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Solution of an infinite system of third order fuzzy
differential equations in sequence space ¢y, and /; via
measures of noncompactness and operator type
contraction

Tanweer Jalal] and Asif Hussain JanT)

Abstract. In this paper, the existence of solutions to third order fuzzy
differential equations in the sequence space ¢y and ¢; is investigated using
the measure of noncompactness and operator type contraction. Suitable
examples are used to demonstrate the findings.
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1. Introduction

In a dynamical setting, fuzzy differential equations (FDEs) appear to be a
natural technique to characterise epistemic uncertainty propagation. The study
of initial and boundary value problems for fuzzy differential equations is a recent
research topic that is quite fascinating. Many authors have studied initial
and boundary value problems associated with first and second order fuzzy
differential equations on the metric space (E™, D) of normal fuzzy convex sets
with the distance D given by the supremum of the Hausdorff distance between
the corresponding a-level sets with the distance D [I]. Under the normal
assumptions of continuous and Lipschitz condition on function f, O.Kaleva
[14] proved the existence and uniqueness theorem for initial value problems
related with first order fuzzy differential equation

y(w) = f(w,y(w)).

Furthermore, if f is continuous and bounded, J.J.Nieto [24] established a
variant of Peano’s existence theorem for fuzzy differential equations. Laksh-
mikantham et al. [I5] have published criteria for the presence and uniqueness
of two-point boundary value problems.

The concept of infinite system of fuzzy differential equations generalises
the concept of infinite system of ordinary differential equations, defined as
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differential inclusion for non-uniform upper hemicontinuity convex set with
compactness in fuzzy set.
Mathematically:

dz;(w)
dw

:fi(wvx(w)aa)v Voae [071]'

The supremum of the Hausdorff distance between the corresponding a-level
sets provides solutions to the initial and boundary value problems connected
with the infinite system of fuzzy differential equations on the metric space
(E™, D) of normal fuzzy convex sets with distance D.

A fuzzy differential equation with fractional differential operator is

da (w)
dwn
where n is a rational number (p/q) called the fractional derivative.
Let I = [a,b] C R and f : I x E™ — E™ be continuous. A mapping
¢ : I — E™ is a solution of initial value problem

= filw,z(w),a), ¥V «a€][0,1],

y; = fi(t,y),y(a) = yo,

if and only if ¢ is a solution of integral equation

vyi(t) = o +/ fi(s,y(s))ds.

Now, we will give some preliminaries about the concept of measures of
noncompactness.

A measure of noncompactness is a nonnegative real-valued map generated
on a collection of bounded subsets of a normed (metric) space that maps the
class of relatively compact sets (called kernel) to zero while other sets are
transferred to a positive value.

Kuratowski [13] was the first to establish the measure of noncompactness,
which is important in the study of infinite systems of differential equations. In
metric and topological space, there exist various measures of noncompactness.
In recent years, researchers have used the measure of noncompactnes technique
to prove a number of existence results for infinite systems of differential equa-
tions in Banach spaces such as ¢y, {1, £p, ¢ ete [IL B} [l [ [7, 10, 8] (1T}, 12 16}, 20
19, (17, 18, 21, 22, 23, 25, 26].

Let Q represent the space of all complex sequences x = (Il)jil A sequence
space is a vector subspace of 2. The set of natural, real, and positive real
numbers are denoted by N, R and R™ respectively.

The Kuratowski measure of noncompactness for a bounded subset P of a
metric space X is defined as

a(P)=inf{0 >0: P C U, P, diam (P;) <, for 1 <i<m < oo}

where diam (P;) denotes diameter of the set P;.
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Another important measure of non-compactness is the Hausdorff non-com-
pactness measure, which is defined as

X(P) = inf{e > 0 : P has a finite e-net in X}.

Let (X, ||||) be a Banach space, R* = [0, 00), the symbols X and conv(X)
denote the closure of X and convex closure of X, respectively. Let Mg denote
the family of non-empty bounded subsets of F and Ng denote the family
of non-empty and relatively compact subsets of E. We now define (MNC)
axiomatically given by Bana$ and Goebel [6].

