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On the Seidel integral graphs which belong to the class
αKa ∪ βKb

Mirko Lepović1

Abstract. We say that a simple graph G is Seidel integral if its Seidel
spectrum consists entirely of integers. If αKa ∪ βKb is Seidel integral
we show that it belongs to one of the following classes of Seidel integral
graphs[
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where (i) a = (t + 2ℓn − (ℓ + n))k + (2ℓ − 1)m and b = (2ℓ − 1)m; (ii)
t, k, ℓ,m, n ∈ N such that (m, 2n − 1) = 1, (2n − 1, 2t − 1) = 1 and
(2ℓ − 1, 2t − 1) = 1; (iii) τ = (a,m(2t − 1)) such that τ | k (2t − 1);
(iv) (x0, y0) is a particular solution of the linear Diophantine equation
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where (i) a = (t+ ℓn)k + ℓm and b = ℓm; (ii) t, k, ℓ,m, n ∈ N such that
(m,n) = 1, (n, t) = 1, (ℓ, t) = 1 and (t+ ℓn, 2) = 1; (iii) τ = (a, tm) such
that τ | 2kt; (iv) (x0, y0) is a particular solution of the linear Diophantine
equation ax− (tm)y = τ and (v) z ≥ z0 where z0 is the least integer such
that
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1. Introduction

Let G be a simple graph of order n and let λ1 ≥ λ2 ≥ · · · ≥ λn be the
eigenvalues of its (0,1) adjacency matrix of G. The spectrum of G is the set of
its eigenvalues and is denoted by σ(G). A graph G is said to be integral if its
spectrum σ(G) consists only of integers [1]. We say that A∗ = [sij ] is the Seidel
adjacency matrix of the graph G if sij = −1 for any two adjacent vertices i
and j, sij = 1 for any two non-adjacent vertices i and j, and sij = 0 if i = j.
The Seidel spectrum of G is the set of eigenvalues λ∗

1 ≥ λ∗
2 ≥ · · · ≥ λ∗

n of its
(0,−1, 1) adjacency matrix A∗ = A∗(G) and is denoted by σ∗(G). A graph G is
said to be Seidel integral if its Seidel spectrum σ∗(G) consists only of integers.
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We say that an eigenvalue µ is main if and only if ⟨j,Pj⟩ = n cos2 α > 0, where
j is the main vector (with coordinates equal to 1) and P is the orthogonal
projection of the space Rn onto the eigenspace EA(µ). The quantity β = | cosα|
is called the main angle of µ. Similarly, we say that a Seidel eigenvalue µ∗ is
the Seidel main eigenvalue if and only if ⟨j,P∗j⟩ = n cos2 α∗ > 0, where P∗ is
the orthogonal projection of the space Rn onto the eigenspace EA∗(µ∗). The
quantity β∗ = | cosα∗| is called the Seidel main angle of µ∗. In [1] it was
proved that the graph G and its complement G have the same number of main
eigenvalues. We also know that |M(G)| = |M∗(G)|, where M(G) and M∗(G)
denote the sets of all main and the Seidel main eigenvalues of G, respectively.

Let G be a graph of order n with exactly two main eigenvalues µ1 and µ2

and let n1 = nβ2
1 and n2 = nβ2

2 .

Theorem 1.1 (Lepović [3]). Let G be a graph of order n with two main eigen-
values µ1 and µ2. Then

(1.1) µ∗
1,2 =

n− 2− 2µ1 − 2µ2

2
±

√(
2µ1 − 2µ2 + n

)2 − 8n1

(
µ1 − µ2

)
2

.

Besides, we have2

(1.2) n∗
1,2 =

n

2
±

n2 + 2
(
n− 2n1

)(
µ1 − µ2

)
2

√(
2µ1 − 2µ2 + n

)2 − 8n1

(
µ1 − µ2

) ,
where n∗

1 = n(β∗
1)

2 and n∗
2 = n(β∗

2)
2.

We note that αKa ∪ βKb is an integral graph with two main eigenvalues
µ1 = a−1 and µ2 = b−1, for any α, β, a, b ∈ N with a > b. Of course, Kn is the
complete graph on n vertices while mG denotes the m-fold union of the graph
G. As is pointed out in [3], if G is an integral graph then it is Seidel integral
if and only if the main Seidel spectrum of G contains integral values. In view
of this fact, αKa ∪ βKb is Seidel integral if and only if its largest Seidel main
eigenvalue µ∗

1 ∈ N. We have established in [4] a characterization of integral
graphs which belong to the class αKa ∪ βKb. We now proceed to establish a
characterization of Seidel integral graphs which belong to the class αKa∪βKb,
as follows.

2. Main results

First, note that o = αa+ βb is the order of αKa ∪ βKb. Then according to
(1.1) we get implicitly

(2.1) µ∗
1,2 =

αa+ βb+ 2− 2a− 2b± δ

2
,

2If G is a graph of order n with k main eigenvalues µ1, µ2, . . . , µk and Seidel main eigen-
values µ∗

1, µ
∗
2, . . . , µ

∗
k then n1+n2+ · · ·+nk = n and n∗

1+n∗
2+ · · ·+n∗

k = n, where ni = nβ2
i

and n∗
i = n(β∗

i )
2 for i = 1, 2, . . . , k. Of course, if G is a graph with exactly two main

eigenvalues then according to (1.2) we also have n∗
1 + n∗

2 = n.
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where δ =

√(
(α+ 2)a+ (β − 2)b

)2 − 8αa
(
a− b

)
. Then αKa ∪ βKb is Seidel

integral if and only if (α, β, a, b, δ) represents a positive integral solution of the
Diophantine equation

(2.2)
(
(α+ 2)a+ (β − 2)b

)2 − 8αa
(
a− b

)
= δ2 .

Therefore, the characterization of Seidel integral graphs which are related to
the class αKa ∪ βKb is reduced to the problem of finding the most general
positive solution of the equation (2.2).

Next, µ∗
1µ

∗
2 = 4µ1µ2 − 2(n1 − 1)µ2 − 2(n2 − 1)µ1 − (n− 1) for any G with

two main eigenvalues (see [3]). In the case that G = αKa ∪ βKb this relation
is transformed into

(2.3)
(
µ∗
1 − 1

)(
µ∗
2 − 1

)
= 2ab(2− α− β) .

In the sequel (m,n) denotes the highest common divisor of integersm,n ∈ N
while m | n means that m divides n. With this notation, in order to demon-
strate a method applied in this paper, we prove first the following two results:

Theorem 2.1. If αKa∪βKb is Seidel integral with µ∗
1 = 2ab+1 then it belongs

to the class of Seidel integral graphs

(2.4) tmKsn−1 ∪ (2s− t)nKsm−1 ,

where m,n ∈ N and n > m, sm ≥ 2, t < 2s such that (s, t) = 1.

Proof. Assume that αKa ∪ βKb is Seidel integral with µ∗
1 = 2ab + 1. Using

(2.3) we obtain µ∗
2 = 3 − α − β and δ = 2ab + α + β − 2. Then Diophantine

equation (2.2) is reduced to

(b+ 1)
(
2a− (α+ β − 2)

)
= α(a− b) .

Let b + 1 = rα where r = s
t such that (s, t) = 1. Then from the last relation

we obtain a− b = r
(
2a− (α+ β − 2)

)
. In view of this, we get

α =
t

s
(b+ 1) and β =

2s− t

s
(a+ 1) .

Since (s, t) = 1 it follows that (2s − t, s) = 1. Then it must be s | (b + 1) and
s | (a+1). Let b+1 = sm and a+1 = sn. So we get α = tm and β = (2s− t)n,
where t < 2s.

