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Solution of an infinite system of third order fuzzy
differential equations in sequence space c0 and ℓ1 via

measures of noncompactness and operator type
contraction

Tanweer Jalal1 and Asif Hussain Jan23

Abstract. In this paper, the existence of solutions to third order fuzzy
differential equations in the sequence space c0 and ℓ1 is investigated using
the measure of noncompactness and operator type contraction. Suitable
examples are used to demonstrate the findings.
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1. Introduction

In a dynamical setting, fuzzy differential equations (FDEs) appear to be a
natural technique to characterise epistemic uncertainty propagation. The study
of initial and boundary value problems for fuzzy differential equations is a recent
research topic that is quite fascinating. Many authors have studied initial
and boundary value problems associated with first and second order fuzzy
differential equations on the metric space (En, D) of normal fuzzy convex sets
with the distance D given by the supremum of the Hausdorff distance between
the corresponding α-level sets with the distance D [1]. Under the normal
assumptions of continuous and Lipschitz condition on function f , O.Kaleva
[14] proved the existence and uniqueness theorem for initial value problems
related with first order fuzzy differential equation

y(w) = f(w, y(w)).

Furthermore, if f is continuous and bounded, J.J.Nieto [24] established a
variant of Peano’s existence theorem for fuzzy differential equations. Laksh-
mikantham et al. [15] have published criteria for the presence and uniqueness
of two-point boundary value problems.

The concept of infinite system of fuzzy differential equations generalises
the concept of infinite system of ordinary differential equations, defined as
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differential inclusion for non-uniform upper hemicontinuity convex set with
compactness in fuzzy set.

Mathematically:

dxi(w)

dw
= fi(w, x(w), α), ∀ α ∈ [0, 1].

The supremum of the Hausdorff distance between the corresponding α-level
sets provides solutions to the initial and boundary value problems connected
with the infinite system of fuzzy differential equations on the metric space
(En, D) of normal fuzzy convex sets with distance D.

A fuzzy differential equation with fractional differential operator is

dxni (w)

dwn
= fi(w, x(w), α), ∀ α ∈ [0, 1],

where n is a rational number (p/q) called the fractional derivative.
Let I = [a, b] ⊂ R and f : I × En → En be continuous. A mapping

ϕ : I → En is a solution of initial value problem

y′i = fi(t, y), y(a) = y0,

if and only if ϕ is a solution of integral equation

yi(t) = y0 +

∫ t

a

fi(s, y(s))ds.

Now, we will give some preliminaries about the concept of measures of
noncompactness.

A measure of noncompactness is a nonnegative real-valued map generated
on a collection of bounded subsets of a normed (metric) space that maps the
class of relatively compact sets (called kernel) to zero while other sets are
transferred to a positive value.

Kuratowski [13] was the first to establish the measure of noncompactness,
which is important in the study of infinite systems of differential equations. In
metric and topological space, there exist various measures of noncompactness.
In recent years, researchers have used the measure of noncompactnes technique
to prove a number of existence results for infinite systems of differential equa-
tions in Banach spaces such as c0, ℓ1, ℓp, c etc [1, 3, 4, 6, 7, 10, 8, 11, 12, 16, 20,
19, 17, 18, 21, 22, 23, 25, 26].

Let Ω represent the space of all complex sequences x = (xi)
∞
i=1. A sequence

space is a vector subspace of Ω. The set of natural, real, and positive real
numbers are denoted by N,R and R+ respectively.

The Kuratowski measure of noncompactness for a bounded subset P of a
metric space X is defined as

α(P ) = inf {δ > 0 : P ⊂ ∪n
i=1Pi,diam (Pi) ≤ δ, for 1 ≤ i ≤ m ≤ ∞}

where diam (Pi) denotes diameter of the set Pi.
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Another important measure of non-compactness is the Hausdorff non-com-
pactness measure, which is defined as

χ(P ) = inf{ϵ > 0 : P has a finite ϵ-net in X}.

Let (X, ∥∥) be a Banach space, R+ = [0,∞), the symbols X̄ and conv(X)
denote the closure of X and convex closure of X, respectively. Let ME denote
the family of non-empty bounded subsets of E and NE denote the family
of non-empty and relatively compact subsets of E. We now define (MNC)
axiomatically given by Banaś and Goebel [6].

Definition 1.1. [6] Let X be a Banach space and E be the bounded subset of
X. A function ν : MX → [0,+∞) is said to be measure of non-compactnes in
X if it satisfies the following axioms:

1. The family ker ν = {A ∈MX : ν(E) = 0} is a nonempty and ker ν ⊂ NX .

2. E1 ⊂ E2 ⇒ ν (E1) ≤ ν (E2).

3. ν(Conv(E)) = ν(E).

4. ν (λE1 + (1− λE2) ≤ λν (E1) .+ (1− λ)ν (E2) for all λ ∈ (0, 1).

5. If (Em) is a sequence of closed sets from MX such that En+1 ⊂ Am and
lim

m→∞
ν (Em) = 0, then the intersection set E∞ =

⋂∞
m=1Em is non-empty.

For the proofs of our main results, we require the following preliminaries:

Theorem 1.2. [2] (Darbo’s fixed point theorem) If ψ is a closed, convex subset
of a Banach space E, then every compact, continuous map T : ψ → ψ has at
least one fixed point.

