a > 1 (see Proposition [2.10]).
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which provides that (s—t) | (8—1). Let (iv) f—1 = m(s—t) for some m € N.
Further, since § = pf + |ub| using (4), (i), (ii4) and (iv), by a straightforward
calculation we obtain

(2.12) 26 =20mt(s —t) +20(s —t) +2mt.

On the other hand, using the left-hand side of relation (2.1) we get 6 = a +
4b — Bb — 2. Then using (i), (i7) and (iv), by a straightforward calculation we
obtain

2.13 28 = £(6s — 5t) — 20m(s — t)®> — 2ms + 2mt + 2.
(2.13)

Finally, using (2.12)) and (2.13]) we arrive at (v) 2¢ms(s—t) = £(4s—3t)—2ms+2.
We shall now demonstrate that s = t+1. On the contrary, assume that s > t42.
Then using (v) we obtain

4¢ms < 20ms(s —t) = 4ls — 30t —2ms + 2,

a contradiction. Setting s = t + 1 we can easily see that (v) is reduced to
2m(t+1)(€+ 1) = £(t + 4) + 2, which provides that m = 1. Setting m = 1 we
now find that 2¢ = ¢t 4+ 2¢, which provides that ¢t = 1 and ¢ = 2. In view of
this, we obtain that a = 1 and b = 3, a contradiction.

CASE 2. (a=2). 25—t — b=l We note that (2s—t,t) =1
or (2s —t,t) = 2. We shall now consider the following two cases:

CASE 2.1 (t is odd). Setting ¢ — 2t — 1 we obtain % = =1
Therefore, since (25 — (2¢ — 1),2¢t — 1) = 1 it follows that there exists £ € N S0
that (i) b—1 =4¢(2s — (2t — 1)) and (ii) 2a = £(2t — 1). In view of this, since
b—1>1and b—1={(2s—(2t—1)) note that s > t. Using we obtain (i)
lus|+1 = z(ft(% Since (b,b—1) = 1 we obtain ((2t—1)b,2s— (2t —1)) = 1,
which provides that (2s — (2¢ — 1)) | 5. Let (iv) 8 = m(2s — (2t — 1)) for
some m € N. Further, since § = p + |p3| using (i), (i), (i4i) and (iv), by a
straightforward calculation we obtain

(2.14)  6=4lmt(s —t+1) —lm(25s+ 1)+ £(2s — (2t — 1)) + m(2t — 1).

On the other hand, using the left-hand side of relation we get (v) 0 =
(4= B)b—2. In view of this, it follows that 3 =1 or 8 =2 or § = 3. Consider
the case when 8 = 1. Using (iv) we find that s = ¢ and m = 1. Using (1),
(v) and we arrive at 20t + 2t = 3¢ + 2, which provides that ¢ = 1. So
we obtain 2¢ + 2 = 3¢ + 2, a contradiction. Consider the case When 8 =2
Using (iv) we find that s = ¢ and m = 2. Using (i ) and ( we arrive at
40t + 2(2t — 1) = 3¢, a contradiction.

Consider the case when 8 = 3. Using (iv) we find that s = ¢t and m = 3
or s =t+ 1 and m = 1. Consider the case when s =t and m = 3. Using (i),
(v) and (2.14) we arrive at 60t + 3(2t — 1) = 3€ - 1 a contradiction. Consider
the case when s = t + 1 and m = 1. Using (4 ) and ( - we arrive at
6/t + 2t = 3¢, a contradiction.
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CASE 2.2 (¢ is even). Since (s,t) = 1 it follows that s is an odd number.
Setting t — 2t and s — 2s—1 we obtain % = b-1 Since ((2s—1)—t,t) =
1 it follows that there exists ¢ € N so that (i) b—1 = £((2s — 1) — t) and (47)
2a = (t. Using we obtain (iii) |u5| + 1 = =22 Since (b,b—1) =1

)

@s—1)—t"
we obtain (tb, (2s — 1) —t) = 1, which provides that ((2s —1) —t) | 8. Let (iv
B =m((2s — 1) — t) for some m € N. Further, since § = uj + |uj| using (7),
(i), (i#i) and (iv), by a straightforward calculation we obtain

(2.15) §=tmt((2s—1) —t) +£((2s —1) —t) + mt.