Theorem 2.2. If αKa∪βKb is Seidel integral with µ∗
1 = ab+1 then it belongs

to the class of Seidel integral graphs

(2.5) tmKsn−2 ∪ (s− t)nKsm−2 ,

where m,n ∈ N and n > m, sm ≥ 3, t < s such that (s, t) = 1.
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Proof. Assume that αKa ∪ βKb is Seidel integral with µ∗
1 = ab + 1. Using

(2.3) we obtain µ∗
2 = 5− 2α− 2β and δ = ab+2(α+β− 2). Then Diophantine

equation (2.2) is reduced to

(b+ 2)
(
a− (α+ β − 2)

)
= α(a− b) .

Let b + 2 = rα where r = s
t such that (s, t) = 1. Then from the last relation

we obtain a− b = r
(
a− (α+ β − 2)

)
. In view of this, we get

α =
t

s
(b+ 2) and β =

s− t

s
(a+ 2) .

Since (s, t) = 1 it follows that (s − t, s) = 1. Then it must be s | (b + 2) and
s | (a+2). Let b+2 = sm and a+2 = sn. So we get α = tm and β = (s− t)n,
where t < s.

Remark 2.3. With the condition a > b note that the parameters α, β, a, b
determine the graph αKa ∪ βKb up to isomorphism.

In what follows, we show that there exists a one-to-one correspondence
between the Seidel integral graphs αKa ∪ βKb with µ∗

1 = 2ab + 1 and the
parameters m,n, s, t.

Proposition 2.4. If αKa ∪ βKb is a Seidel integral graph with µ∗
1 = 2ab+ 1

then it uniquely determines the parameters m,n, s, t.

Proof. Let us assume that m1, n1, s1, t1 and m2, n2, s2, t2 determine the same
Seidel integral graph αKa ∪ βKb with the largest Seidel main eigenvalue µ∗

1 =
2ab+1. Then according to Remark 2.3 and relation (2.4) we have: (i) t1m1 =
t2m2; (ii) (2s1 − t1)n1 = (2s2 − t2)n2; (iii) s1n1 − 1 = s2n2 − 1 and (iv)
s1m1 − 1 = s2m2 − 1. Using (i) and (iv) we get t1

s1
= t2

s2
. Since (t1, s1) = 1

and (t2, s2) = 1 it follows that t1 = t2 and s1 = s2. Consequently, using (i)
and (ii) we obtain m1 = m2 and n1 = n2.

In a quite analogous manner, using Remark 2.3 and relation (2.5) we can
obtain the following result.

Proposition 2.5. If αKa ∪ βKb is an Seidel integral graph with µ∗
1 = ab+ 1

then it uniquely determines the parameters m,n, s, t.

Further, using a procedure similar to the proofs of Theorems 2.1 and 2.2 we
proceed to establish a characterization of Seidel integral graphs for the class
αKa ∪ βKb. The proof is based on the following statement [2].

Theorem 2.6. The linear Diophantine equation ax + by = c has at least one
solution if and only if d | c where d = (a, b). In that case the most general
solution of this equation is given in the form

x =
c

d
x0 −

b

d
z and y =

c

d
y0 +

a

d
z (z ∈ Z) ,

where (x0, y0) represents a particular solution3 of the equation ax+ by = d.
3A particular solution of the equation ax+ by = d may be obtained by using the EUCLID

algorithm. In that case the coefficients a and b uniquely determine x0 and y0.
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Theorem 2.7. If αKa ∪ βKb is Seidel integral then it belongs to one of the
following classes of Seidel integral graphs

(2.6)

[
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τ
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τ
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[
k(2t− 1)

τ
y0 +

a

τ
z

]
(2n− 1)Kb ,

where (i) a = (t+2ℓn−(ℓ+n))k+(2ℓ−1)m and b = (2ℓ−1)m; (ii) t, k, ℓ,m, n ∈
N such that (m, 2n−1) = 1, (2n−1, 2t−1) = 1 and (2ℓ−1, 2t−1) = 1; (iii) τ =
(a,m(2t−1)) such that τ | k (2t−1); (iv) (x0, y0) is a particular solution of the
linear Diophantine equation ax−m(2t−1)y = τ and (v) z ≥ z0 where z0 is the

least integer such that
(k(2t−1)

τ x0+
m(2t−1)

τ z0
)
≥ 1 and

(k(2t−1)
τ y0+

a
τ z0

)
≥ 1 ;

(2.7)

[
2kt

τ
x0 +

tm

τ
z

]
Ka ∪

[
2kt

τ
y0 +

a

τ
z

]
nKb ,

where (i) a = (t + ℓn)k + ℓm and b = ℓm; (ii) t, k, ℓ,m, n ∈ N such that
(m,n) = 1, (n, t) = 1, (ℓ, t) = 1 and (t + ℓn, 2) = 1; (iii) τ = (a, tm) such
that τ | 2kt; (iv) (x0, y0) is a particular solution of the linear Diophantine
equation ax− (tm)y = τ and (v) z ≥ z0 where z0 is the least integer such that(
2kt
τ x0 +

tm
τ z0

)
≥ 1 and

(
2kt
τ y0 +

a
τ z

)
≥ 1 .

Proof. Let us assume that µ∗
1 ∈ N and let θ = ρ

φ so that µ∗
1 − 1 = θa and

(ρ, φ) = 1. Using (2.1) and (2.3) we obtain

µ∗
2 = −

2b
(
α+ β − 2

)
θ

+ 1 and δ = θa+
2b
(
α+ β − 2

)
θ

.

Then by a straightforward calculation it is not difficult to see that (2.2)

may be transformed in the form θ+2
θ = α(a−b)

θa−b(α+β−2) . Let c be a constant such

that (1) α(a − b) = c(θ + 2) and (2) θa − b(α + β − 2) = cθ. Combining
(1) and (2) we find that 2c = (α − θ)a + (β − 2)b. Observe that 2c is an
integer because θa = (µ∗

1 − 1) ∈ N. Consequently, using (1) or (2) we arrive at
2α(a− b) =

[
(α− θ)a+ (β − 2)b

]
(θ + 2). Hence,

(2.8) (a− b) = r
[
(α− θ)a+ (β − 2)b

]
and (θ + 2) = 2rα ,

where r = s
t such that (s, t) = 1. Making use of (2.8), by an easy calculation

we obtain (3) rβb = (2r − 1)
[
rαa− (a− b)

]
.

Using now the right-hand side of relation (2.8), note that 2rαa = µ∗
1+2a−1,

which shows that (2rαa) is integral and 2r − 1 = 2s−t
t > 0. Since βb =

(2− 1
r )

[
rαa−(a−b)

]
(see (3)) it turns out that r | (a−b). Let (4) (a−b) = γr

and let (5) γ = kt. Then (3) is reduced to the form:

(2.9) β =

(
2s− t

)
b

(
αa− kt

)
t

.

Further, let (2s− t, b) = ℓ and let m,n ∈ N such that (6) (2s− t) = ℓn and (7)
b = ℓm, where (m,n) = 1. We note that (2s − t, t) = 1 or (2s − t, t) = 2. We
shall now consider the following two cases:
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Case 1. (t is odd). Let t → 2t− 1 where p → q means that ’p is replaced
with q’, which provides that (2s − (2t − 1), 2t − 1) = 1. Since 2s − (2t − 1)
is an odd number and 2s − (2t − 1) = ℓn it follows that ℓ and n are two
odd numbers. Setting ℓ → 2ℓ − 1 and n → 2n − 1, we find that s − t =
2ℓn − (ℓ + n). Then according to (6) we obtain (2n − 1, 2t − 1) = 1 and

(2ℓ− 1, 2t− 1) = 1. Consequently, using (2.9) we have β = (αa−k(2t−1)) (2n−1)
m(2t−1) .