Definition 1.3. A function Ψ : R+ → R+is said to be a Meir-Keeler function
if Φ(0) = 0 and for each ϵ > 0 there exists δ > 0 such that for any w ∈ R+,

ϵ ≤ w < ϵ+ δ =⇒ Ψ(w) < ϵ.

The following concept of O(f ; .) and its examples was given by Altun and
Turkoglu [5]. Let F ([0,∞)) be class of all functions f : [0,∞) → [0,∞) and let
Θ be class of all operators

O(•; .) : F ([0,∞)) → F ([0,∞)), f → O(f ; .)

satisfying the following conditions:

(i) O(f ;w) > 0 for w > 0 and O(f ; 0) = 0,

(ii) O(f ;w) ≤ O(f ; s) for w ≤ s,

(iii) lim
n→∞

O (f ;wn) = O
(
f ; lim

n→∞
wn

)
,
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(iv) O(f ; max[w, s]) = max{O(f, w), O(f, s)} for some f ∈ F ([0,∞)).

Using the concept of O(f ;.), B.Hazarika et al. [11] gave the concept of
generalized Meir- Keeler condensing operator.

Definition 1.4. [11] Let Ω be a nonempty subset of a Banach space E and µ
is a measure of noncompactness on E. We say that an operator T : Ω → Ω is
a generalized Meir-Keeler type function if for any ϵ > 0, there exists δ(ϵ) > 0
such that for any subset X of Ω

ϵ ≤ O(f ;G(µ(X), φ(µ(X)))) < ϵ+ δ =⇒ O(f ;G(µ(T (X)), φ(µ(TX)))) < ϵ

where φ : R+ → R+is continuous function, O(•; .) ∈ Θ and G ∈ G.
Here G is a class of all functions G : [0,∞)× [0,∞) → [0,∞) satisfying the

following conditions:

(i) max[a, b] ≤ G(a, b) for a, b ≥ 0,

(ii) G is continuous.

Result 1.5. [11] Let Ω be a nonempty subset of a Banach space E and µ an
arbitrary measure of noncompactness on E. Let T : Ω → Ω be a continuous
and generalized Meir-Keeler condensing operator then T has at least one fixed
point and the set of all fixed points of T is compact.

Result 1.6. [11] Let Ω be a nonempty, bounded and convex subset of a Banach
space E and µ an arbitrary measure of noncompactness on E. Let T : Ω → Ω
and Φ : R+ → R+ be two continuous functions. If for some k ∈ (0, 1)

O(f ;G(µ(T (X)), φ(µ(TX)))) ≤ kO(f ;G(µ(X), φ(µ(X))),

is satisfied where O(•; .) ∈ Θ and G ∈ G. Then T is a generalized Meir-Keeler
type function.

Remark 1.7. [11] On taking G (a, b) = a + b, φ ≡ 0 and O(f ;w) = w in result
1.6, then Darbo’s fixed point theorem is obtained.

In order to apply result 1.5 in a given Banach space X, we need a formula
expressing the measure of noncompactness by a simple formula.

The c0 sequence space is the set of sequences converging to 0 . Norm ∥.∥c0 ,
on c0 is defined as

∥(xl)∥c0 = sup
l≥1

{|xl|} , xl ∈ c0.

Under the norm ∥.∥c0 , c0 is a Banach space, for E ∈ Mc0 , the Hausdorff
measure of noncompactness in c0 is given by

χc0(E) = lim
n→∞

{
sup

(xl)∈E

(
sup
n≥l

|xn|
)}

.

The ℓ1 sequence space is the set of sequences whose series is absolutely
convergent.

∥(xl)∥ℓ1 =

∞∑
l≥1

{|xl|} , xl ∈ ℓ1.
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Under the norm ∥.∥ℓ1 , ℓ1 is a Banach space, for E ∈ Mℓ1 , the Hausdorff
measure of noncompactness in ℓ1 is given by

χℓ1(E) = lim
l→∞

{
sup

(xn)∈E

(
sup
n≥l

|xn|
)}

.

The aim of this research paper is to apply the concept of measure of non-
compactness and operator type contraction to study the existence of solution of
infinite system of third order fuzzy differential equations in the sequence space
c0 and ℓ1. The solution is investigated by using the infinite system of integral
equations and Green’s function [9].

2. Main results

In this paper, we consider the following infinite system of third order fuzzy
differential equations

d3vi
dw3

= xi (w, v(w), v
′(w), v′′(w)) ; i = 1, 2, 3, . . .(2.1)

with boundary conditions, vi(0) = 0, v′i (ξ0) = 0, v′,′i (ξ1) = 0, w ∈ [0, ξ1].
Let C ([0, ξ1] ,R) be the space of all real valued continuous functions over

[0, ξ1] and C
3 ([0, ξ1] ,R) be the set of all functions with the third continuous

derivative on [0, ξ1]. A function v ∈ C3 ([0, ξ1] ,R) is a solution of (2.1) if and
only if v ∈ C ([0, ξ1] ,R) is a solution of the infinite system of integral equations

vi(w) =

∫ ξ1

0

Y (w, s)xi (s, v(s), v
′(s), v′′(s)) ds, for w ∈ [0, ξ1] ,(2.2)

where xi(w, v) ∈ C ([0, ξ1] ,R) , i = 1, 2, 3, . . . is the Green’s function associated
with the system is given by

Y (w, s)s∈[0,ξ0] =


s (2ξ0 − s)− w2

2
, 0 ≤ w ≤ s ≤ ξ0

s (ξ0 − w) , s (ξ0 − w )

Y (w, s)s∈[ξ0,ξ1] =


ξ20 − w2

2
, ξ0 ≤ w ≤ s ≤ ξ1

ξ20 + s2

2
− ws, ξ0 ≤ s < w ≤ ξ1.