Definition 1.1. [6] Let X be a Banach space and E be the bounded subset of
X. A function v : Mx — [0, +00) is said to be measure of non-compactnes in
X if it satisfies the following axioms:

1. The family ker v = {A € Mx : v(F) = 0} is a nonempty and ker v C Nx.
2. F1 C Fy = V(E]_) < V(EQ).

3. v(Conv(E)) = v(E).
4. v(AE1 + (1 = AE2) < M (Ep).+ (1 — A (E,) for all A € (0,1).
5. If (E,,) is a sequence of closed sets from Mx such that E,.1 C A,, and

lim v (E,,) = 0, then the intersection set E, = (-

Jim m—1 Lm is non-empty.
For the proofs of our main results, we require the following preliminaries:

Theorem 1.2. [2] (Darbo’s fized point theorem) If 1 is a closed, convex subset
of a Banach space E, then every compact, continuous map T : 1 — 1 has at
least one fized point.

Definition 1.3. A function ¥ : RT — Rtis said to be a Meir-Keeler function
if ®(0) = 0 and for each € > 0 there exists § > 0 such that for any w € RT,

e<w<et+d= Y(w)<e.

The following concept of O(f;.) and its examples was given by Altun and
Turkoglu [5]. Let F([0,00)) be class of all functions f : [0,00) — [0, 00) and let
© be class of all operators

O(e;.) : F([0,00)) = F([0,00)), f = O(f; )
satisfying the following conditions:
(i) O(f;w) > 0 for w > 0 and O(f;0) =0,
(ii) O(f;w) < O(f;s) for w <'s,

(i) lim O (f;wy) =0 (f;nlin;own),

n— oo
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(iv) O(f; max[w, s]) = max{O(f,w),O(f, s)} for some f € F([0,00)).

Using the concept of O(f;.), B.Hazarika et al. [II] gave the concept of
generalized Meir- Keeler condensing operator.

Definition 1.4. [I1] Let 2 be a nonempty subset of a Banach space F and
is a measure of noncompactness on E. We say that an operator T : Q2 — Q is
a generalized Meir-Keeler type function if for any € > 0, there exists d(e) > 0
such that for any subset X of Q

e < O(f; G(u(X), p(u(X)))) < e+ 0= O(f; G(T(X)), p((TX)))) < €
)
[0,

€0 and G €G.
00) — [0, 00) satisfying the

where ¢ : RT™ — RTis continuous function, O(e;.
Here G is a class of all functions G : [0, 00) x
following conditions:

(i) max[a,b] < G(a,b) for a,b >0,
(ii) G is continuous.

Result 1.5. [I1] Let © be a nonempty subset of a Banach space F and u an
arbitrary measure of noncompactness on E. Let T :  — € be a continuous
and generalized Meir-Keeler condensing operator then 7" has at least one fixed
point and the set of all fixed points of T" is compact.

Result 1.6. [11] Let Q be a nonempty, bounded and convex subset of a Banach
space F and p an arbitrary measure of noncompactness on E. Let T : QQ — Q
and ® : RT — R* be two continuous functions. If for some k € (0,1)

O(f; G((T(X)), p(u(T'X)))) < kO(f; G(1(X), p(u(X))),

is satisfied where O(e;.) € © and G € G. Then T is a generalized Meir-Keeler
type function.
Remark 1.7. [1I] On taking G (a,b) = a + b, = 0 and O(f;w) = w in result
then Darbo’s fixed point theorem is obtained.

In order to apply result [I.5]in a given Banach space X, we need a formula
expressing the measure of noncompactness by a simple formula.

The ¢y sequence space is the set of sequences converging to 0 . Norm ||.||¢,,
on cg is defined as

[(z)l,, =sup{|=]}, 1 € co.
1>1

Under the norm ||.||¢,,¢o is a Banach space, for E € M,,, the Hausdorff
measure of noncompactness in ¢ is given by

Xeo(E) = lim ¢ sup (Suplwn|> :
n—o0 (z)eE \n2>l
The ¢, sequence space is the set of sequences whose series is absolutely
convergent.