Since (2n−1,m(2t−1)) = 1 it follows thatm(2t−1) | (αa−k(2t−1)). Therefore,
setting (1.1) αa − k(2t − 1) = η(m(2t − 1)) we get (1.2) β = η(2n − 1). We
note that (1.1) represents a linear Diophantine equation in variables α and η.
Of course, if (a,m(2t− 1)) = τ then (1.1) has at least one solution if and only
if τ | k(2t− 1). In that case, according to Theorem 2.6 we obtain that

α =
k(2t− 1)

τ
x0 +

m(2t− 1)

τ
z and η =

k(2t− 1)

τ
y0 +

a

τ
z ,

where ax0 −m(2t− 1)y0 = τ . Finally, from (4) through (7), and according to
(1.2) and the last relation, we get easily that a = (t+2ℓn−(ℓ+n))k+(2ℓ−1)m

and β =
[
k(2t−1)

τ y0 +
a
τ z

]
(2n− 1). So we arrive at the corresponding class of

Seidel integral graphs displayed in (2.6).

Case 2. (t is even). Since (s, t) = 1 it follows that s is an odd number.
Setting t → 2t and s → 2s − 1 we obtain ((2s − 1) − t, t) = 1, which provides
that

(2.10) β =

(
(2s− 1)− t

)
b

(
αa− 2kt

)
t

.

Further, let ((2s− 1)− t, b) = ℓ and let m,n ∈ N such that (2.1) (2s− 1)− t =
ℓn and (2.2) b = ℓm, where (m,n) = 1. Since 2s − 1 = t + ℓn is an odd

number it must be (t + ℓn, 2) = 1. Using (2.10) we get β = (αa−2kt)n
tm . Since

((2s − 1) − t, t) = 1 we obtain (ℓn, t) = 1, which provides that (ℓ, t) = 1 and
(n, t) = 1. In view of this, it follows that tm | (αa − 2kt). Therefore, setting
(2.3) αa − 2kt = η(tm) we get (2.4) β = ηn. We note that (2.3) represents a
linear Diophantine equation in variables α and η. Of course, if (a, tm) = τ then
(2.3) has at least one solution if and only if τ | 2kt. In that case, according to
Theorem 2.6 we obtain that

α =
2kt

τ
x0 +

tm

τ
z and η =

2kt

τ
y0 +

a

τ
z ,

where ax0 − (tm)y0 = τ . Finally, using (4), (5) and (2.1), (2.2), (2.3), (2.4),

we get easily that a = (t + ℓn)k + ℓm and β =
[
2kt
τ y0 +

a
τ z

]
n. So we arrive

at the corresponding class of Seidel integral graphs displayed in (2.7), which
completes the proof.

Proposition 2.8. If αKa ∪ βKb is a Seidel integral graph then it uniquely
determines the parameters τ, t, k, ℓ,m, n.
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Proof. Let us assume that τ1, t1, k1, ℓ1,m1, n1 and τ2, t2, k2, ℓ2,m2, n2 deter-
mine the same Seidel integral graph αKa∪βKb. Since the parameters α, β, a, b
determine the graph αKa ∪ βKb up to isomorphism, using the second equality
of (2.8) we have 2rαa = µ∗

1 − 1 + 2a, which shows that s1 = s2 and t1 = t2
because (s, t) = 1. In view of this, we note that the classes represented by
relations (2.6), (2.7) are mutually disjoint. Consequently, without loss of gen-
erality, we can assume that the corresponding Seidel integral graph determined
by the parameters τ1, t1, k1, ℓ1,m1, n1 and τ2, t2, k2, ℓ2,m2, n2 belongs to the
class of Seidel integral graphs displayed in relation (2.6). Next, using (4) and
(5) we get k1 = k2. Since (2s− (2t− 1), b) = 2ℓ− 1 (see Case 1), we also have
ℓ1 = ℓ2. Since b = (2ℓ− 1)m and s− t = 2ℓn− (ℓ+ n), we find that m1 = m2

and n1 = n2. Finally, since (a,m(2t− 1)) = τ it follows that τ1 = τ2.

Remark 2.9. If (x0, y0) is obtained by using the EUCLID algorithm then a
fixed Seidel integral graph αKa∪βKb also uniquely determines the parameters
x0, y0, z0, z.

Proposition 2.10. If αKa∪βKb is Seidel integral with µ∗
1 = 1 then it belongs

to the class of Seidel integral graphs Ka ∪Kb for any a, b ∈ N.

Proof. Let us assume that αKa ∪ βKb is Seidel integral with µ∗
1 = 1. Using

(2.3) we obtain 2ab(2−α−β) = 0, which provides that α = 1 and β = 1. Using
(2.2) we find that δ = a+b. Since δ = µ∗

1−µ∗
2 we obtain µ∗

2 = −(a+b−1).

Proposition 2.11. If αKa ∪ βKb is a Seidel integral graph then µ∗
1 ≥ 1 and

µ∗
2 ≤ −1 for any α, β, a, b ∈ N.

Proof. We demonstrate first that µ∗
1 ≥ 1 for any α, β, a, b ∈ N. On the

contrary, assume that µ∗
1 ≤ 0 for some α, β, a, b ∈ N. Since µ∗

1 > µ∗
2 it follows

that µ∗
2 ≤ −1. Using (2.3) we get

(µ∗
2 − 1) ≥ (µ∗

1 − 1)(1− µ∗
2) = 2ab(α+ β − 2) ,

from which we obtain µ∗
2 ≥ 2ab(α+ β − 2) + 1 > µ∗

1, a contradiction.

We now demonstrate that µ∗
2 ≤ −1 for any α, β, a, b ∈ N. On the contrary,

assume that µ∗
2 ≥ 0 for some α, β, a, b ∈ N. Consider the case when µ∗

2 ≥ 2.
Then using (2.3) we obtain

(µ∗
1 − 1) ≤ (µ∗

1 − 1)(µ∗
2 − 1) = 2ab(2− α− β) ,

which provides that α = 1 and β = 1. Then according to Proposition 2.10, we
find that µ∗

1 = 1 < µ∗
2, a contradiction. The case when µ∗

2 = 1 is also trivial.
Indeed, in this situation we have 2ab(2−α−β) = 0, which provides that α = 1
and β = 1, a contradiction. Finally, consider the case when µ∗

2 = 0. Using
(2.3) we obtain µ∗

1 = 2ab(α+ β − 2) + 1. Using the right-hand side of relation
(2.1) we obtain δ = αa+βb+2−2a−2b. On the other hand, since δ = µ∗

1−µ∗
2

we obtain δ = 2ab(α+ β − 2) + 1. So we arrive at

(2.11) αa(2b− 1) + βb(2a− 1) = 4ab− 2a− 2b+ 1 .
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In view of Proposition 2.10, it must be α ≥ 2 or β ≥ 2. Consider the case when
α ≥ 2. Using relation (2.11) we obtain

2a(2b− 1) + βb(2a− 1) ≤ 4ab− 2a− 2b+ 1 ,

from which we obtain βb(2a − 1) ≤ −2b + 1 < 0, a contradiction. Consider
the case when β ≥ 2. In this situation, using (2.11) we obtain αa(2b − 1) ≤
−2a+ 1 < 0, a contradiction. This completes the proof.

In order to demonstrate a procedure for obtaining the Seidel integral graphs
which belong to the class αKa ∪ βKb for a fixed Seidel main eigenvalue µ∗

1, we
prove the following two results:

Proposition 2.12. There exists no Seidel integral graph from the class αKa∪
βKb with µ∗

1 = 2 for any α, β, a, b ∈ N.