(2.3)

It is simple to demonstrate the following estimate using usual procedures

max
0≤w≤ξ1

∫ ξ1

0

Y (w, s) ≤ ξ20 (3ξ1 − ξ0)
2

6
.(2.4)
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From (2.2) and (2.3) we obtain

v′′′i (w) =
d3

dw3

∫ ξ1

0

Y (w, s)xi (s, v(s), v
′(s), v′′(s)) ds = xi (w, v(w), v

′(w), v′′(w)) .

By converting the system into an infinite system of integral equations with
the help of Green’s function, we analyze and establish our key results on the
existence of solutions for the infinite system of third order fuzzy differential
equations (2.1) with boundary conditions.

2.1. Solution of the third order fuzzy differential equation in
Sequence space c0.

The following assumptions are made in order to identify the condition under
which the system (2.1) has a solution in c0 :

(Q1) The functions xi are defined on the set [0, ξ1]× R∞ and take real values
(i = 1, 2, 3, . . .)

(Q2) The operator x defined on the space [0, ξ1]× c0 as

(w, v, v′, v′′) → (x(v, v′, v′′))

= (x1(w, v, v
′, v′′), x2(w, v, v

′, v′′), x3(w, v, v
′, v′′), . . .)(2.5)

is such that the class of all functions ((xv)(w)), w ∈ [0, ξ1] is equicontin-
uous at every point of the space c0.

(Q3) The following inequality holds:

|xi (w, v1, v′1, v′′1 , v2, v′2, v′′2 , . . .)| ≤ gi(w) + hi(w) sup
i≥1

|vi(w), v′i(w), v′′i (w)|

where gi(w) and hi(w) are real functions defined and continuous on [0, ξ1],
such that {gi(w)}∞i=1 converges uniformly on [0, ξ1] and the sequence
(hi(w)) is equibounded on [0, ξ1].

(Q4) The function φ : R+ → R+is nondecreasing and continuous such that
φ(λw) ≤ λφ(w) for λ ≥ 0, and φ(0) = 0, φ(w) > 0 for every w > 0.

To prove the result, we set

g(w) = {gi(w)}∞i=1) ,

Go = sup {g(w) : w ∈ [0, ξ1]} ,

Ho = sup {hn(w) : n ∈ N,w ∈ [0, ξ1]} .

Theorem 2.1. Under the hypotheses (Q1)− (Q3), the infinite system of fuzzy
differential equations (2.1) has at least one solution v(w) = (vi(w)) ∈ c0, for
all w ∈ [0, ξ1].
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Proof: ConsiderM0 a finite positive real number for all v(w) = (vi(w)) ∈ c0
for all w ∈ [0, ξ1] such that supi∈N |vi(w)| ≤ M0 < ∞. Then from the relation
(2.2) and the hypothesis (Q2), we have for an arbitrary w ∈ [0, ξ1]

∥v(w)∥c0 = max
i≥1

∣∣∣∣∣
∫ ξ1

0

Y (w, s)xk (s, v(s), v
′(s), v′′(s)) ds

∣∣∣∣∣
≤ max

i≥1

∫ ξ1

0

|Y (w, s)xk (s, v(s), v
′(s), v′′(s))| ds

≤ max
i≥1

∫ ξ1

0

|Y (w, s)|
(
gk(w) + hk(w) sup

i≥1
|vk(w)|

)
ds

≤ max
i≥1

∫ ξ1

0

Y (w, s) (gk(w)) ds+

∞∑
k=1

∫ ξ1

0

Y (w, s)hk(w) |vk(w)| ds

≤
∫ ξ1

0

|Y (w, s)|
{
max
i≥1

(gk(w))

}
ds

+H0

∫ ξ1

0

|Y (w, s)|
{
max
i≥1

|vk(w)|
}
ds

≤ G0

∫ ξ1

0

|Y (w, s)|ds+H0

∫ ξ1

0

|Y (w, s)|M0ds

≤ G0ξ
2
0ξ1 (3ξ1 − ξ0)

6
+
H0M0ξ

2
0ξ1 (3ξ1 − ξ0)

6
= r0, say.

Let u0(w) =
(
u0i (w)

)∞
i=1

where u0i (w) = 0, for all w ∈ [0, ξ1]. Let B̄ =

B̄
(
u0, r1

)
, the closed ball centered at u0 and radius r1 ≤ r0. Then B̄ is a

nonempty, closed and convex subset of c0.
Let us consider the operator Γ = (Γi) on C

(
[0, ξ1] , B̄

)
, defined as follows:

For w ∈ [0, ξ1]

(Γu)(w) = {(Γiu) (w)} =

{∫ ξ1

0

Y (w, s)xi (s, u(s), u
′(s), u′′(s)) ds

}

where u(w) = (ui(w)) ∈ B̄ and ui(w) ∈ C ([0, ξ1] ,R).
Since (xi(w, u(w))) ∈ c0 for each w ∈ [0, ξ1], so we have

max
i≥1

|(Γiv) (w)| = max
i≥1

∣∣∣∣∣
∫ ξ1

0

Y (w, s)xi (s, u(s), u
′(s), u′′(s)) ds

∣∣∣∣∣ ≤ r0 <∞.

