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On the Minkowski fractional integral inequality using
k-Hilfer the fractional derivative

Vaijanath L. Chinchandf] Asha B. Nald’| and Satish K. Panchal]

Abstract. In this paper, we first introduce the k-Hilfer fractional
derivative operator. Based on these, we obtain the reverse Minkowski
fractional integral and some other fractional inequalities. Moreover, we
discuss a fractional integral inequality that is connected to the Minkowski
inequality by employing k-Hilfer fractional derivative operator. These
studies may motivate further research in a variety of disciplines of pure
and applied science.
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1. Introduction

The study of fractional order integral and derivative operators is called
fractional calculus. Due to its many applications in the fields of science, fi-
nance, and biotechnology, fractional calculus is immensely significant. This
topic is just as crucial as calculus itself, and it has been very influential in
recent years, see [2, [, [5] [T0] [15] 17, 18] 20 27]. The ability to solve fractional
partial differential equations, fractional boundary value issues, and fractional
ordinary differential equations heavily depends on the use of fractional integral
inequalities. Additionally, they provide upper and lower bounds for solutions
to fractional boundary value problems. Using the Riemann-Liouville fractional
integral, Dahmani examined the reverse Minkowski fractional integral inequal-
ity in [9]. Nale et al.[22] obtained some Minkowski type fractional integral
inequalities by considering a generalized proportional Hadamard fractional in-
tegral operator. The fractional integral inequalities presented by Ahmed Anber
et al. using the Riemann-Liouville fractional integral are comparable to those
found in the Minkowski fractional integral inequality [3]. In [6l &) [24] 25] 26]
the authors obtained the Minkowski inequality and some other fractional in-
equalities for convex functions by employing Saigo and fractional proportional
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integral operators. In [7], Chinchane studied the reverse Minkowski fractional
integral inequality by considering generalized k-fractional integral operator in
terms of the Gauss hypergeometric function. Mubeen et al. [21] have introduced
the Minkowski inequality involving generalized k-fractional conformable inte-
grals. Moreover, the several kind of fractional integral and derivative operators
have been introduced. Some differential inequalities, such as those of the Opial
type involving the fractional derivatives of two functions and those involving
the Caputo K-fractional derivative, have been demonstrated by a number of re-
searchers in the field of fractional differential inequalities. [I3]. Recently, Igbal
et al. [14] used the k-Hilfer fractional derivative operator to achieve the Griiss
inequality. Our work is strongly inspired by the references [I}, [14] [T6], 19, 22}, [23].
Our main aim of this study is to prove a new the Minkowski inequality using
the k-Hilfer fractional derivative and Young’s inequality.

2. Preliminaries

In [T1], the definition of the gamma k-function was given by Diaz et al. and
is as follows:

Definition 2.1. The I'; function is the generalization of the classical I' function
and is defined as follows:

1.1 .
Ty(3) = lim nk((?;k)k
n—oo “ n,k

k> 0,R(5) >0,

where (5¢)p, 1 = »#(3c+k)(5¢42E)..., e+ (n—1)k),n > 1, is called Pochhammer
k symbol. The integral representation is provided by

oo 4k
(2.1) Tg(x) = / t”ile%dt, R(s¢) > 0.
0

Specially for k =1, 'y (32) = T'().

The set of complex-valued Lebesgue measurable functions f such that |f|?
is integrable on a finite or infinite interval of the real number set R is denoted
by the symbol LP[a,b]. We denote by AC™[a,b] the space of complex-valued
functions f which have continuous derivatives up to order (n— 1) on [a, b] such
that f(»=1) belongs to AC]a, b].

The following definition is provided in the citation [12].