On the other hand, using the left-hand side of relation we get (v) 0 =
(4= B)b— 2. In view of this, it follows that 8 =1 or § =2 or 8 = 3. Consider
the case when § = 1. Using (iv) we find that (2s—1)—¢ =1 and m = 1. Using
(i), (v) and we arrive at ¢t + ¢ = 2¢ + 1, which provides that t = 2. So
we obtain 2¢ + 2 = 2/ + 1, a contradiction.

Consider the case when 8 = 2. Using (iv) we find that (2s—1) —t =1 and
m=2or (2s—1) —t =2 and m = 1. Consider the case when (2s —1) —t =1
and m = 2. Using (), (v) and we arrive at 20t + 2t = £, a contradiction.
Consider the case when (2s — 1) —¢t = 2 and m = 1. Using (i), (v) and
we arrive at 20t +t = 2/, a contradiction.

Consider the case when 8 = 3. Using (iv) we find that (2s—1) —¢t =1 and
m=3or (2s —1) —t =3 and m = 1. Consider the case when (2s —1) -t =1
and m = 3. Using (7), (v) and we arrive at 3¢t+3t = —1, a contradiction.
Consider the case when (2s — 1) —¢t = 3 and m = 1. Using (i), (v) and
we arrive at 30t +t = —1, a contradiction. O

Theorem 2.20. If («,3,a,b,0) is a positive integral solution of the Diophan-

tine equation (2.2)) then it could be represented by one of the following forms:

e a=(t+2n—(L+n)k+(20—1)m and b= (20 —1)m;

k2t —1 2t — 1
-1 me-1)

)

5 k(2tT— 1)

yo—|—az](2n—1);
T

o §=(20—-1)(2n—1Dk+ [k(QtT_l)yo—i-jz 2(t+2n — (L +n))m,

with the same conditions (ii)—(v) which are related to (2.6)) ;
e a=(t+In)k+¢m and b="{Im;

2kt
o §=2kin-+ {yo—kaz] (t—l—én)m;
T T

with the same conditions (ii)—(v) which are related to (2.7)) .
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PROOF. According to Theorem it suffices to derive the expression for §.
First, from we have (i) pf — ps =6 and (ii) puf + pus = aa+ b —2(a +
b—1). Using (i), (ii) and the equality puj = 2(rac — 1)a + 1 (see (2.8)), by a
straightforward calculation we obtain that § = 4raa — (aa + 8b) — 2(a — b).

Case 1. (tis odd). Using (4), (5), (1.1) and (1.2) we obtain a — b = ks,
raa = ks +nms and 8 = n(2n — 1). So we find that § = (2 —1)(2n — 1)k +
2(t 4 2¢n — (£ + n))nm, which provides the statement related to (2.6).

CASE 2. (¢ is even). Using (4), (5), (2.1), (2.2), (2.3) and (2.4) we obtain
that a —b = k(2s — 1), 2raa = 2k(2s — 1) +nm(2s — 1) and 8 = nn. So we find
that § = 2kén + (t + ¢n)nm, which provides the statement related to (2.7). O

3. Appendix

In this section we present the data given in Tables 1 and 2, which represent
the set of all Siedel integral graphs from the class aK,UBK} with pi > 2, whose
order does not exceed 20. In these tables a Seidel integral graph is described
by the parameters «, 3, a,b and ones presented in the class of Seidel integral
graphs in Theorem [2.7 In Tables 1 and 2 the symbol %’ is the identification
number of an integral graph.