Therefore, (Γu)(w) = {(Γiu) (w)} ∈ c0 for each w ∈ [0, ξ1].
Also, we have

(Γi)(0) =

∫ ξ1

0

Y (0, s)xi(s, u(s), u
′(s), u′′(s))ds

=

∫ ξ1

0

0.xi(s, u(s), u
′(s), u′′(s))ds = 0,
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and

(Γi)(ξ1) =

∫ ξ1

0

Y (ξ1, s)xi(s, u(s), u
′(s), u′′(s))ds

=

∫ ξ1

0

0.xi(s, u(s), u
′(s), u′′(s))ds = 0.

Therefore, each (Γiu) (w) satisfies boundary conditions given in (2.1).
Since

∥∥(Γu(w)− u0(w)
)∥∥

c0
= ∥(Γu(w))∥c0 ≤ r0, therefore, it follows that Γ

is a self mapping on B̄. The operator Γ is continuous C([0, ξ1]) by assumption
(Q2). We now show that Γ is a generalized Meir-Keeler condensing operator
for which for any given ϵ > 0, we need to find δ > 0 such that χ(ΓB̄) < ϵ
whenever ϵ ≤ χ(B̄) + φ(B̄) < ϵ+ δ. We have

χ(ΓB̄) + φ(ΓB̄)

= lim
n→∞

[ sup
u(w)∈B̄

{max
i≥1

|
∫ ξ1

0

Y (w, s)xk(s, v(s), v
′(s), v′′(s))ds|}]

+φ[ lim
n→∞

[ sup
u(w)∈B̄

{max
i≥1

|
∫ ξ1

0

Y (w, s)xk(s, v(s), v
′(s), v′′(s))ds|}]]

≤ lim
n→∞

[ sup
u(w)∈B̄

{max
i≥1

∫ ξ1

0

|Y (w, s)|xk(s, v(s), v′(s), v′′(s))ds}]

+φ[ lim
n→∞

[ sup
u(w)∈B̄

{max
i≥1

∫ ξ1

0

|Y (w, s)|xk(s, v(s), v′(s), v′′(s))ds}]]

≤ lim
n→∞

[ sup
u(w)∈B̄

{max
i≥1

∫ ξ1

0

|Y (w, s)|(gk(s) + hk(s)|vk(s)|)ds}]

+φ[ lim
n→∞

[ sup
u(w)∈B̄

{max
i≥1

∫ ξ1

0

|Y (w, s)|(gk(s) + hk(s)|vk(s)|)ds}]]

≤ lim
n→∞

[supu(w)∈B{
∫ ξ1

0

|Y (w, s)|(max
i≥1

gk(s)ds

+ lim
n→∞

[ sup
u(w)∈B̄

{
∫ ξ1

0

|Y (w, s)|(max
i≥1

hk(s)|vk(s)|)ds}]

+φ[limn→∞[supu(w)∈B{
∫ ξ1

0

|Y (w, s)|(max
i≥1

gk(s)ds

+ lim
n→∞

[ sup
u0(w)∈B̄

{
∫ ξ1

0

|Y (w, s)|(max
i≥1

hk(s)|vk(s)|)ds}]]

≤ lim
n→∞

[supu0(w)∈B{
∫ ξ1

0

|Y (w, s)|(max
i≥1

gk(s))ds

+ lim
n→∞

[ sup
u(w)∈B̄

{
∫ ξ1

0

|Y (w, s)|(H0 max
i≥1

|vk(s)|)ds}]
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+φ[limn→∞[ sup
u(w)∈B

{
∫ ξ1

0

|Y (w, s)|(max
i≥1

gk(s))ds

+ lim
n→∞

[ sup
u(w)∈B̄

{
∫ ξ1

0

|Y (w, s)|(H0 max
i≥1

|vk(s)|)ds}]]

≤ H0ξ1ξ
2
0(3ξ1 − ξ0)

6
(χ(B̄)) + φ[

H0ξ
2
0ξ1(3ξ1 − ξ0)

6
(χ(B̄))]

≤ H0ξ
2
0ξ1(3ξ1 − ξ0)

6
[χ(B̄) + φ(χ(B̄)].

Thus, we get,

χ(ΓB̄) + φ(ΓB̄) <
H0ξ

2
0ξ1(3ξ1 − ξ0)

6
[χ(B̄) + φ(χ(B̄)] < ϵ,

χ(B̄) + φ(χ(B̄) <
6ϵ

H0ξ20ξ1(3ξ1 − ξ0)
.

Taking

δ =
6−H0ξ

2
0ξ1 (3ξ1 − ξ0)

H0ξ20ξ1 (3ξ1 − ξ0)
ϵ,

we get ϵ ≤ χ(B̄) + φ(B̄) < ϵ + δ. This shows that γ is a generalizeed Meir-
Keeler condensing operator defined on the set B̄ ⊂ ℓ1 and so, it satisfies all the
conditions of result 1.5 with O(f ;w) = w and Y1(a, b) = a+ b. Therefore γ has
a fixed point in B̄, which is a solution of system of equations (2.1)

The following examples exemplify the above result:

Example 2.2. Consider the following system of third order differential equa-
tions

d3xn(w)

dw3
− xn (w, u(w), u

′(w), u′′(w)) = 0(2.6)

where xn (w, u(w), u
′(w), u′′(w)) = e

w
2 cos

(
w
n3

)
(un(w), u

′
n(w), u

′′
n(w)) , w ∈

[0, ξ1] ui(w) ∈ c0.