(@)l = Z{\xl\} z € 4.

>1
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Under the norm ||.||¢,, 41 is a Banach space, for E € My, , the Hausdorft
measure of noncompactness in ¢ is given by

x¢, (E) = lim { sup <sup|xn|) }
l=00 | (z,)eE \n>l
The aim of this research paper is to apply the concept of measure of non-
compactness and operator type contraction to study the existence of solution of
infinite system of third order fuzzy differential equations in the sequence space

co and £1. The solution is investigated by using the infinite system of integral
equations and Green’s function [9].

2. Main results

In this paper, we consider the following infinite system of third order fuzzy
differential equations
d3vi
dw?
with boundary conditions, v;(0) = 0,9} (&) = 0, v;" (&1) =0,w € [0,&].

Let C ([0,&1],R) be the space of all real valued continuous functions over
[0,&] and C? ([0, &1],R) be the set of all functions with the third continuous

derivative on [0,&1]. A function v € C3([0,&],R) is a solution of (2.1)) if and
only if v € C ([0,&],R) is a solution of the infinite system of integral equations

(2.1) = x; (w,v(w),v'(w),v" (w)); i=1,2,3,...

&1
(2.2) vi(w) = Y (w, s)x; (s,v(s),v'(s),v"(s)) ds, for w € [0,&],
0
where z;(w,v) € C ([0,&],R),i=1,2,3,...is the Green’s function associated
with the system is given by

_ _ 2
sRO—s)—w" oo

2 )
Y(’U.), S)SE[O,&)] =
5 (& —w), s (& —w)
2 _ 2
&)Tw, G<w<s<&
(2'3) Y(w7 5)36[60751] = ) )
g0%—11}5, o <s<w< .
It is simple to demonstrate the following estimate using usual procedures
&1 2 3 _ 2
(2.4) max Y(w,s) < M.
0<w<é Jo 6
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From (2.2 and (2.3) we obtain

43 &1
vl (w) = aw? J, Y (w, s)x; (s,v(s),v'(s),v"(s)) ds = x; (w,v(w), v (w),v" (w)) .

By converting the system into an infinite system of integral equations with
the help of Green’s function, we analyze and establish our key results on the
existence of solutions for the infinite system of third order fuzzy differential
equations with boundary conditions.

2.1. Solution of the third order fuzzy differential equation in
Sequence space cg.

The following assumptions are made in order to identify the condition under
which the system (2.1]) has a solution in ¢ :

(Q1) The functions z; are defined on the set [0,&;] x R and take real values
(i=1,2,3,...)

(Q2) The operator z defined on the space [0,&1] X ¢ as

(w,v,0",0") = (z(v,0",0"))

(2.5) = (z1(w,v,v",v"), z2(w,v,v",v"), z3(w,v,v",v"),...)

is such that the class of all functions ((zv)(w)),w € [0, &;] is equicontin-
uous at every point of the space c¢g.

(Q3) The following inequality holds:

|xi (w7 U1, Ullﬂ 7)/1/, U2, ’Uév U/2/7 e )‘ < gi(w) + hl(“’) Sl>111) |Ui(w)ﬂ U;(w)7 U;/(w)l
(=

where g;(w) and h;(w) are real functions defined and continuous on [0, &,
such that {g;(w)};2, converges uniformly on [0,&;] and the sequence
(hi(w)) is equibounded on [0, &;].

(Q4) The function ¢ : R* — RTis nondecreasing and continuous such that
p(Aw) < Ap(w) for A > 0, and ¢(0) = 0, p(w) > 0 for every w > 0.