Definition 2.2. Let f € L'[a,b], kK > 0, f * Ka_pa-¢ € AC'a,b]. The

k-fractional derivative operator kDgfr’ foforder 0 <€ <1andtype0<n<1
with respect to » € [a, b] is defined by

—e d —)(1—
(2:2) ("D o) 1= LS - (916,

whenever the right hand side exists. The derivative (2.2)) is usually called
k-Hilfer fractional derivative. A more general representation as in equation

(2.2)) reads like this:
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Definition 2.3. Let f € Ll[a,b], f * K@ _pym—g) € AC"[a,b], n —1 < § <n,
0 <n <1, n &N then the following equation holds true:
_ey dV 1) (n—
(2:3) (DTG = (L (LD 1),
The relation ([2.3)) can be expressed in the following way using the Riemann-
Liouvile fractional integral properties:

(*DST 1) (0) = (120 O (D1 S £ (50))

(24) 1 * . _
= m/ﬂ (%_y)¥71((D§i7k(n <) ()dy.

We generate many classical fractional derivatives from the derivative as

special cases by setting

(i) k =1, we get Hilfer fractional derivative presented in [13],

(iYk = 1,n = O,Dgf f= Dﬁ +f, we arrive at Riemann-Liouvile fractional

derivative of order & given in [27],

(iii)k = 1,n = 1,n = 1 is a Caputo fractional derivative of order £ provided in

[19).

3. A Reverse Minkowski fractional integral inequality

Here, we prove the k-Hilfer fractional derivative-based reverse Minkowski
fractional integral inequality.

Theorem 3.1. Let k > 0, p > 1 and (kpgﬂ )(3¢) denote the k-Hilfer frac-
tional derivative of order £, 0 < € < 1, and type 0 < n < 1. Suppose that
(kDgin(nfé)f)(%), (kbgi’“"*@g)(%) are two integrable functions on [0, 00),
such that (FDELNGAL ()] < o0, (MDELPGANG (] < 0. 0 < m <
k/D(ELJrTi(ﬂ*&)f(T)
W <M, 7 € (a,x), we have

YDl 7(60)] + [FDS (ol ()]

s [FPs s + 9y G2

. . krDE‘FT/(”—i)f(T) .
Proof. Using the condition W,s)() <M, 7 € (a, »), we can write
a+ g\T

(3.1)

=

<

(32) M+ (DEOp) (1) <M (DO (f 4 g)7) (7).

Multiplying both sides of (3.2)) by m(% - 7)%_1, then integrating

the resulting identity with respect to 7 from a to s, we get

M+DP 7 280 g pean(n=€) gy
) / (3¢ — 1) (*DEEO £y (7)d

MP
= FT(n(n—€)

(3.3) e -
[ G (DEO O 4 g7 ()i
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which is equivalent to

MP

&, ¢p _
(3.4) kDa"rf (5) < M)

[*DELI(f + 91 ()]

as a result, we may write

=

65 [Dr0a] < s [D8 +ar )]

( k’Diin(n_g)f)(T)

—at -~ - we obtain
(kD5 g)(r)

On other hand, using condition m <
(3.6)

(145 () < o (DO + (D))

therefore,
(3.7)

p p p
(145) (D9 < (1) (R ONEHCEDET )

nn—=¢)
%

Now, multiplying both sides of (3.7) by m(% —7) —1 then inte-

grating resulting the identity with respect to 7 from a to sz, we have

sy Do) < (i) [osu el

m+41
The inequalities (3.1)) follows by adding the inequalities (3.5)) and (3.8]). O

The following is our second finding.

Theorem 3.2. Letk > 0, p > 1 and suppose that ( ’“Diin(n_g)f), (’fDﬁi”(”‘f)g)

. . +n(n—
are two positive functions on [0,00), such that [( kDfH_n( 5)f)p(%)] < 00,
(kpﬁin(nfﬁ)f)(.r)

[( kpgin("*g)f)l)(%)] < 00. [fO <m S m S M, then
a+
(D527 (a)” + [FDigo0] " = (PEmED o)

(3.9) s X
"Dz G|+ [FDEg )]

Proof. Multiplying the inequalities (3.5)and (3.8]), we obtain

M

< [(*DE21 (0 + (DELg) oy

(WD) [t [(4pstoroal]

I

(3.10)

=
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We applied the Minkowski inequality to the right hand side of (3.10) and the
result is
) 2

([Cos2076a)" + D277 G4

T =

("D )G + (“DEg) ()|

=

(3.11) ( ,
g V.
which implies that

2

[4DE(7 0 + 9ty < [FDE2Ga]” + [FDEg ()]
2 [MDEn (o) [FDEdg ()]

2
p

(3.12)

using (3.10) and (3.12) we obtain (3.9). Theorem is thus proved. O

4. Further fractional integral inequalities

Here, we use the k-Hilfer fractional derivative to establish a few new integral
inequalities.