Solution: Consider a positive arbitrary real number ϵ > 0 and v(w) ∈ c0,
we have

∞∑
l=1

|xn (w, u(w), u′(w), u′′(w))|

≤ e
w
2

∞∑
l=1

|un(w), u′n(w), u′′n(w)|

< ∞ if u(w), u′(w), u′′(w)

= ui(w), u
′
i(w), u

′′
i (w) ∈ c0.
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Taking v(w) ∈ c0 with

∥(u(w), u′(w), u”(w))− (v(w), v′(w), v”(w))∥c0 < δ =
ϵ

e
w
2
,

|xn (w, u(w), u′(w), u′′(w))− xn (w, v(w), v
′(w), v′′(w))|

= | ew
2 cos

( w
n3

)
(u(w), u′(w), u′′(w))− e

w
2 cos

( w
n3

)
(v(w), v′(w), v′′(w)) |

≤ e
w
2 | (un(w), u′n(w), u′′n(w))− (vn(w), v

′
n(w), v

′′
n(w)) |

< e
w
2 δ = ϵ

which implies the equicontinuity of (xu)(w)w∈[0,ξ1] on c0. Again we have for
all n ∈ N and w ∈ [0, ξ1]

|xn(w, u(w), u′(w), u′′(w))|
≤ e

w
2 |un(w), u′n(w), u′′n(w)|

= hn(w)|un(w), u′n(w), u′′n(w)|,

where hn(w) = e
w
2 is a real function on [0, ξ1] and the sequence |hn(w)| is

equibounded on [0, ξ1]. Thus by result 1.5, the system (2.6) has a unique
solution in sequence space c0.

Example 2.3. Consider the following system of third order differential equa-
tions

d3xn(w)

dw3
−

√
w(ξ1 − w)e−nw

(n+ 1)6
+

∞∑
m=n

w (um(w), u′m(w), u′′m(w))

(1 + n4)(m+ 1)4
= 0,(2.7)

where n ∈ N, w ∈ [0, ξ1] , (ui(w), u
′
i(w), ui”(w)) ∈ c0.

Solution: Clearly, αnm(w) =
w

(1 + n4)(m+ 1)4
is continuous and

∞∑
m=n

w

(1 + n4)(m+ 1)4
is absolutely uniformly continuous on [0, ξ1],

where m,n ∈ N. Since αnm(w) =
∞∑

m=n
∥anm(w)∥ is uniformly bounded on

[0, ξ1], we have

∞∑
m=n

|((um(w), u′m(w), u′′m(w))− (vm(w), v′m(w), v′′m(w)))|w
(1 + n4)(m+ 1)4

≤ ∥((u(w), u′(w), u′′(w))− (v(w), v′(w), v′′(w)))∥wπ
4

90
.

If u(w), u′(w), u′′(w) = ui(w), u
′
i(w), u

′′
i (w) ∈ c0, then

xn (w, u(w), u
′(w), u′′(w)) ∈ c0
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as we have

lim
n→∞

xn (w, u(w), u
′(w), u′′(w))

= lim
n→∞

(√
w(ξ1 − w)e−nw

(n+ 1)6
+

∞∑
m=n

w (um(w), u′m(w), u′′m(w))

(1 + n4)(m+ 1)4

)
≤ lim

n→∞

(√
w(ξ1 − w)e−nw

(n+ 1)6

+
w

(1 + n4)
sup
m≥n

∞∑
m=0

(um(w), u′m(w), u′′m(w))
1

(m+ 1)4

)
≤ lim

n→∞

(√
w(ξ1 − w)

(n+ 1)6
+

wπ4

90(1 + n4)
sup
m≥n

(um(w), u′m(w), u′′m(w))

)
= 0.

Since (um(w), u′m(w), u′′m(w)) → 0 for each w ∈ [0, ξ1], thus for all fixed w,
we obtain lim

n→∞
[(um(w), u′m(w), u′′m(w))] = 0.

Now we show that assumption (Q2) is satisfied. Let us fix ϵ > 0 arbitrarily
and (u(w), u′(w), u′′(w)) = (um(w), u′m(w), u′′m(w)) ∈ c0. Then using system
(??)2.7) and taking (v(w), v′(w), v′′(w)) = (vm(w), v′m(w), v′′m(w)) ∈ c0, with

∥ (u(w), u′(w), u′′(w))− (v(w), v′(w), v′′(w)) ∥ ≤ δ = ϵ
(

90
wπ4

)−1
, we have

|xn(u, u′, u′′) (w)− xn(v, v
′, v′′) (w)|

=

∞∑
m=n

|((um(w), u′m(w), u′′m(w))− (vm(w), v′m(w), v′′m(w)))|w
(1 + n4)(m+ 1)4

≤ δ
wπ4

90
≤ ϵ,

for any fixed n, which implies the continuity as assumed in (Q2). Now, we
show that the assumption (Q3) is satisfied. Indeed for

xn (w, u(w), u
′(w), u′′(w)) ,

we have

|xn (w, u(w), u′(w), u′′(w))|

= |
√
w(ξ1 − w)

(n+ 1)6
+

wπ4

90(1 + n4)
sup
m≥n

(um(w), u′m(w), u′′m(w)) |

= pn(w) + qn(w) sup
m≥n

(um(w), u′m(w), u′′m(w)) ,

where pn(w) vanishes identically on [0, ξ1] and qn(w) is equibounded on [0, ξ1].
Thus all the conditions of (Q3) are satisfied. Using result 1.5, the system (2.7)
has a unique solution in sequence space c0.