To prove the result, we set

g(w) = {gi(w)}2,),
G, =sup {g(w) : w € [0,&]},

H, = sup{hn(W) in€N,we [Oaél]}

Theorem 2.1. Under the hypotheses (Q1) — (Qs), the infinite system of fuzzy
differential equations (2.1)) has at least one solution v(w) = (v;(w)) € co, for
all w € [0, &)
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Proof: Consider Mj a finite positive real number for all v(w) = (v;(w)) € ¢y
for all w € [0,&] such that sup;cy |vi(w)| < My < co. Then from the relation
(2.2) and the hypothesis (Q2), we have for an arbitrary w € [0, ;]

Jo(ew) e, = max

&1
/0 Y (w, s)zk (s,v(s),v'(s),v"(s)) ds

i>1

&1
< [ ¥ s)o (s, 0(5). 0/ (5), 0" 5 s
&1
< max/o Y (w, s)| <gk(w) + hi(w) sup |vk(w)|> ds

i>1 i>1

< max Y(w s) (gr(w d5+2/ Y (w, s)hg(w) |vg (w)] ds
0

< [7 1w {mex vt s
sy | * (w9 {max on o)} s

&1 &1
< Gy / 1Y (w, $)|ds + Ho / ¥ (w, 5)| Mods
0 0

< Go€i&i (36 — &) n HoMo&g&1 (361 — &)
- 6 6
Let v%(w) = (u?(w))zl where u{(w) = 0, for all w € [0,£;]. Let B =
B (uo,rl), the closed ball centered at u° and radius r; < rg. Then B is a
nonempty, closed and convex subset of c¢g.
Let us consider the operator I' = (T';) on C ([0, &], B), defined as follows:
For w € [0, &)

=rp, say.

3
(Tu)(w) = {(Tiu) (w)} = { Y(w, s)z; (s,u(s), u'(s),u”(s)) dS}

0

where u(w) = (u;(w)) € B and u;(w) € C ([0,&],R).
Since (x;(w, u(w))) € ¢ for each w € [0,&], so we have

&1
mex |(T;v) (w)| = max Y (w, 8)z; (s,u(s), v (s),u”(s))ds

< 7rg < o0.
i>1

0

Therefore, (T'u)(w) = {(T';u) (w)} € ¢o for each w € [0,&].
Also, we have

&1

; Y (0, 8)zi(s,u(s),u'(s),u”(s))ds

&1
/0 0.z;(s,u(s),u (s),u"(s))ds = 0,

(I':)(0)
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3
T)&) = Y (&1, s)xi(s, uls), v’ (s),u"(s))ds

0

&1
= /0 0.2;(s,u(s),u (s),u”(s))ds = 0.

Therefore, each (I';u) (w) satisfies boundary conditions given in (2.1)).
Since || (Tu(w) — u’( )||CO = |(Tu(w))|le, < 7o, therefore, it follows that T’

is a self mapping on B. The operator I is continuous C([0, &;]) by assumption
(Q2). We now show that I' is a generalized Meir-Keeler condensing operator
for which for any given € > 0, we need to find § > 0 such that x(I'B) < e
whenever € < x(B) + ¢(B) < €+ . We have

X(TB) + ¢(I'B)

IN

IN

IN

IN

&1
lim [ sup {max| Y (w, 8)zk(s,v(s),v'(s),v" (s))ds|}]
n—00 u(w)eB i>1 0

&1
+¢[ lim [ sup {max|/ (w, s)xk(s,v(s),v'(s),v"(s))ds|}]

n— 00 u(w)EB i>1

lim [ sup {max/o [Y (w, )2k (s, v(s),v'(s),v" (s))ds}]

n—00 u(w)EB i>1

&1
+e[ lim [ sup {maX/O Y (w, s)|k(s,v(s),v'(s), v"(s))ds}]]

n— 00 w(w )GB i>1

3
lim [ sup {maX/O Y (w, 5)|(gr(s) + h(s)|vk(s)[)ds}]

n—00 u(w)eB i>1

&
+e[ lim [ sup {maX/O Y (w, 5)|(gr(s) + ha(s)[vx(s)])ds}]

n— oo w(w )GB i>1
&1
Jim [sup, 51 /0 [V (w, 5)|(max gi(s)ds
&1
aim [ sup ([ (Y (w,9)|(max b ()i (s)] s}
n—00 u(w)eB 0 1>1
&1
bl efsup, e (| 1Y (w,5)|(max gn()ds
0 i
&1
Fam [ sup ([ 1Y (w,s)l(maxhi(s)lun(9)])ds)]
n—=ool, wyeB Jo i>1
) &1
Jim fsup, el [ V(09| mxgu())ds
&1
tdim [ sup ([ ¥ (w, 9)](Ho max fui(s)])ds))