Proof. First, according to the proof of Theorem 2.7, we have µ∗
1 − 1 = θa.

Using that 2s− t > 0 and using the right-hand side of relation (2.8), we obtain

2a+ 1

αa
=

2s

t
> 1 ,

which provides that α = 1 or α = 2.

Case 1. (α = 1). Since 2a+1
2a = s

t and (2a+1, 2a) = 1, (s, t) = 1, we obtain
s = 2a+1 and t = 2a. Using (2.9) we find that a(1− 2k) < 0, a contradiction.

Case 2. (α = 2). Since 2a+1
4a = s

t and (2a + 1, 4a) = 1, (s, t) = 1, we
obtain s = 2a + 1 and t = 4a. Using (2.9) we find that 2a(1 − 2k) < 0, a
contradiction.

Proposition 2.13. If αKa ∪ βKb is Seidel integral with µ∗
1 = 3 then it is

2K3 ∪K1 for any α, β, a, b ∈ N.

Proof. Using that µ∗
1−1 = θa and using the right-hand side of relation (2.8),

we find that 2a+2
αa = 2s

t , which provides that α = 1 or α = 2.

Case 1. (α = 1). Since a+1
a = s

t and (a + 1, a) = 1, (s, t) = 1, we obtain
s = a+ 1 and t = a. Using (2.9) we find that a(1− k) ≤ 0, a contradiction.

Case 2. (α = 2). We note that (a+1, 2a) = 1 or (a+1, 2a) = 2. Consider
the case when (a+1, 2a) = 1. Since a+1

2a = s
t and (s, t) = 1, we obtain s = a+1

and t = 2a. Using (2.9) we find that 2a(1− k) ≤ 0, a contradiction.

Consider the case when (a+1, 2a) = 2. In this situation a is an odd number.
Let a = 2ε+1 where ε ∈ N. Since ε+1

2ε+1 = s
t and (2ε+1, ε+1) = 1, (s, t) = 1,

we obtain s = ε + 1 and t = 2ε + 1. Then (αa − kt) = (2 − k)(2ε + 1), which
provides that k = 1. Using (2.9) we get

β =
2(ε+ 1)− (2ε+ 1)

b
· (2− 1)(2ε+ 1)

2ε+ 1
,

from which we obtain b = 1 and β = 1. Finally, using (4) and (5) we find that
a = (ε+ 1) + 1. Since a = 2ε+ 1 it follows that ε = 1.
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Theorem 2.14. If αKa∪βKb is Seidel integral with µ∗
1 = 2a+1 then it belongs

to one of the following classes of Seidel integral graphs: (10) K(2β+3)m ∪ (β+
3)K3m or (20) K(2β+1)m ∪ 3(β + 1)Km or (30) 2K(β+1)m ∪ (β + 2)Km or
(40) 3K(2β+1)m ∪ (β + 1)Km for any β,m ∈ N.

Proof. Let us assume that αKa ∪ βKb is Seidel integral with µ∗
1 = 2a + 1.

Using that µ∗
1 − 1 = θa we obtain θ = 2. Using the right-hand side of relation

(2.8), we find that 2rα = 4. Since (2r) > 1 it follows that α = 1 or α = 2 or
α = 3.

Case 1. (α = 1). In this situation r = 2, which means that s = 2 and
t = 1. Using (4) and (5) we find that a = 2k + b. Using (2.9) we obtain

β =
3
(
(2k + b)− k

)
b

.

Consider the case when 3 | b. Setting b = 3m it follows that m | (k + 3m).
Setting k = ℓm we obtain β = ℓ + 3. Replacing ℓ with β we obtain the
corresponding class of Seidel integral graphs displayed in (10).

Consider the case when 3 ∤ b. In this situation b | k. Setting k = ℓb, we
obtain β = 3(ℓ+ 1). Replacing ℓ with β and replacing b with m we obtain the
corresponding class of Seidel integral graphs displayed in (20).

Case 2. (α = 2). In this situation r = 1, which means that s = 1 and
t = 1. Using (4) and (5) we find that a = k+b. Using (2.9) we obtain β = k+2b

b .
Setting k = ℓb, we obtain β = ℓ+2. Replacing ℓ with β and replacing b with m
we obtain the corresponding class of Seidel integral graphs displayed in (30).

Case 3. (α = 3). In this situation s = 2 and t = 3. Using (4) and (5)
we find that a = 2k + b. Using (2.9) we obtain β = k+b

b . Setting k = ℓb, we
obtain β = ℓ + 1. Replacing ℓ with β and replacing b with m we obtain the
corresponding class of Seidel integral graphs displayed in (40).

Theorem 2.15. If αKa∪βKb is Seidel integral with µ∗
1 = a+1 then it belongs

to one of the following classes of Seidel integral graphs: (10) K(3β+2)m ∪ (β +
2)K2m or (20) K(3β+1)(2m−1)∪2(β+1)K2m−1 or (30) 2K(3β+1)m∪ (β+1)Km

for any β,m ∈ N.

Proof. Let us assume that αKa ∪ βKb is Seidel integral with µ∗
1 = a + 1.

Using that µ∗
1 − 1 = θa we obtain θ = 1. Using the right-hand side of relation

(2.8), we find that 2rα = 3. Since (2r) > 1 it follows that α = 1 or α = 2.

Case 1. (α = 1). In this situation s = 3 and t = 2. Using (4) and (5) we
find that a = 3k + b. Using (2.9) we obtain

β =
2
(
(3k + b)− 2k

)
b

.

Consider the case when 2 | b. Setting b = 2m it follows that m | (k + 2m).
Setting k = ℓm, we obtain β = ℓ + 2. Replacing ℓ with β we obtain the
corresponding class of Seidel integral graphs displayed in (10).
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Consider the case when 2 ∤ b. Then b is an odd number. Setting b = 2m−1
it follows that (2m − 1) | (k + (2m − 1)). Setting k = ℓ(2m − 1), we obtain
β = 2(ℓ + 1). Replacing ℓ with β we obtain the corresponding class of Seidel
integral graphs displayed in (20).

Case 2. (α = 2). In this situation s = 3 and t = 4. Using (4) and (5)
we find that a = 3k + b. Using (2.9) we obtain β = k+b

b . Setting k = ℓb, we
obtain β = ℓ + 1. Replacing ℓ with β and replacing b with m we obtain the
corresponding class of Seidel integral graphs displayed in (30).

Theorem 2.16. If αKa∪βKb is Seidel integral with µ∗
1 = a then it is 2K3∪K1

for any α, β, a, b ∈ N.
Proof. Let us assume that αKa ∪ βKb is Seidel integral with µ∗

1 = a. Using
that µ∗

1 − 1 = θa and using the right-hand side of relation (2.8), we find that
2rα = 3a−1

a . Since (2r) > 1 it follows that α = 1 or α = 2.

Case 1. (α = 1). In this situation we have s
t = 3a−1

2a . We note that
(3a − 1, 2a) = 1 or (3a − 1, 2a) = 2. Consider the case when (3a − 1, 2a) = 1.
Then a is an even number. Let a = 2ε where ε ∈ N. Since (s, t) = 1 we find
that s = 6ε− 1 and t = 4ε. Using (4) and (5) we find that a = (6ε− 1)k + b.
So we arrive at

2ε = (6ε− 1)k + b ≥ (5ε)k + b ,

a contradiction. Consider the case when (3a − 1, 2a) = 2. Then a is an odd
number. Let a = 2ε + 1 where ε ∈ N. Since s

t = 3ε+1
2ε+1 and (s, t) = 1,

(3ε + 1, 2ε + 1) = 1, we find that s = 3ε + 1 and t = 2ε + 1. Using (4) and
(5) we find that a = (3ε + 1)k + b. So we obtain 2ε + 1 = (3ε + 1)k + b, a
contradiction.