2.2. Solution of the third order fuzzy differential equation in Se-
quence space ℓ1.

The following assumptions are made in order to identify the condition under
which the system (2.1) has a solution in ℓ1 :
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(L1) The functions xi are defined on the set [0, ξ1]× R∞ and take real values
(i = 1, 2, 3, . . .).

(L2) The operator x defined on the space [0, ξ1]× ℓ1 as

(w, v, v′, v′′) → (x(v, v′, v′′))

= (x1(w, v, v
′, v′′), x2(w, v, v

′, v′′), x3(w, v, v
′, v′′), . . .)(2.8)

is such that the class of all functions ((xv)(w)), w ∈ [0, ξ1] is equicontin-
uous at every point of the space ℓ1.

(L3) The following inequality holds:

|xi(w, v1, v′1, v′′1 , v2, v′2, v′′2 , . . .)| ≤ gi(w) + hi(w)|vi(w)|

where gi(w) and hi(w) are real functions defined and continuous on [0, ξ1],
such that

∑∞
k=1 gk(w) converges uniformly on [0, ξ1] and the sequence

(hi(w)) is equibounded on [0, ξ1].

(L4) The function φ : R+ → R+is nondecreasing and continuous such that
φ(λw) ≤ λφ(w) for λ ≥ 0, and φ(0) = 0, φ(w) > 0 for every w > 0.

To prove the result, we set

g(w) =

∞∑
k=1

gk(w),

G1 = sup{g(w) : w ∈ [0, ξ1},

H1 = sup{hn(w) : n ∈ N,w ∈ [0, ξ1]}.

Theorem 2.4. Under the hypotheses (Q1) − (Q3), the infinite system of dif-
ferential equations (2.1) has at least one solution v(w) = (vi(w)) ∈ ℓ1, for all
w ∈ [0, ξ1].

Proof. Let S(u(w)) denote the set of all sequences that are rearrangements of

v(w). If v(w) ∈ S(u(w)), then
∞∑
k=1

|vk(w)| ≤ M1, where M1 is a finite positive

real number for all v(w) = (vi(w)) ∈ ℓ1 for all w ∈ [ξ0, ξ1]. Then from the
relation (2.2) and the hypothesis (L2), we have for an arbitrary w ∈ [0, ξ1],

∥v(w)∥ℓ1 =

∞∑
k=1

∣∣∣∣∣
∫ ξ1

0

Y (w, s)xk (s, v(s), v
′(s), v′′(s)) ds

∣∣∣∣∣
≤

∞∑
k=1

∫ ξ1

0

|Y (w, s)xk (s, v(s), v
′(s), v′′(s))| ds
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≤
∞∑
k=1

∫ ξ1

0

|Y (w, s)| (gk(w) + hk(w) |vk(w)|) ds

≤
∞∑
k=1

∫ ξ1

0

Y (w, s) (gk(w)) ds+

∞∑
k=1

∫ ξ1

0

Y (w, s)hk(w) |vk(w)| ds

≤
∫ ξ1

0

|Y (w, s)|

{ ∞∑
k=1

(gk(w))

}
ds+H1

∫ ξ1

0

|Y (w, s)|

{ ∞∑
k=1

|vk(w)|

}
ds

≤ G1

∫ ξ1

0

|Y (w, s)|ds+H1

∫ ξ1

0

|Y (w, s)|M0ds

≤ G1ξ
2
0ξ1 (3ξ1 − ξ0)

6
+
H1M1ξ

2
0ξ1 (3ξ1 − ξ0)

6
= r0, say.

Let u0(w) =
(
u0i (w)

)∞
i=1

where u0i (w) = 0, for all w ∈ [0, ξ1]. Let B̄ =

B̄
(
u0, r1

)
, the closed ball centered at u0 and radius r1 ≤ r0. Then B̄ is a

nonempty, closed and convex subset of ℓ1.
Let us consider the operator Γ = (Γi) on C

(
[0, ξ1] , B̄

)
, defined as follows:

For w ∈ [0, ξ1]

(Γu)(w) = {(Γiu) (w)} =

{∫ ξ1

0

Y (w, s)xi (s, u(s), u
′(s), u′′(s)) ds

}
,

where u(w) = (ui(w)) ∈ B̄ and ui(w) ∈ C ([ξ0, ξ1] ,R)
Since (xi(w, u(w))) ∈ ℓ1 for each w ∈ [ξ0, ξ1], so we have

∞∑
i=1

|(Γiv) (w)| =
∞∑
i=1

∣∣∣∣∣
∫ ξ1

0

Y (w, s)xi (s, u(s), u
′(s), u′′(s)) ds

∣∣∣∣∣ ≤ r0 <∞

Therefore, (Γu)(w) = {(Γiu) (w)} ∈ ℓ1 for each w ∈ [0, ξ1].
Also, we have

Γi)(0) =

∫ ξ1

0

Y (0, s)xi(s, u(s), u
′(s), u′′(s))ds

=

∫ ξ1

0

0.xi(s, u(s), u
′(s), u′′(s))ds = 0.

and

(Γi)(ξ1) =

∫ ξ1

0

Y (ξ1, s)xi(s, u(s), u
′(s), u′′(s))ds

=

∫ ξ1

0

0.xi(s, u(s), u
′(s), u′′(s))ds = 0.