il T Yo z| oo a B a blT t k £ m n|ur ud
1 0 -1 2 7 2 1 3 113 2 1 1 1 1 3 -2
2,0 -1 2|7 2 3 2 141 1 1 1 1 1| 5 -2
3] 0 -1 119 1 6 3 1{1 1 1 1 1 2| 7 -4
41 0 -1 210 2 4 3 11 1 2 1 1 1| 7 -3
5( 0 -1 3|11 3 2 3 13 2 1 1 1 1| 7 =2
6 0 -1 J|1nmnm 3 5 2 1|1 1 1 1 1 1 9 -2
7 0 -1 2113 2 3 5 15 3 1 1 1 2 7T A4
8/ 0 -1 2|13 2 5 4 11 1 3 1 1 1| 9 -4
9] 0 -1 1713 1 7 6 1{3 2 1 1 1 4] 9 -8
w0 -1 2|14 2 1 6 2|6 2 2 1 2 1| 5 -5
111 0 -1 1114 1 5 9 13 2 2 1 1 3| 7 -11
12 0 -1 2114 2 3 4 2|2 1 2 1 2 1 9 -5
131 0 -1 114 1 9 5 1|1 1 2 1 1 2|11 -7
4 0 -1 415 4 3 3 1|3 2 1 1 1 1]11 -2
B} 0 -1 415 4 7 2 1|1 1 1 1 1 1]13 -2
6, 0 -1 2|16 2 6 5 1|1 1 4 1 1 1|11 -5
17 0 -1 3116 3 7 3 1|1 1 2 1 1 1113 -3
8(-1 -1 217 3 1 5 2|5 3 1 1 2 1| 9 -4
191 0 -1 1(17 1 4 5 3|1 1 1 2 1 111 -8
20| 1 1 1j17 3 4 3 2|1 1 1 1 2 1|13 -4
21 2 3 -3,18 3 3 5 11 2 2 1 1 1|11 -3
22 0 -1 1718 1. 6 6 22 1 2 1 2 2|13 -9
23 0 -1 1719 1.2 9 513 2 1 3 1 1 7 14
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il® Yo 22| o a B a b|T t k £ m n|ur ud
241 -1 -1 2119 3 1 6 1|13 5 1 1 1 1 9 -2
25 0 -1 1|19 1 3 10 3|5 3 1 2 1 2| 9 -14
26| 0 -1 219 2 5 7 1|7 4 1 1 1 3|11 -6
2t 0 -1 219 2 7 6 11 1 5 1 1 1|13 -6
2800 -1 5119 5 4 3 13 2 1 1 1 1|15 -2
29 0O -1 1{19 1 12 7 1]1 1 3 1 1 2115 -10
30 0 -1 5|19 5 9 2 1j1 1 1 1 1 117 -2
31 0 -1 119 1 15 4 11 1 1 1 1 3|17 -6
32| 0 -1 242 2 2 9 13 2 4 1 1 1| 7 -5
33/ 0 -1 2|20 2 4 6 2|2 1 4 1 2 1|13 -7
Table 1.
il X0 Yo z| oo a B a blT t kE £ m n|p oyl
1 0 -1 1 8 1 4 4 111 1 1 1 1 2 5 -9
21 0 -1 179 1 3 6 12 2 1 1 1 3| 4 -7
3] 0 -1 2|10 2 2 4 1|2 2 1 1 1 1| 5 -3
41 0 -1 11121 3 5 21 1 1 2 1 1| 6 -7
51 1 1 -1}13 2 1 6 12 4 1 1 1 1| 4 -3
6 0 -1 1113 1 2 9 213 3 1 2 1 2 4 -11
7 0 -1 1113 1 6 7 1)1 1 2 1 1 2 8 -9
8| 0 -1 114 1 2 8 3}2 2 1 3 1 1| 5 -11
9] 0 -1 2|16 2 4 6 1|3 3 1 1 1 2| 9 -5
0 0 -1 1716 1 4 8 21 1 2 2 1 1| 9 -11
11 0 -1 3116 3 4 4 112 2 1 1 1 1]11 -3
12 1 3 -3 |17 2 3 7 111 2 2 1 1 1 8 -5
131 0 -1 1718 1 3 12 24 2 2 1 2 3| 7 -15
41 0 -1 1(18 1 8 10 11 1 3 1 1 2|11 -13
) 0 -1 1718 1 10 8 1}(2 2 1 1 1 5|13 -11
6| 0 -1 1719 1 4 15 13 3 2 1 1 4| 6 -—17
17 0 -1 1119 1 v 12 114 4 1 1 1 7|10 -15
18 0 -1 2120 2 2 8 2|4 2 2 1 2 1|9 -7
19 0 -1 2120 2 12 4 1|1 1 1 1 1 2|17 -5
Table 2.