N0 y(w)eB Jo
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&1
tpllimn ol sup {1V, 5)](max ge(s))ds
u(w)eB JO izl
&1
+ lim [ sup {[ |Y(w,s)|(Homax|vg(s)|)ds}]]
n—oo u(w)eB J0O izl

Ho&1&2(36 — &) Ho&361(3& — &)

< L0 ((B)) + [ LSO ()
2 _ _ _
§ Hofofl (251 50) [X(B) + SD(X(B)]
Thus, we get,
X(TB) + o(rB) < T98BGZ8) 3y oy < e,
_ _ 6e
B+ e B) < e 36 — &)
Taking

5— 6 — Ho&5é1 (361 — fo)6
Ho&3& (36 — &)

we get € < x(B) + ¢(B) < e+ 4. This shows that v is a generalizeed Meir-
Keeler condensing operator defined on the set B C ¢ and so, it satisfies all the
conditions of result [L.5| with O(f;w) = w and Yi(a,b) = a+b. Therefore ~ has
a fixed point in B, which is a solution of system of equations

The following examples exemplify the above result:

Example 2.2. Consider the following system of third order differential equa-
tions

d3x,, (w)

(2.6) o

— 2y (w, u(w), v’ (w), v (w)) =0

where z,, (w, u(w), v (w),u” (w)) = 2 cos (%) (un(w), ul, (), up(w)) ,w €
[0,&] wi(w) € co.

Solution: Consider a positive arbitrary real number € > 0 and v(w) € ¢y,
we have

oo

Dl (w, u(w), u (w), u" (w))|

=1
< B ua(w), o (w), ull(w)]

< oo ifu(w),u
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Taking v(w) € ¢o with

|20 (w, u(w), v (W), u" (w)) = zn (w, v(w), v (w),v" (w))|
- |ezcos(%) (u(w), o (w), u” (w)) e%cos(% (v(w), v (w), v" (w)) |
2| (un(w), up, (w), uy (w)) = (va(w), v, (w), vy (w)) |

NN

which implies the equicontinuity of (zu)(w)yefo,e,] on co. Again we have for
alln € N and w € [0, &]

|20 (w, u(w), v (w), v’ (w))|
< eF fup(w), up, (w), up (w)]

= hp(w)|up(w), ul, (w), u, (w)],

where h,(w) = e% is a real function on [0,&] and the sequence |h,(w)| is

equibounded on [0,&1]. Thus by result the system (2.6)) has a unique
solution in sequence space cg.

Example 2.3. Consider the following system of third order differential equa-
tions

r) P VG e w ) ()
dw? (n+1)8 — (14+n)(m+1)%
where n € Na w e [0751] s (ui(w),u;(w),ui” (’LU)) € Cp.
Solution: Clearly, a,m(w) = i n4)u()m 1y is continuous and
mX::n i5n 4)11(}m T is absolutely uniformly continuous on [0, &],
where m,n € N. Since apm(w) = > [|anm(w)|| is uniformly bounded on
m=n

[0, &1], we have

! " / "

o | (i (w), g, (w), gy (w)) = (v (W), vy, (w), v, (w))) |
2 (1+n%)(m + 1)4

’LU7T4

< [(Cu(w), o' (w), w"(w) = (v(w), v'(w), v" (w)))ll 55~

If w(w), v (w), v’ (w) = u;(w), us(w), u (w) € ¢p, then

» g

Ty (w, u(w), v (w), v’ (w)) € co
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as we have
lim x, (w,u(w), v (w),u” (w))

o0

(\/@(61 —w)em™ 3 w(uﬁ(:v)ngﬁgi m(@))

IN
=
N
3
~™
|
=
|
3
g

1
1 1
T 2 2 00 000 e
— w 'UJ7T4
<t (VO T sup )0 0) ) =0

Since (tum (w), ur, (w),ur (w)) — 0 for each w € [0,&], thus for all fixed w,
we obtain 1im [(um(w),u;n(w),u%( )] =0.