Theorem 4.1. Letk > 0,p > 1 and ( kD£ W f)(32) denote the k-Hilfer fractional
derivative of order £, 0 < £ < 1, and type 0 < n < 1, %—i—% =1 and let

(k’l?ﬁi"(n_&)f), (kDﬁi"(”‘ﬁ)g) be two positive function on [0,00), such that
e e kD(ELJrU(ﬂ 5)f(7_)
DL f(20) < o0, DI Vg(5) < 0o, IO < m < o) S

M < o0, T € (a, ), we have

(41) [P >]% [’“Diﬂgwfs (M)‘”Iq ["DET G g (7]

m

kDE‘FW(n g)f(T)

Proof. Since <M, 7 € (a, ») therefore

(kD§+n(n E)g(,,.) —

(4.2) [(FDE D g) ()]s > MT[(FDET S ()],

and also,

[FDS TS f()) [FDE T g ()
> M DI ()]s PO f(r)
>M [kDEJrn(n E)f(v-)} +1
> M7 [kD£+n(n £)f(7_)}_

(4.3)

=
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n(n—=¢)
k

Multiplying both sides of (4.3)) by m(% —7) ~! then integrating

the resulting identity with respect to 7 from a to s, we have

(4.4)

; * . "("kfé)—l kyé+n(n—¢) - % knE+n(n—¢) - % .
ka(n(n—g))/a (5= 1) ["Dat fO]» "D g(7)]ad

-1
> Mr
kLk(n(n —¢))
which implies that

[ o=y DO f(rya,

(45) DY (£GP 97| 2 MT [FDETF ().
Consequently,
@s) (D82 1P nt])) = M [FDErrGa]

On the other hand, since mkDgin(n%)g(T) < kDgf'(TH )f(T), T € (a, ), then
we have

(4.7) [(*DEE O f) ()7 > mr[(FDETT ) g) (7)),

multiplying equation by [( ’fo;i”(”‘g)g) (’7')]%, we have
(DI O @D g) ()]

(4.8) > mr [(FDSET 8 ) (m)]a [PPSO g) (7))
= mz [(*DIT T g) ()]

3 =

n(n—¢
) 1

Multiplying both sides of (4.8)) by m(%—T 7 —1_ Then integrating

the resulting identity with respect to 7 from a to s, we have

(4.9)

1 " o ) O 1 kpyEEn(n—€) py g1 d ke pEn(n—€) 1 d o0
g [, e DS @R DE ) () ()
m% %%_7’ ”("k*@—l kné+n(n—¢) Ndr
> gy D g
that is,
(4.10) DY ()3 lg(]F] = mb [FDETg()]

Hence we can write,

1 1

(4.11) ("D [£GaPlgCa7] ) = mae [ FDETg()] "

multiplying equation (4.6) and (4.11) we get the result (4.1)). O
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Theoren[l 4.2[. Let ’“Diin(n_é)f(%) and kDf;i"("‘f)g(%) be two positive func-
tions on |0, 00|, such that

DGO f(56) < o0, FDITTMTIg(50) < 00, [0 < m <

M < o0, T € [a,%]. Then we have

’“Dii”m*&)f(‘r)p
k'Diin("—f)g(T)q —

@) [*500) [FDSrerea] " < A [DErsGasA]
Where p > 1, % +
derivative.