Therefore, each (Γiu) (w) satisfies boundary conditions given in (2.1).
Since

∥∥(Γu(w)− u0(w)
)∥∥

ℓ1
= ∥(Γu(w))∥ℓ1 ≤ r0, therefore, it follows that

Γ is self mapping on B̄. The operator Γ is continuous C([0, ξ1]) by assumption
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(L2). We now show that Γ is a generalized Meir-Keeler condensing operator
for which for any given ϵ > 0, we need to find δ > 0 such that χ(ΓB̄) < ϵ
whenever ϵ ≤ χ(B̄) + φ(B̄) < ϵ+ δ. We have

χ(ΓB̄) + φ(ΓB̄)

= lim
n→∞

[
sup

u(w)∈B̄

{ ∞∑
n=k

∣∣∣∣∣
∫ ξ1

0

Y (w, s)xk (s, v(s), v
′(s), v′′(s)) ds

∣∣∣∣∣
}]

+φ

[
lim
n→∞

[
sup

u(w)∈B̄

{ ∞∑
n=k

∣∣∣∣∣
∫ ξ1

0

Y (w, s)xk (s, v(s), v
′(s), v′′(s)) ds

∣∣∣∣∣
}]]

≤ lim
n→∞

[
sup

u(w)∈B̄

{ ∞∑
n=k

∫ ξ1

0

|Y (w, s)|xk (s, v(s), v′(s), v′′(s)) ds

}]

+φ

[
lim
n→∞

[
sup

u(w)∈B̄

{ ∞∑
n=k

∫ ξ1

0

|Y (w, s)|xk (s, v(s), v′(s), v′′(s)) ds

}]]

≤ lim
n→∞

[
sup

u(w)∈B̄

{ ∞∑
n=k

∫ ξ1

0

|Y (w, s)| (gk(s) + hk(s) |vk(s)|) ds

}]

+φ

[
lim
n→∞

[
sup

u(w)∈B̄

{ ∞∑
n=k

∫ ξ1

0

|Y (w, s)| (gk(s) + hk(s) |vk(s)|) ds

}]]

≤ lim
n→∞

[
supu(w)∈B

{∫ ξ1

0

|Y (w, s)|

( ∞∑
n=k

gk(s)ds

)

+ lim
n→∞

[
sup

u(w)∈B̄

{∫ ξ1

0

|Y (w, s)|

( ∞∑
n=k

hk(s) |vk(s)|

)
ds

}]

+φ

[
limn→∞

[
supu(w)∈B

{∫ ξ1

0

|Y (w, s)|
∞∑

n=k

gk(s)ds

)
.

+ lim
n→∞

[
sup

u0(w)∈B̄

{∫ ξ1

0

|Y (w, s)|

( ∞∑
n=k

hk(s) |vk(s)|

)
ds

}]]

≤ lim
n→∞

[
supu0(w)∈B

{∫ ξ1

0

|Y (w, s)|

( ∞∑
n=k

gk(s)

)
ds

+ lim
n→∞

[
sup

u(w)∈B̄

{∫ ξ1

0

|Y (w, s)|

(
H1

∞∑
n=k

|vk(s)|

)
ds

}]

+φ

[
limn→∞

[
supu(w)∈B

{∫ ξ1

0

|Y (w, s)|

( ∞∑
n=k

gk(s)

)
ds

+ lim
n→∞

[
sup

u(w)∈B̄

{∫ ξ1

0

|Y (w, s)|

(
H1

∞∑
n=k

|vk(s)|

)
ds

}]]
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≤ H1ξ
2
0ξ1 (3ξ1 − ξ0)

6
(χ(B̄)) + φ

[
H1ξ

2
0ξ1 (3ξ1 − ξ0)

6
(χ(B̄))

]
≤ H1ξ

2
0ξ1 (3ξ1 − ξ0)

6
[χ(B̄) + φ(χ(B̄)].

Thus, we get,

χ(ΓB̄) + φ(ΓB̄) <
H1ξ

2
0ξ1(3ξ1 − ξ0)

6
[χ(B̄) + φ(χ(B̄)] < ϵ

⇒ χ(B̄) + φ(χ(B̄) <
6ϵ

H1ξ20ξ1(3ξ1 − ξ0)
.

Taking

δ =
6−H1ξ

2
0ξ1 (3ξ1 − ξ0)

H1ξ20ξ1 (3ξ1 − ξ0)
ϵ,

we get ϵ ≤ χ(B̄) + φ(B̄) < ϵ + δ. This shows that γ is a generalizeed Meir-
Keeler condensing operator defined on the set B̄ ⊂ ℓ1 and so, it satisfies all the
conditions of result 1.5 with O(f ;w) = w and Y1(a, b) = a+ b. Therefore γ has
a fixed point in B̄, which is a solution of system of equations (2.1).

The following examples exemplify the above result:

Example 2.5. Consider the following system of third order fuzzy differential
equations

d3xn(w)

dw3
− xn (w, u(w), u

′(w), u′′(w)) = 0,(2.9)

where

xn (w, u(w), u
′(w), u′′(w)) = w

1
2 sin

( w
n3

)
(un(w), u

′
n(w), u

′′
n(w)) ,

w ∈ [0, ξ1] and ui(w) ∈ ℓ1.