Now we ShOW that assumption (Q2) is satlsﬁed Let us fix € > 0 arbitrarily
and (u(w), v (w), v (w)) = (um(w), ul, (w),ulr (w)) € cy. Then using system
(77)2.7) and taking (v(w), v'(w), v" (w)) = (vm(w), v, (w), vy, (w)) € co, with

/

| (u(w), w'(w), w” (w)) = (v(w), v (w),o" (W) || < 6 = e(;2%) ", we have

|2 (u, u', u”) (W) — 2 (v, 0", 0") (w)]

< <
(1 + n*)(m + 1)4 S0 =€

_ i | (i (w), upy (W), ugy, (W) = (U (w), vy, (w), 07, (W) w_ Swr
for any fixed n, which implies the continuity as assumed in (Q2). Now, we
show that the assumption (Q3) is satisfied. Indeed for
T, (w, w(w), ' (w), v (w))
we have

|2 (w, u(w), v’ (w), u” (w))|

S ot S (). () )|
= (1) + 0 (0) S (o (0):  0), )

where p, (w) vanishes identically on [0, &;] and ¢, (w) is equibounded on [0, &].
Thus all the conditions of (Q3) are satisfied. Using result the system ([2.7))
has a unique solution in sequence space cg.

2.2. Solution of the third order fuzzy differential equation in Se-
quence space /7.

The following assumptions are made in order to identify the condition under
which the system ([2.1]) has a solution in ¢; :
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(L1) The functions x; are defined on the set [0,&1] x R* and take real values
(i=1,2,3,...).

(L2) The operator x defined on the space [0,&;] x ¢ as
(w,v,v",0") = (z(v,v",v"))
(2.8) = (z1(w,v,v",0"), 22 (w, v, v, 0"), z3(w, v, 0", "), ...)

is such that the class of all functions ((zv)(w)),w € [0,&] is equicontin-
uous at every point of the space /7.

(L3) The following inequality holds:
|zi(w, v1, 01,07, v2, 05,05, )| < giw) + hi(w) vi(w)]

where g;(w) and h;(w) are real functions defined and continuous on [0, &1],
such that >~ gr(w) converges uniformly on [0,&;] and the sequence
(hi(w)) is equibounded on [0, &;].

(L4) The function ¢ : R* — RTis nondecreasing and continuous such that
w(Aw) < Ap(w) for A >0, and ¢(0) = 0, p(w) > 0 for every w > 0.

To prove the result, we set

gw) =3 gu(w),
k=1

G1 = sup{g(w) : w € 0,61},

H, = Sup{hn(w) ineN,we [0751]}

Theorem 2.4. Under the hypotheses (Q1) — (Q3), the infinite system of dif-

ferential equations (2.1)) has at least one solution v(w) = (v;(w)) € £y, for all

w e [0751]

Proof. Let S(u(w)) denote the set of all sequences that are rearrangements of

v(w). If v(w) € S(u(w)), then > |vk(w)| < My, where M, is a finite positive
k=1

real number for all v(w) = (v;(w)) € ¢; for all w € [£p,&1]. Then from the
relation (2.2)) and the hypothesis (L2), we have for an arbitrary w € [0,&],

oo

lo(w)lle, =

k=1

&1
| wsha (st /(50075 s

oo

&1
< [ W (5,09, /()0 5 s

k=1
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&1
< Z/ Y (w, s)| (gk(w) + i (w) [vr(w)]) ds
k=170
> &1
g;/o Y(w,s) (gr(w ds—|—2/ Y (w, $)hg(w) |vg(w)| ds
&1 > &1 °°
S/O |Y(w78)|{;(9k(w))}d8+Hl/o |Y(7U,3)|{kz=:1|vk(w)|}d5

&1 &
gGl/ \Y(w,s)|ds+H1/ 1Y (w, 5)| Mods
0 0

5 _ 2 _
< G1§56 (gfl $o) + H1M1£0§16(3£1 $0) =rp, say.