Case 2. (α = 2). In this situation we have s
t = 3a−1

4a . Consider the case
when a is an even number. Let a = 2ε where ε ∈ N. Since s

t = 6ε−1
8ε and

(s, t) = 1, (6ε − 1, 8ε) = 1, we find that s = 6ε − 1 and t = 8ε. Using (4) and
(5) we find that a = (6ε−1)k+b. So we get 2ε = (6ε−1)k+b, a contradiction.

Consider the case when a is an odd number. Setting a = 2ε+ 1 we obtain
s
t = 3ε+1

2(2ε+1) , where ε ∈ N. We note that (3ε + 1, 2(2ε + 1)) = 1 or (3ε +

1, 2(2ε + 1)) = 2. Consider the case when (3ε + 1, 2(2ε + 1)) = 1. Then ε is
an even number. Let ε = 2ε• where ε• ∈ N. Since s

t = 6ε•+1
2(4ε•+1) and (s, t) = 1,

(6ε•+1, 2(4ε•+1)) = 1, we find that s = 6ε•+1 and t = 2(4ε•+1). Using (4)
and (5) we find that a = (6ε• +1)k+ b. So we obtain 4ε• +1 = (6ε• +1)k+ b,
a contradiction

Consider the case when (3ε+1, 2(2ε+1)) = 2. Then ε is an odd number. Let
ε = 2ε•−1 where ε• ∈ N. Since s

t = 3ε•−1
4ε•−1 and (s, t) = 1, (3ε•−1, 4ε•−1) = 1,

we find that s = 3ε• − 1 and t = 4ε• − 1. Using (4) and (5) we find that
a = (3ε•−1)k+ b. So we obtain 2(2ε•−1)+1 = (3ε•−1)k+ b, which provides
that k = 1. In view of this, we obtain b = ε• and a = 4ε• − 1. Finally, using
(2.9) we have

β =
(2ε• − 1)

ε•
·
(
2(4ε• − 1)− (4ε• − 1)

)
4ε• − 1

,
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from which we obtain ε• = 1 and β = 1. This completes the proof.

Theorem 2.17. If αKa∪βKb is Seidel integral with µ∗
1 = 2b+1 then it belongs

to the class of Seidel integral graphs 2K3m ∪ Km for any m ∈ N.

Proof. Let us assume that αKa ∪ βKb is Seidel integral with µ∗
1 = 2b + 1.

Using that µ∗
1−1 = θa we obtain θa = 2b. Using the right-hand side of relation

(2.8), we find that 2rα = 2(a+b)
a . Since (2r) > 1 and a > b it follows that α = 1

or α = 2 or α = 3.

Case 1. (α = 1). In this situation r = a+b
a . Since (s, t) = 1 it follows that

there exists ℓ ∈ N so that a+ b = ℓs and a = ℓt. Using (4) and (5) we find that
a = ks+ (s− t)ℓ. Using (2.9) we obtain

β =
(2s− t)

ℓ
· (k + ℓ)

t
.

Since b = (s − t)ℓ note that s > t and s ≥ 2. Next, since a = ℓt and a =

ks + (s − t)ℓ we obtain 2ℓt = (k + ℓ)s. So we arrive at β = 2(2s−t)
s . Since

(2s − t, s) = 1 we obtain s | 2, which means that s = 2 and t = 1. In view of
this, we have 2ℓ = 2(k + ℓ), a contradiction because k ∈ N.

Case 2. (α = 2). In this situation r = a+b
2a . Since (s, t) = 1 it follows that

there exists ℓ ∈ N so that a + b = ℓs and 2a = ℓt. Using (4) and (5) we find
that 2a = 2ks+ (2s− t)ℓ. Using (2.9) we obtain

β =
2(2s− t)

ℓ
· (k + ℓ)

t
.

Since 2a = ℓt and 2a = 2ks + (2s − t)ℓ we obtain ℓt = (k + ℓ)s. So we arrive

at β = 2(2s−t)
s . Since (2s − t, s) = 1 we obtain s | 2, which means that s = 1

or s = 2. Consider the case when s = 1. Then t = 1 and ℓ = (k + ℓ), a
contradiction.

Consider the case when s = 2. Then t = 1 or t = 2 or t = 3. Consider the
case when t = 1. Then ℓ = 2(k + ℓ), a contradiction. Consider the case when
t = 2. Then 2ℓ = 2(k + ℓ), a contradiction. Consider the case when t = 3.
Then 3ℓ = 2(k + ℓ) from which we obtain ℓ = 2k. So we obtain that β = 1,
a = 3k and b = k. Replacing k with m we obtain the corresponding class of
Seidel integral graphs represented in Theorem 2.17.

Case 3. (α = 3). In this situation r = a+b
3a . Since (s, t) = 1 it follows that

there exists ℓ ∈ N so that a + b = ℓs and 3a = ℓt. Using (4) and (5) we find
that 3a = 3ks+ (3s− t)ℓ. Using (2.9) we obtain

β =
3(2s− t)

ℓ
· (k + ℓ)

t
.

Since 3a = ℓt and 3a = 3ks+ (3s− t)ℓ we obtain 2ℓt = 3(k+ ℓ)s. So we arrive

at β = 2(2s−t)
s . Since (2s − t, s) = 1 we obtain s | 2, which means that s = 1

or s = 2. Consider the case when s = 1. Then t = 1 and 2ℓ = 3(k + ℓ), a
contradiction.
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Consider the case when s = 2. Then t = 1 or t = 2 or t = 3. Consider the
case when t = 1. Then ℓ = 3(k + ℓ), a contradiction. Consider the case when
t = 2. Then 2ℓ = 3(k + ℓ), a contradiction. Consider the case when t = 3.
Then ℓ = (k + ℓ), a contradiction. This completes the proof.

Theorem 2.18. There exists no Seidel integral graph from the class αKa∪βKb

with µ∗
1 = b+ 1 for any α, β, a, b ∈ N.

Proof. Let us assume that αKa ∪ βKb is Seidel integral with µ∗
1 = b + 1.

Using that µ∗
1 − 1 = θa we obtain θa = b. Using the right-hand side of relation

(2.8), we find that 2rα = 2a+b
a . Since (2r) > 1 and a > b it follows that α = 1

or α = 2.

Case 1. (α = 1). In this situation r = 2a+b
2a . Since (s, t) = 1 it follows that

there exists ℓ ∈ N so that 2a + b = ℓs and 2a = ℓt. Using (4) and (5) we find
that a = ks+ (s− t)ℓ. Using (2.9) we obtain

β =
(2s− t)

ℓ
· (k + ℓ)

t
.

Since b = (s − t)ℓ note that s > t and s ≥ 2. Next, since 2a = ℓt and

a = ks+ (s− t)ℓ we obtain 3ℓt = 2(k+ ℓ)s. So we arrive at β = 3(2s−t)
2s . Since

(2s − t, s) = 1 and (3, 2) = 1 it follows that s | 3 and 2 | (2s − t). In view of
this, we find that s = 3 and t = 2. Then we have 6ℓ = 6(k+ℓ), a contradiction.

Case 2. (α = 2). In this situation r = 2a+b
4a . Since (s, t) = 1 it follows that

there exists ℓ ∈ N so that 2a + b = ℓs and 4a = ℓt. Using (4) and (5) we find
that 2a = 2ks+ (2s− t)ℓ. Using (2.9) we obtain

β =
2(2s− t)

ℓ
· (k + ℓ)

t
.