Solution: Consider a positive arbitrary real number ϵ > 0 and v(w) ∈ ℓ1,
we have

∞∑
l=1

|xn (w, u(w), u′(w), u′′(w))| ≤ w
1
2

∞∑
l=1

|un(w), u′n(w), u′′n(w)|

<∞ if u(w), u′(w), u′′(w)

= ui(w), u
′
i(w), u

′′
i (w) ∈ ℓ1.

Taking v(w) ∈ ℓ1 with

∥(u(w), u′(w), u”(w))− (v(w), v′(w), v”(w))∥ℓ1 < δ =
ϵ

w
1
2

,

|xn (w, u(w), u′(w), u′′(w))− xn (w, v(w), v
′(w), v′′(w))|
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=| w 1
2 sin

( w
n3

)
(u(w), u′(w), u′′(w))− w

1
2 sin

( w
n3

)
(v(w), v′(w), v′′(w)) |

≤ w
1
2 |un(w)− vn(w)|

< w
1
2 δ = ϵ

which implies the equicontinuity of (xu)(w)w∈[0,ξ1] on ℓ1. Again we have for
all n ∈ N and w ∈ [a0, a1]

|xn(w, u(w), u′(w), u′′(w))| ≤ e
w
2 |un(w), u′n(w), u′′n(w)|

= hn(w)|un(w), u′n(w), u′′n(w)|

where hn(w) = w
1
2 is a real function on [0, ξ1] and the sequence |hn(w)| is

equibounded on [0, ξ1]. Thus by result 1.5, the system (2.9) has a unique
solution in sequence space ℓ1.

Example 2.6. Consider the following system of third order differential equa-
tions

d3xn(w)

dw3
−

n
√
w

n8
+

∞∑
m=n

w cos(w) (um(w), u′m(w), u′′m(w))

m8
= 0,(2.10)

where w ∈ [0, ξ1] , (ui(w), u
′
i(w), ui”(w)) ∈ ℓ1.

Solution: Clearly,
n
√
w

n8
and

∞∑
m=n

w cos(w) (um(w), u′m(w), u′′m(w))

m8
are con-

tinuous on [0, ξ1], for each n ∈ N.
Note that for any w ∈ [0, ξ1], xi(w, u(w), u

′(w), u”(w)) ∈ ℓ1,
if (ui(w), u

′
i(w), ui”(w)) ∈ ℓ1. Moreover, we have

∞∑
l=1

|xn (w, u(w), u′(w), u′′(w))|

=

∞∑
l=1

∣∣∣∣∣ n
√
w

n8
+

∞∑
m=n

w cos(w) (um(w), u′m(w), u′′m(w))

m8

∣∣∣∣∣
≤

∞∑
l=1

n
√
w

n8
+

∞∑
l=1

∞∑
m=n

∣∣∣∣w cos(w) (um(w), u′m(w), u′′m(w))

m8

∣∣∣∣
≤ ξ1π

8

9450
+

∞∑
l=1

∞∑
m=n

∣∣∣∣w (um(w), u′m(w), u′′m(w))

m8

∣∣∣∣
≤ ξ1π

8

9450
+ ξ1∥ (u(w), u′(w), u′′(w)) ∥1 <∞.

We will show that H1 is satisfied.
Let us fix arbitrarily ϵ > 0 and (un(w), u

′
n(w), u

′′
n(w)) ∈ ℓ1. Then taking

(vn(w), v
′
n(w), v

′′
n(w)) ∈ ℓ1 with

∥(u(w), u′(w), u”(w))− (v(w), v′(w), v”(w))∥ℓ1 < δ =
ϵ

ξ1
,
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|xn (w, u(w), u′(w), u′′(w))− xn (w, v(w), v
′(w), v′′(w))|

=

∞∑
m=n

w((um(w), u′m(w), u′′m(w))− (vm(w), v′m(w), v′′m(w)))

m8
≤ ξ1δ < ϵ.

which implies continuity as assumed in L2. Now, we show that assumption L3
is satisfied.

|xn (w, u(w), u′(w), u′′(w))|

=

∣∣∣∣∣ n
√
w

n8
+

∞∑
m=n

w cos(w) (um(w), u′m(w), u′′m(w))

m8

∣∣∣∣∣
≤

√
w

n8
+

∞∑
m=n

w

m8
|(um(w), u′m(w), u′′m(w))|

≤ gn(w) + hn(w) |(un(w), u′n(w), u′′n(w))|

The function gn(w) is continuous and
∑

n≥1 gn(w) converges uniformly to√
wπ8

9450
, also hn(w) =

wπ8

9450
is continuous and the sequence (hn(w)) is equi-

bounded on [0, ξ1] by H1 =
ξ1π

8

9450
. Thus, by result 1.5, the system (2.10) has a

unique solution in sequence space ℓ1.

3. Conclusion

In this paper we apply the concept of measure of noncompactness and
operator type contraction to study the existence of solution of third order fuzzy
differential equations in the sequence space c0 and ℓ1. The result is supported
with concrete examples. In future, one can apply the above mentioned existence
of the solution in different sequence spaces.
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Monografie Matematyczne, Vol. 20. Państwowe Wydawnictwo Naukowe (PWN),
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