In this section, the Seidel integral graphs represented in Table 1 are obtained
by using relation T heorem , while the Seidel integral graphs represented
in Table 2 are obtained by using relation Theorem . In view of this,
there exist exactly 33+ 19 = 52 non-isomorphic Seidel integral graphs from the
class aK, U K} with pi > 2, whose order does not exceed 20.
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Next, graphs represented in Table 1 with identification numbers i = 2, 3, 4,
5, 8, 13, 16, 20, 21, 27, 29 are Seidel integral graphs with uj = 2ab + 1, while
there is no graph represented in Table 2 with uj = 2ab + 1. In view of this,
there exist exactly 11 + 0 = 11 non-isomorphic Seidel integral graphs from the
class aK, U SK}, with u] = 2ab + 1, whose order does not exceed 20.

Next, (i) graphs represented in Table 1 with identification numbers i = 12,
22, 33 are Seidel integral graphs with uj = ab+1 and (i¢) graphs represented in
Table 2 with identification numbers i = 1, 3, 7, 12, 14 are Seidel integral graphs
with pi = ab+ 1. In view of this, there exist exactly 3 + 5 = 8 non-isomorphic
Seidel integral graphs from the class oK, U 8K}, with ui = ab+ 1, whose order
does not exceed 20.

Next, graphs represented in Table 1 with identification numbers i = 2, 3, 4,
5,8,12, 13, 16, 19, 21, 22, 27, 29, 33 are Seidel integral graphs with puj = 2a+1,
while there is no graph represented in Table 2 with uj = 2a+1. In view of this,
there exist exactly 14 40 = 14 non-isomorphic Seideﬂ integral graphs from the
class aK, U K}, with u] = 2a + 1, whose order does not exceed 20.

Next, there is no graph represented in Table 1 with ui = a+1, while graphs
represented in Table 2 with identification numbers i = 1, 3, 4, 7, 10, 12, 14, 18
are Seidel integral graphs with pj = a + 1. In view of this, there exist exactly
0 + 8 = 8 non-isomorphic Seide]lﬂ integral graphs from the class aK, U 8K
with p} = a + 1, whose order does not exceed 20.

Next, graphs represented in Table 1 with identification numbers ¢ = 1, 10
are Seidel integral graphs with p} = 20+ 1, while there is no graph represented
in Table 2 with pj = 2b+ 1. In view of this, there exist exactly 2+ 0 = 2 non-
isomorphic Seidel integral graphs from the class a K, U SK; with pu} =2b+1,
whose order does not exceed 20. This completes my explanation on Tables 1
and 2.

007°% 008" 009°% 010° 011°% 013% 014° 0152 016
017°%  018% 019'* 020 02197 0220 023°¢ 02495 (250
026!t 027%% 0283 0299 030°* 0316 032'2 033! (034'®
035%% 036! 037'° 0382 03920 040 041°% 0422 043'7
0448 0452 046'%  047'® 048'%  049'* 050'' 0519 0522°
053'5 0542 055'7  056% 057%° 058% 059'% 060'2 061'7
06228 06317 064%% 065 066" 067*2 0683 069*2 070%!