Since 4a = ℓt and 2a = 2ks+ (2s− t)ℓ we obtain 3ℓt = 4(k+ ℓ)s. So we arrive

at β = 3(2s−t)
2s . Since (2s − t, s) = 1 and (3, 2) = 1 it follows that s | 3 and

2 | (2s − t). In view of this, we find that s = 3 and t = 2. Then we have
6ℓ = 12(k + ℓ), a contradiction. This completes the proof.

Theorem 2.19. There exists no Seidel integral graph from the class αKa∪βKb

with µ∗
1 = b for any α, β, a, b ∈ N and a > b ≥ 2.

Proof. Let us assume that αKa ∪ βKb is Seidel integral with µ∗
1 = b. Using

that µ∗
1 − 1 = θa we obtain θa = b − 1. Using the right-hand side of relation

(2.8), we find that 2rα = 2a+b−1
a . Since (2r) > 1 and a > b it follows that

α = 1 or α = 2.

Case 1. (α = 1). In this situation s−t
t = b−1

2a . Since (s− t, t) = 1 it follows
that there exists ℓ ∈ N so that (i) b− 1 = ℓ(s− t) and (ii) 2a = ℓt. Using (2.3)

we obtain4 (iii) |µ∗
2|+1 = tb(β−1)

s−t . Since (b, b−1) = 1 we obtain (tb, s− t) = 1,

4If b = 1 then we find that β = 1, which provides the class of Seidel integral graphs
Ka ∪K1 with µ∗

1 = b for any a > 1 (see Proposition 2.10).
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which provides that (s− t) | (β−1). Let (iv) β−1 = m(s− t) for some m ∈ N.
Further, since δ = µ∗

1 + |µ∗
2| using (i), (ii), (iii) and (iv), by a straightforward

calculation we obtain

(2.12) 2δ = 2ℓmt(s− t) + 2ℓ(s− t) + 2mt .

On the other hand, using the left-hand side of relation (2.1) we get δ = a +
4b− βb− 2. Then using (i), (ii) and (iv), by a straightforward calculation we
obtain

(2.13) 2δ = ℓ(6s− 5t)− 2ℓm(s− t)2 − 2ms+ 2mt+ 2 .

Finally, using (2.12) and (2.13) we arrive at (v) 2ℓms(s−t) = ℓ(4s−3t)−2ms+2.
We shall now demonstrate that s = t+1. On the contrary, assume that s ≥ t+2.
Then using (v) we obtain

4ℓms ≤ 2ℓms(s− t) = 4ℓs− 3ℓt− 2ms+ 2 ,

a contradiction. Setting s = t + 1 we can easily see that (v) is reduced to
2m(t+ 1)(ℓ+ 1) = ℓ(t+ 4) + 2, which provides that m = 1. Setting m = 1 we
now find that 2ℓ = ℓt + 2t, which provides that t = 1 and ℓ = 2. In view of
this, we obtain that a = 1 and b = 3, a contradiction.

Case 2. (α = 2). In this situation 2s−t
t = b−1

2a . We note that (2s− t, t) = 1
or (2s− t, t) = 2. We shall now consider the following two cases:

Case 2.1 (t is odd). Setting t → 2t − 1 we obtain 2s−(2t−1)
2t−1 = b−1

2a .
Therefore, since (2s− (2t− 1), 2t− 1) = 1 it follows that there exists ℓ ∈ N so
that (i) b− 1 = ℓ(2s− (2t− 1)) and (ii) 2a = ℓ(2t− 1). In view of this, since
b−1 ≥ 1 and b−1 = ℓ(2s−(2t−1)) note that s ≥ t. Using (2.3) we obtain (iii)

|µ∗
2|+1 = (2t−1)bβ

2s−(2t−1) . Since (b, b−1) = 1 we obtain ((2t−1)b, 2s− (2t−1)) = 1,

which provides that (2s − (2t − 1)) | β. Let (iv) β = m(2s − (2t − 1)) for
some m ∈ N. Further, since δ = µ∗

1 + |µ∗
2| using (i), (ii), (iii) and (iv), by a

straightforward calculation we obtain

(2.14) δ = 4ℓmt(s− t+ 1)− ℓm(2s+ 1) + ℓ
(
2s− (2t− 1)

)
+m(2t− 1) .

On the other hand, using the left-hand side of relation (2.1) we get (v) δ =
(4− β)b− 2. In view of this, it follows that β = 1 or β = 2 or β = 3. Consider
the case when β = 1. Using (iv) we find that s = t and m = 1. Using (i),
(v) and (2.14) we arrive at 2ℓt + 2t = 3ℓ + 2, which provides that t = 1. So
we obtain 2ℓ + 2 = 3ℓ + 2, a contradiction. Consider the case when β = 2.
Using (iv) we find that s = t and m = 2. Using (i), (v) and (2.14) we arrive at
4ℓt+ 2(2t− 1) = 3ℓ, a contradiction.

Consider the case when β = 3. Using (iv) we find that s = t and m = 3
or s = t + 1 and m = 1. Consider the case when s = t and m = 3. Using (i),
(v) and (2.14) we arrive at 6ℓt+ 3(2t− 1) = 3ℓ− 1, a contradiction. Consider
the case when s = t + 1 and m = 1. Using (i), (v) and (2.14) we arrive at
6ℓt+ 2t = 3ℓ, a contradiction.
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Case 2.2 (t is even). Since (s, t) = 1 it follows that s is an odd number.

Setting t → 2t and s → 2s−1 we obtain (2s−1)−t
t = b−1

2a . Since ((2s−1)−t, t) =
1 it follows that there exists ℓ ∈ N so that (i) b − 1 = ℓ((2s − 1) − t) and (ii)
2a = ℓt. Using (2.3) we obtain (iii) |µ∗

2| + 1 = tbβ
(2s−1)−t . Since (b, b − 1) = 1

we obtain (tb, (2s− 1)− t) = 1, which provides that ((2s− 1)− t) | β. Let (iv)
β = m((2s − 1) − t) for some m ∈ N. Further, since δ = µ∗

1 + |µ∗
2| using (i),

(ii), (iii) and (iv), by a straightforward calculation we obtain

(2.15) δ = ℓmt
(
(2s− 1)− t

)
+ ℓ

(
(2s− 1)− t

)
+mt .

On the other hand, using the left-hand side of relation (2.1) we get (v) δ =
(4− β)b− 2. In view of this, it follows that β = 1 or β = 2 or β = 3. Consider
the case when β = 1. Using (iv) we find that (2s−1)− t = 1 and m = 1. Using
(i), (v) and (2.15) we arrive at ℓt + t = 2ℓ + 1, which provides that t = 2. So
we obtain 2ℓ+ 2 = 2ℓ+ 1, a contradiction.

Consider the case when β = 2. Using (iv) we find that (2s− 1)− t = 1 and
m = 2 or (2s− 1)− t = 2 and m = 1. Consider the case when (2s− 1)− t = 1
and m = 2. Using (i), (v) and (2.15) we arrive at 2ℓt+2t = ℓ, a contradiction.
Consider the case when (2s− 1)− t = 2 and m = 1. Using (i), (v) and (2.15)
we arrive at 2ℓt+ t = 2ℓ, a contradiction.

Consider the case when β = 3. Using (iv) we find that (2s− 1)− t = 1 and
m = 3 or (2s− 1)− t = 3 and m = 1. Consider the case when (2s− 1)− t = 1
and m = 3. Using (i), (v) and (2.15) we arrive at 3ℓt+3t = −1, a contradiction.
Consider the case when (2s− 1)− t = 3 and m = 1. Using (i), (v) and (2.15)
we arrive at 3ℓt+ t = −1, a contradiction.