=1and k>0, kDgff(%) denote the k-Hilfer fractional

1
q

Proof. Replacing kDﬁi”(”’@f(r) and kDgin(nfé)g(T) by kDgi”("’g)f(r)P
and kng;"("_E)g(T)q, T € [a, ], in Theorem 4.1, we obtain (4.12)). O

Here, we will discuss a fractional integral inequality that is connected to
the Minkowski inequality.

Theorem 4.3. Let k > 0 and ( kDg’ff)(%) denote k-Hilfer fractional derivative

of order £, 0 < & < 1, and type 0 < n < 1. Suppose that (’fDﬁi”(”*@f) and

kDg'H'(n_E)g are two integrable functions on [0,00) such that ¥ + 1 = 1,
at P q

kD§+77(” E)f(‘r)

p>1, and0<m<m

<M, 7 € [a, |, Then we have

DELIF el < i (PP + 7))
(4.13) -
247! nipq
+m<k@§ [f1+ g% (> ))

kD€+'i(n é)f( )

Proof. Since ot

P IO < M, 7 € [a, ], we have

(4.14) <M + 1) FDSE ) £ () < M(’%Dﬁi”(”‘f)f + ’“Diin("_f)g> (7).

Taking the p!" power on both bideb of ( and multiplying the resulting

identity by m(% —7) e then mtegratmg the resulting identity
with respect to 7 from 0 to s, we have
ne [ " e

I [ e M (DG ) o)

sy RO E) o
' MP /% nn=¢ k §+7] n—¢)
< - »—T) F D; + dr,
T [, e (f +9))(7)
therefore,
MP

(4.16) DS (50)] < DS + 9) ().

(M+1)p
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BpEtn(n=8) £y

a+
On other hand, 0 < m < D)

T € [a, »] we can write
417) 4+ 1) D) < (FDST O f 4 RDST T g) (7).

Taking ¢'* power on both side (4.17) and multiplying resulting identity by
n(n—¢§)
k

m(% - 7) —1 then integrate the resulting identity with respect

to 7 from a to s, we have

(m+1)4 g s — )L =1k pEtn(=€) Lay () dr
krk(n(n_@)/a< ) (DL ga) ()

1
= Fx(n(n—8)

(4.18) B -
/ (e =) DTS + 9)) (7)),

consequently, we obtained

e DI+ 962

(4.19) D g"(x)] <
Now, using Young’s inequality,

(4.20)

DO () | DR )

[kpgiﬁ(n—i)f(ﬂ kDEin(n—é)g(T)] < S -

n(n=¢£)

Multiplying both sides of (4.20)) by m(%—r) 7 ~! then integrating
the resulting identity with respect to 7 from a to s, we get

(421) DY ()g()] < }D EDED [P ()] + é’f@iﬂg%m],

from equation (4.16)), (4.19) and (4.21]), we have
(4.22)

MDELIF 0] < i PR+ Gl s DS 9) )L

now using the inequality (a +b)" < 2"~Y(a” +b"), r > 1, a, b > 0, we have

(4.23) EDSPI(f + )P (50)] < 22N RDET(FP + gP) ()],
and
(4.24) RDSTI(f + 9)" (3] < 207 FDLT(f1 + g7) (52)].

By including (4.23)), (4.24) in (4.22)), we deduce the inequality (4.13).
Thus, the proof is complete. O
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5. Concluding Remarks

In [22] Nale et al. obtained Minkowski-type inequalities using generalized
proportional Hadamard fractional integral operators. In [I4], Igbal et al. stud-
ied certain new Gruss inequalities by using k-Hilfer fractional derivative op-
erator. Motivated by the work in [14] [22], in this paper, we studied reverse
Minkowski fractional integral inequalities and other fractional inequalities us-
ing k-Hilfer fractional derivative operator. Also, using Young’s inequality, we
presented fractional integral inequality that is connected to the Minkowski in-
equality. Using this work we obtained more general inequalities than in the clas-
sical cases. The inequalities investigated in this paper give some contribution
to the fields of fractional calculus and k-Hilfer fractional derivative operator.
The technique used in this study to obtain the new fractional inequalities may
motivate researchers to perform future research in this area.
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