5We note (i) graph represented in Table 1 with identification number i = 19 belong to
the class Theorem m (19); (44) graphs represented in Table 1 with identification numbers
i =3, 13, 22, 29 belong to the class Theorem (29); (44i) graphs represented in Table 1
with identification numbers ¢ = 2, 4, 8, 12, 16, 27, 33 belong to the class Theorem (30)
and (iv) graphs represented in Table 1 with identification numbers ¢ = 5, 21 belong to the
class Theorem [2.14] (4°).

6We note (i) graphs represented in Table 2 with identification numbers i = 4, 10 belong to
the class Theorem (19); (4i) graphs represented in Table 2 with identification numbers
i =1, 7, 14 belong to the class Theorem (2°) and (i4i) graphs represented in Table 2
with identification numbers ¢ = 3, 12, 18 belong to the class Theorem (39).
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07120 07221 07333 0742® 075'5 076*® 07723 0783 (79%2
080%% 08127 (8232 (08327 08432 (852 08635 087%° (8832
08921 09025 (09134 09236 (09335 (94** 09523 (09637 (97%°
09830 099%2 100" 101%°C 102% 103%° 104*° 105%¢ 10637
10724 108 10926 110*! 11180 112%  113%% 114%9 11534
116%6 11739 11852 11923 120%1 12128 12237 12331 12467
12528 12638 12733 12847 12077 130%% 13130 13256 13350
13451 13529 13670 13729 13860 13941 140%2 14140 1492%
14338 14459 14526 14656 14735 14857 14933 15038 15139
15270 153% 15457 155% 15698 15746 15852 15947  160°°
16131 16290 163** 164 165*® 166% 1673* 16852 16936
17059 17158 17266 17334 17467 17542 17654 1774 17892
17934 180%2 181%6 18258 183%% 184%* 18532 18698 18752
18839 18946 190%° 19140 19271 19347 19466 19547 19692
19731 19883 19950 20062 20161 20275 203%2 204% 2053!
2067 20790 2087 2094 210°0 211%! 21272 2135 21472
215%  216%% 21761 21805 21965 2207 22145 22277 22339
22474 29553 99661 99739 99895 922953 92307l 23161 23276
23344 23491 23557 93682 23753 23867 23939 24079 24145
242065 24371 94480 24516 24689 24757 24898 24966 25068

Table 3.

There exist exactly 9620 non-isomorphic Seide]lZ] integral graphs witkﬁ ui >
2, which belong to the class aK, U K}, whose order does not exceed 250.
In particularﬂ the total numbers of such integral graphs which belong to the
classes Theorem and are 5249 and 4371, respectively. Table 3
contains a distribution of those graphs in respect to their orders. In Table 3 the
symbol o™ denotes the number of integral graphs of the corresponding order
o = 1,2,...,250. In this table o™ is omitted if the corresponding number
n = 0.

Conclusion. Using results and a similar procedure presented in this work, it
is possible to investigate any class of Seidel integral graphs which have exactly
two main eigenvalues.

"In this work the data given in Tables 1, 2 and 3 are obtained in two different ways: (i)
they are generated by using relations 1} and ) and (i) by varying the parameters
a, B,a,b in all possible ways in equation ([2.2).

8Since Kq UK}, is Seidel integral with uj = 1 for any a > b (in order to reduced the data),
we consider in Tables 1, 2 and 3 only Seidel integral graphs from the class aK, U K}, with
pi > 2.

' 9In particular, there exist exactly 53023 and 49299 non-isomorphic Seidel integral graphs
with p7 > 2 and order o < 1000, which belong to the classes Theorem and (2.7)),
respectively. In view of this, there exist exactly 53023 + 49299 = 102322 non-isomorphic
Seidel integral graphs from the class aK, U 8K} with puf > 2, whose order does not exceed
1000.
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