Theorem 2.20. If (α, β, a, b, δ) is a positive integral solution of the Diophan-
tine equation (2.2) then it could be represented by one of the following forms:

• a = (t+ 2ℓn− (ℓ+ n))k + (2ℓ− 1)m and b = (2ℓ− 1)m ;

• α =
k(2t− 1)

τ
x0 +

m(2t− 1)

τ
z ;

• β =

[
k(2t− 1)

τ
y0 +

a

τ
z

]
(2n− 1) ;

• δ = (2ℓ− 1)(2n− 1)k +

[
k(2t− 1)

τ
y0 +

a

τ
z

]
2
(
t+ 2ℓn− (ℓ+ n)

)
m ,

with the same conditions (ii)–(v) which are related to (2.6) ;

• a = (t+ ℓn)k + ℓm and b = ℓm ;

• α =
2kt

τ
x0 +

tm

τ
z ;

• β =

[
2kt

τ
y0 +

a

τ
z

]
n ;

• δ = 2kℓn+

[
2kt

τ
y0 +

a

τ
z

](
t+ ℓn

)
m ;

with the same conditions (ii)–(v) which are related to (2.7) .
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Proof. According to Theorem 2.7 it suffices to derive the expression for δ.
First, from (2.1) we have (i) µ∗

1 − µ∗
2 = δ and (ii) µ∗

1 + µ∗
2 = αa + βb − 2(a +

b − 1). Using (i), (ii) and the equality µ∗
1 = 2(rα − 1)a + 1 (see (2.8)), by a

straightforward calculation we obtain that δ = 4rαa− (αa+ βb)− 2(a− b).

Case 1. (t is odd). Using (4), (5), (1.1) and (1.2) we obtain a − b = ks,
rαa = ks + ηms and β = η(2n − 1). So we find that δ = (2ℓ − 1)(2n − 1)k +
2(t+ 2ℓn− (ℓ+ n))ηm, which provides the statement related to (2.6).

Case 2. (t is even). Using (4), (5), (2.1), (2.2), (2.3) and (2.4) we obtain
that a− b = k(2s− 1), 2rαa = 2k(2s− 1)+ ηm(2s− 1) and β = ηn. So we find
that δ = 2kℓn+(t+ ℓn)ηm, which provides the statement related to (2.7).

3. Appendix

In this section we present the data given in Tables 1 and 2, which represent
the set of all Siedel integral graphs from the class αKa∪βKb with µ∗

1 ≥ 2, whose
order does not exceed 20. In these tables a Seidel integral graph is described
by the parameters α, β, a, b and ones presented in the class of Seidel integral
graphs in Theorem 2.7. In Tables 1 and 2 the symbol ’i’ is the identification
number of an integral graph.

i x0 y0 z o α β a b τ t k ℓ m n µ∗
1 µ∗

2

1 0 – 1 2 7 2 1 3 1 3 2 1 1 1 1 3 – 2
2 0 – 1 2 7 2 3 2 1 1 1 1 1 1 1 5 – 2
3 0 – 1 1 9 1 6 3 1 1 1 1 1 1 2 7 – 4
4 0 – 1 2 10 2 4 3 1 1 1 2 1 1 1 7 – 3
5 0 – 1 3 11 3 2 3 1 3 2 1 1 1 1 7 – 2
6 0 – 1 3 11 3 5 2 1 1 1 1 1 1 1 9 – 2
7 0 – 1 2 13 2 3 5 1 5 3 1 1 1 2 7 – 4
8 0 – 1 2 13 2 5 4 1 1 1 3 1 1 1 9 – 4
9 0 – 1 1 13 1 7 6 1 3 2 1 1 1 4 9 – 8
10 0 – 1 2 14 2 1 6 2 6 2 2 1 2 1 5 – 5
11 0 – 1 1 14 1 5 9 1 3 2 2 1 1 3 7 – 11
12 0 – 1 2 14 2 3 4 2 2 1 2 1 2 1 9 – 5
13 0 – 1 1 14 1 9 5 1 1 1 2 1 1 2 11 – 7
14 0 – 1 4 15 4 3 3 1 3 2 1 1 1 1 11 – 2
15 0 – 1 4 15 4 7 2 1 1 1 1 1 1 1 13 – 2
16 0 – 1 2 16 2 6 5 1 1 1 4 1 1 1 11 – 5
17 0 – 1 3 16 3 7 3 1 1 1 2 1 1 1 13 – 3
18 – 1 – 1 2 17 3 1 5 2 5 3 1 1 2 1 9 – 4
19 0 – 1 1 17 1 4 5 3 1 1 1 2 1 1 11 – 8
20 1 1 1 17 3 4 3 2 1 1 1 1 2 1 13 – 4
21 2 3 – 3 18 3 3 5 1 1 2 2 1 1 1 11 – 3
22 0 – 1 1 18 1 6 6 2 2 1 2 1 2 2 13 – 9
23 0 – 1 1 19 1 2 9 5 3 2 1 3 1 1 7 – 14
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i x0 y0 z o α β a b τ t k ℓ m n µ∗
1 µ∗

2

24 – 1 – 1 2 19 3 1 6 1 3 5 1 1 1 1 9 – 2
25 0 – 1 1 19 1 3 10 3 5 3 1 2 1 2 9 – 14
26 0 – 1 2 19 2 5 7 1 7 4 1 1 1 3 11 – 6
27 0 – 1 2 19 2 7 6 1 1 1 5 1 1 1 13 – 6
28 0 – 1 5 19 5 4 3 1 3 2 1 1 1 1 15 – 2
29 0 – 1 1 19 1 12 7 1 1 1 3 1 1 2 15 – 10
30 0 – 1 5 19 5 9 2 1 1 1 1 1 1 1 17 – 2
31 0 – 1 1 19 1 15 4 1 1 1 1 1 1 3 17 – 6
32 0 – 1 2 20 2 2 9 1 3 2 4 1 1 1 7 – 5
33 0 – 1 2 20 2 4 6 2 2 1 4 1 2 1 13 – 7

Table 1.

i x0 y0 z o α β a b τ t k ℓ m n µ∗
1 µ∗

2

1 0 – 1 1 8 1 4 4 1 1 1 1 1 1 2 5 – 5
2 0 – 1 1 9 1 3 6 1 2 2 1 1 1 3 4 – 7
3 0 – 1 2 10 2 2 4 1 2 2 1 1 1 1 5 – 3
4 0 – 1 1 11 1 3 5 2 1 1 1 2 1 1 6 – 7
5 1 1 – 1 13 2 1 6 1 2 4 1 1 1 1 4 – 3
6 0 – 1 1 13 1 2 9 2 3 3 1 2 1 2 4 – 11
7 0 – 1 1 13 1 6 7 1 1 1 2 1 1 2 8 – 9
8 0 – 1 1 14 1 2 8 3 2 2 1 3 1 1 5 – 11
9 0 – 1 2 16 2 4 6 1 3 3 1 1 1 2 9 – 5
10 0 – 1 1 16 1 4 8 2 1 1 2 2 1 1 9 – 11
11 0 – 1 3 16 3 4 4 1 2 2 1 1 1 1 11 – 3
12 1 3 – 3 17 2 3 7 1 1 2 2 1 1 1 8 – 5
13 0 – 1 1 18 1 3 12 2 4 2 2 1 2 3 7 – 15
14 0 – 1 1 18 1 8 10 1 1 1 3 1 1 2 11 – 13
15 0 – 1 1 18 1 10 8 1 2 2 1 1 1 5 13 – 11
16 0 – 1 1 19 1 4 15 1 3 3 2 1 1 4 6 – 17
17 0 – 1 1 19 1 7 12 1 4 4 1 1 1 7 10 – 15
18 0 – 1 2 20 2 2 8 2 4 2 2 1 2 1 9 – 7
19 0 – 1 2 20 2 12 4 1 1 1 1 1 1 2 17 – 5

Table 2.