Let u®(w) = (u?(w))zl where u{(w) = 0, for all w € [0,£;]. Let B =
B (uo,rl), the closed ball centered at u® and radius 11 < ro. Then B is a
nonempty, closed and convex subset of /;.

Let us consider the operator I' = (T';) on C ([0, &], B), defined as follows:
For w € [0,&4]

&1

(Tu)(w) = {(Tiu) (w)} = { Y(w, s)w; (S,U(S),U’(S)W"(S))dS} ;

0

where u(w) = (u;(w)) € B and u;(w) € C ([0, &), R)
Since (z;(w, u(w))) € €1 for each w € [y, 1], so we have

> @) =3

=1 =1

<7y <00

31
/0 Y (w, s)z; (s,u(s), v (s),u"(s))ds

Therefore, (I'u)(w) = {(T';u) (w)} € ¢1 for each w € [0, &].
Also, we have

&1

r)0) = ; Y (0, 8)zi(s,u(s),u'(s),u”(s))ds

&1
= /0 0.z;(s,u(s),u (s),u"(s))ds = 0.
and
&1
(&) = V(&1 8)zi(s,uls), v/ (s), u"(s))ds

0
&1
= /0 0.z;(s,u(s),u'(s),u”(s))ds = 0.

Therefore, each (I';u) (w) satisfies boundary conditions given in (2.1)).
i (Tu(w) — ud( )Hzl = ||[(Tu(w))|le, < 7o, therefore, it follows that
[ is self mapping on B. The operator I is continuous C([0, &;]) by assumption




146 Tanweer Jalal, Asif Hussain Jan
(L2). We now show that I' is a generalized Meir-Keeler condensing operator

for which for any given € > 0, we need to find § > 0 such that y(I'B) <
whenever ¢ < x(B) + ¢(B) < ¢+ 6. We have

X(TB) + ¢(I'B)
= lim sup
n—eo [u(w)GB {;

(oo}
lim sup
oo |J¢(w)€B {Z

n=k

&1
|y ws)a (s, /()07 (5) s

& |

i Y (w, )y, (s,v(s),v'(s),v"(s)) ds

%

il

< ) [ {Z/& e (s, v(s), (), '<>>dH
T n—o u(w)IE)B k
+ol [ {i/&m e (s, 0(5), /() "())d}”
ol | o 125, Yl 0 o)
< ) [ {i/&m ) (91 + hi(s) <>|>dH
1im su w, S 1C A\ S) |VE\S S
~  n—oo u(w)gé n=k 0 o * *
+o | [ {i/&m ) (91(5) + hi(s)| <>|>d}H
@ u(w)]ZB = J, ) 9k k k
&1 00
< nl;rr;o [supu(w)eB{/o |Y(w,s)<ng(s)ds>
131
el e (S
&1
o [Ty lsupu(w)eB{ /0 |Y(w,s)|ng(s)ds>.
&1
+”IEI;OLO?B)ID€B{/O <th ) vk (s )ds}”
<

I S s ()] d
ngréo SUPyq(w)eB /o w, s ;Cgks S
g l {/&w( >|<H S ())dH
n—oo u(w)FE)B 0 ’ 1 e k
1. B &1 Y o0 d
¥ | Mn—oo Supu(w)eB A | (’LU, 8)| nz::kgk (8) S
gt l {/élm >|<H > ())d}H
m ) su w, s 1 vk (s s
n—oo u(w)I;B 0 — k
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- H1656: (gfl — &) (X(B)) + ¢ H1656: (ggl — %) (x(B))
< H&56 (g’fl — &) [X(B) + @(X(B)]-