In this section, the Seidel integral graphs represented in Table 1 are obtained
by using relation Theorem 2.7 (2.6), while the Seidel integral graphs represented
in Table 2 are obtained by using relation Theorem 2.7 (2.7). In view of this,
there exist exactly 33+19 = 52 non-isomorphic Seidel integral graphs from the
class αKa ∪ βKb with µ∗

1 ≥ 2, whose order does not exceed 20.
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Next, graphs represented in Table 1 with identification numbers i = 2, 3, 4,
5, 8, 13, 16, 20, 21, 27, 29 are Seidel integral graphs with µ∗

1 = 2ab + 1, while
there is no graph represented in Table 2 with µ∗

1 = 2ab + 1. In view of this,
there exist exactly 11 + 0 = 11 non-isomorphic Seidel integral graphs from the
class αKa ∪ βKb with µ∗

1 = 2ab+ 1, whose order does not exceed 20.
Next, (i) graphs represented in Table 1 with identification numbers i = 12,

22, 33 are Seidel integral graphs with µ∗
1 = ab+1 and (ii) graphs represented in

Table 2 with identification numbers i = 1, 3, 7, 12, 14 are Seidel integral graphs
with µ∗

1 = ab+1. In view of this, there exist exactly 3 + 5 = 8 non-isomorphic
Seidel integral graphs from the class αKa ∪βKb with µ∗

1 = ab+1, whose order
does not exceed 20.

Next, graphs represented in Table 1 with identification numbers i = 2, 3, 4,
5, 8, 12, 13, 16, 19, 21, 22, 27, 29, 33 are Seidel integral graphs with µ∗

1 = 2a+1,
while there is no graph represented in Table 2 with µ∗

1 = 2a+1. In view of this,
there exist exactly 14+0 = 14 non-isomorphic Seidel5 integral graphs from the
class αKa ∪ βKb with µ∗

1 = 2a+ 1, whose order does not exceed 20.
Next, there is no graph represented in Table 1 with µ∗

1 = a+1, while graphs
represented in Table 2 with identification numbers i = 1, 3, 4, 7, 10, 12, 14, 18
are Seidel integral graphs with µ∗

1 = a+ 1. In view of this, there exist exactly
0 + 8 = 8 non-isomorphic Seidel6 integral graphs from the class αKa ∪ βKb

with µ∗
1 = a+ 1, whose order does not exceed 20.

Next, graphs represented in Table 1 with identification numbers i = 1, 10
are Seidel integral graphs with µ∗

1 = 2b+1, while there is no graph represented
in Table 2 with µ∗

1 = 2b+ 1. In view of this, there exist exactly 2 + 0 = 2 non-
isomorphic Seidel integral graphs from the class αKa ∪ βKb with µ∗

1 = 2b+ 1,
whose order does not exceed 20. This completes my explanation on Tables 1
and 2.

00702 00801 00902 01002 01103 01306 01405 01502 01605

01704 01805 01911 02004 02107 02210 02306 02405 02505

02611 02708 02813 02908 03004 03116 03212 03314 03418

03508 03611 03710 03821 03920 04014 04108 04212 04317

04418 04512 04618 04718 04818 04914 05011 05119 05223

05315 05424 05517 05625 05725 05825 05918 06012 06117

06228 06317 06428 06514 06634 06722 06832 06922 07021

5We note (i) graph represented in Table 1 with identification number i = 19 belong to
the class Theorem 2.14 (10); (ii) graphs represented in Table 1 with identification numbers
i = 3, 13, 22, 29 belong to the class Theorem 2.14 (20); (iii) graphs represented in Table 1
with identification numbers i = 2, 4, 8, 12, 16, 27, 33 belong to the class Theorem 2.14 (30)
and (iv) graphs represented in Table 1 with identification numbers i = 5, 21 belong to the
class Theorem 2.14 (40).

6We note (i) graphs represented in Table 2 with identification numbers i = 4, 10 belong to
the class Theorem 2.15 (10); (ii) graphs represented in Table 2 with identification numbers
i = 1, 7, 14 belong to the class Theorem 2.15 (20) and (iii) graphs represented in Table 2
with identification numbers i = 3, 12, 18 belong to the class Theorem 2.15 (30).
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07120 07221 07333 07428 07515 07645 07723 07839 07922

08028 08127 08232 08327 08432 08523 08635 08725 08832

08921 09025 09134 09236 09335 09444 09523 09637 09729

09830 09942 10031 10130 10245 10329 10440 10526 10637

10724 10846 10926 11041 11130 11245 11328 11449 11534

11646 11739 11852 11923 12041 12128 12237 12331 12467

12528 12638 12733 12847 12947 13043 13130 13256 13350

13451 13529 13670 13729 13860 13941 14042 14140 14240

14338 14459 14526 14656 14735 14857 14933 15038 15139

15270 15344 15457 15541 15668 15746 15852 15947 16059

16131 16260 16344 16459 16548 16663 16734 16862 16936

17059 17153 17266 17334 17467 17542 17664 17744 17862

17934 18052 18146 18258 18355 18464 18532 18668 18752

18880 18946 19065 19140 19271 19347 19466 19547 19662

19731 19883 19950 20062 20161 20275 20342 20495 20531

20674 20760 20875 20945 21056 21141 21272 21358 21472

21545 21688 21761 21865 21965 22075 22145 22277 22339

22474 22553 22661 22739 22895 22953 23071 23161 23276

23344 23491 23557 23682 23753 23867 23939 24079 24145

24265 24371 24480 24546 24689 24757 24898 24966 25068

Table 3.

There exist exactly 9620 non-isomorphic Seidel7 integral graphs with8 µ∗
1 ≥

2, which belong to the class αKa ∪ βKb whose order does not exceed 250.
In particular9, the total numbers of such integral graphs which belong to the
classes Theorem 2.7 (2.6) and (2.7) are 5249 and 4371, respectively. Table 3
contains a distribution of those graphs in respect to their orders. In Table 3 the
symbol on denotes the number of integral graphs of the corresponding order
o = 1, 2, . . . , 250. In this table on is omitted if the corresponding number
n = 0.

Conclusion. Using results and a similar procedure presented in this work, it
is possible to investigate any class of Seidel integral graphs which have exactly
two main eigenvalues.

7In this work the data given in Tables 1, 2 and 3 are obtained in two different ways: (i)
they are generated by using relations

(
(2.6) and (2.7)

)
and (ii) by varying the parameters

α, β, a, b in all possible ways in equation (2.2).
8Since Ka∪Kb is Seidel integral with µ∗

1 = 1 for any a > b (in order to reduced the data),
we consider in Tables 1, 2 and 3 only Seidel integral graphs from the class αKa ∪ βKb with
µ∗
1 ≥ 2.

9In particular, there exist exactly 53023 and 49299 non-isomorphic Seidel integral graphs
with µ∗

1 ≥ 2 and order o ≤ 1000, which belong to the classes Theorem 2.7 (2.6) and (2.7),
respectively. In view of this, there exist exactly 53023 + 49299 = 102322 non-isomorphic
Seidel integral graphs from the class αKa ∪ βKb with µ∗

1 ≥ 2, whose order does not exceed
1000.
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