Thus, we get,

= - H1&56(36 — &)
X(I'B) + ¢(I'B) < 5

Ge
H£361(361 — &)

[X(B) +¢(x(B)] <€

= x(B)+¢(x(B) <

Taking
5 6 — Hi£561 (361 — fo)6
H1 836 (36 — &)
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we get € < X(B) + ¢(B) < e+ d. This shows that v is a generalizeed Meir-
Keeler condensing operator defined on the set B C ¢1 and so, it satisfies all the
conditions of result [[.5] with O(f;w) = w and Y7 (a,b) = a+b. Therefore ~ has

a fixed point in B, which is a solution of system of equations ([2.1).

The following examples exemplify the above result:

O

Example 2.5. Consider the following system of third order fuzzy differential

equations

3z,
(2.9) TI00) o, ), o o) () =0,
where

2 (w, u(w), o (w), w”(w)) = wh sin (=5 ) (un (w), u, (w), ) (w))

w € [0,&] and u;(w) € 4.

Solution: Cousider a positive arbitrary real number ¢ > 0 and v(w) € ¢1,

we have

Dl (w, u(w), o (w), u" ()] < w2 Y fup (w), up, (w), ufy (w)]
=1 I=1

Taking v(w) € ¢1 with
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=| w? sin ( ) (u(w), v (w), u” (w)) — w? sin ( v

%) (), v’ (w), " (w)) |
< w? fuy (w) = va ()|
1
<w?2d=¢
which implies the equicontinuity of (zu)(w)yejo,e,] on £1. Again we have for
allm € N and w € [ao, a1]

|5 (w, u(w), v (w), u" (w))] < % Jup(w), up, (w), uy (w)]
= hn (W) un (W), uy, (), i (w)|
where h,(w) = w? is a real function on [0,&;] and the sequence |h, (w)| is

equibounded on [0,&;]. Thus by result the system ([2.9) has a unique
solution in sequence space /7.

Example 2.6. Consider the following system of third order differential equa-
tions

(2.10) M Yw + i w cos(w) (um (W), Uy, (W), uyy, (w))

dw3  nd — m8 =0,
where w € [0,&1], (us(w), w(w), u;” (w)) € £;.
o) !/ 11
Solution: Clearly, — \F and > w 0s(w) (um (), iy (W), thy () are con-

m=n m3
tinuous on [0, &;], for each n € N.
Note that for any w € [0, &1], zi(w, u(w), v’ (w),w” (w)) € 41,

if (ui(w), uj(w),u;” (w)) € ¢1. Moreover, we have

IN
O |
A
S| ®
+
(]
(]

<

9450

We will show that H; is satisfied.
Let us fix arbitrarily € > 0 and (u,(w),u, (w),ur(w)) € ¢;. Then taking
(v (W), v, (w), v (w)) € ¢, with

). o) (w0) = (w0), ' 00), 7 ) oy < 5=
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|2 (w, u(w), v (w), v (w)) = zp (w, v(w), v (w), v"(w))|

Z w((um(w), um(w)7 um(w)) — (Um (’UJ), Um(w)7 Um(w)))

e < 615 < €.

m=n

which implies continuity as assumed in L2. Now, we show that assumption L3
is satisfied.

|2 (w, u(w), v (w), v (w))]

Zg@ . Z w cos(w) (um(wrzlgum(w),um(w))‘
S (), o)y )

< gn (W) + hn (W) [ (un (w), u, (w), uy (w)))|

The function g,(w) is continuous and ), -, gn(w) converges uniformly to

8 8
%, also hy,(w) = gz;o is ;:ontinuous and the sequence (h,(w)) is equi-
bounded on [0,&] by Hy = SZEZO Thus, by result the system (2.10]) has a

unique solution in sequence space £;.

3. Conclusion

In this paper we apply the concept of measure of noncompactness and
operator type contraction to study the existence of solution of third order fuzzy
differential equations in the sequence space ¢y and £;. The result is supported
with concrete examples. In future, one can apply the above mentioned existence
of the solution in different sequence spaces.
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