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A new notion of convergence in gradual normed linear
spaces

Chiranjib Choudhury1, Shyamal Debnath2 and Ayhan Esi34

Abstract. In this paper we introduce the notion of Iλ−statistical
convergence of sequences as one of the extensions of I− statistical con-
vergence in the gradual normed linear spaces. We investigate some fun-
damental properties of the newly introduced notion and its relationship
with I− statistical convergence. In the end, we introduce and investigate
the concept of Iλ−statistical limit points, cluster points and establish
some implication relations.
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1. Introduction

The idea of fuzzy sets [37] was first introduced by Zadeh in the year 1965
which was an extension of classical set-theoretical concept. Nowadays it has
wide applicability in different branches of science and engineering. The term
“fuzzy number” plays a crucial role in the study of fuzzy set theory. Fuzzy
numbers were basically the generalization of intervals, not numbers. Even
fuzzy numbers do not obey a few algebraic properties of the classical numbers.
So the term “fuzzy number” is debatable to many authors due to its different
behavior. The term “fuzzy intervals” is often used by many authors instead
of fuzzy numbers. To overcome the confusion among the researchers, in 2008,
Fortin et al. [15] introduced the notion of gradual real numbers as elements of
fuzzy intervals. Gradual real numbers are mainly known by their respective as-
signment function which is defined in the interval (0, 1]. So in some sense, every
real number can be viewed as a gradual number with a constant assignment
function. The gradual real numbers also obey all the algebraic properties of
the classical real numbers and have been used in computation and optimization
problems.
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In 2011, Sadeqi and Azari [28] first introduced the concept of gradual
normed linear space. They studied various properties of the space from both
the algebraic and topological points of view. Further progress in this direction
has occurred due to Ettefagh et al. [12, 13] and many others. An extensive
study on gradual real numbers [1, 11, 23] can be addressed, where many more
references can be found.

On the other hand, the notion of statistical convergence was first introduced
by Fast [14] and Steinhaus [32] independently in the year 1951. Later on, it
was further investigated and studied from the sequence space point of view
by Fridy [17], Šalát [36], and many others. In 2000, statistical convergence
was extended to λ−statistical convergence by Mursaleen [26] involving a non-
decreasing sequence of positive numbers λ = (λn) satisfying

(1.1) λ1 = 1, λn+1 − λn ≤ 1 and λn → ∞ as n → ∞.

Later on, several works have been carried out in this direction by Çolak and
Bektaş [3], Savaş and Mohiuddine [29], and many others. In 2001, the idea of
I−convergence was developed by Kostyrko et al. [21] mainly as an extension
of statistical convergence. They showed that many other known notions of
convergence were a particular type of I−convergence by considering particu-
lar ideals. Consequently, this direction successively gets more attention from
the researchers and became one of the most active areas of research. Several
investigations and extensions of I−convergence can be found in the works of
Kostyrko et al. [20], Tripathy and Hazarika [35, 33, 34], and many others.

Combining the notion of statistical convergence and I−convergence, in
2011, Savaş and Das [31] introduced the notion of I−statistical convergence
and Iλ−statistical convergence. The generalized de la Vallée-Poussin mean is
defined by

tn((xk)) =
1
λn

∑
k∈In

xk,

where In = [n− λn + 1, n]. A sequence (xk) is said to be I − [V, λ] summable
[31] to l if

I − lim
n→∞

tn((xk)) = l.

For I = If , the class of all finite subsets of N, I−[V, λ]−summability reduces to
[V, λ]−summability [22]. Several investigations on I−statistical convergence,
Iλ−statistical convergence, and their generalized notions have been carried out
by Das and Savaş [7], Das et al. [8], Savaş [30], Şengül et al. [6], and many
others [2, 9, 10].

The usual convergence of sequences in gradual normed linear spaces was in-
troduced by Ettefagh et al. [13]. Recently, Choudhury and Debnath [4, 5] have
extended it to I−convergence and I−statistical convergence using the concept
of ideals. From that point of view, the study of Iλ−statistical convergence of
sequences in gradual normed linear spaces is very natural.
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2. Definitions and Preliminaries

Definition 2.1. [15] A gradual real number r̃ is defined by an assignment
function Ar̃ : (0, 1] → R. The set of all gradual real numbers is denoted
by G(R). A gradual real number r̃ is said to be non-negative, if for every
φ ∈ (0, 1], Ar̃(φ) ≥ 0. The set of all non-negative gradual real numbers is
denoted by G∗(R).

In [15], the gradual operations between the elements of G(R) was defined
as follows:

Definition 2.2. Let ∗ be any operation in R and suppose r̃1, r̃2 ∈ G(R) with
assignment functions Ar̃1 and Ar̃2 respectively. Then r̃1 ∗ r̃2 ∈ G(R) is defined
with the assignment function Ar̃1∗r̃2 given by

Ar̃1∗r̃2(φ) = Ar̃1(φ) ∗ Ar̃2(φ), ∀φ ∈ (0, 1].

Then, the gradual addition r̃1+ r̃2 and the gradual scalar multiplication cr̃(c ∈
R) are defined by

Ar̃1+r̃2(φ) = Ar̃1(φ) +Ar̃2(φ) and Acr̃(φ) = cAr̃(φ), ∀φ ∈ (0, 1].

For any real number p ∈ R, the constant gradual real number p̃ is defined by
the constant assignment function Ap̃(φ) = p for any φ ∈ (0, 1]. In particular, 0̃
and 1̃ are the constant gradual numbers defined by A0̃(φ) = 0 and A1̃(φ) = 1
respectively. One can easily verify that G(R) with the gradual addition and
gradual scalar multiplication forms a real vector space [15].

Definition 2.3. [28] Let X be a real vector space. The function ∥·∥G : X →
G∗(R) is said to be a gradual norm on X if, for every φ ∈ (0, 1], the following
conditions hold for any x, y ∈ X:
(i) A∥x∥G

(φ) = A0̃(φ) if and only if x = 0;
(ii) A∥cx∥G

(φ) = |c|A∥x∥G
(φ) for any c ∈ R;

(iii) A∥x+y∥G
(φ) ≤ A∥x∥G

(φ) +A∥y∥G
(φ).

The pair (X, ∥·∥G) is called a gradual normed linear space (GNLS).

Definition 2.4. [28] Let (xk) be a sequence in the GNLS (X, ∥·∥G). Then,
(xk) is said to be gradual convergent to x ∈ X, if for every φ ∈ (0, 1] and
ε > 0, there exists N(= Nε(φ)) ∈ N such that A∥xk−x∥G

(φ) < ε, ∀k ≥ N .

Symbolically, xk
∥·∥G−−−→ x.

Example 2.5. [28] Let X = Rm and for x = (x1, x2, · · · , xm) ∈ Rm, φ ∈ (0, 1],
define ∥·∥G by

A∥x∥G
(φ) = eφ

m∑
i=1

|xi|.

Then, ∥·∥G is a gradual norm on Rm, and (Rm, ∥·∥G) is a GNLS.
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Definition 2.6. [21] Let X be a non-empty set. A family of subsets I ⊂ P (X)
is called an ideal on X, if
(i) for each A,B ∈ I implies A ∪ B ∈ I, and (ii) for each A ∈ I and B ⊂ A
implies B ∈ I.

Definition 2.7. [21] Let X be a non-empty set. A family of subsets F ⊂ P (X)
is called a filter on X, if
(i) for each A,B ∈ F implies A ∩ B ∈ F , and (ii) for each A ∈ F and B ⊃ A
implies B ∈ F .

An ideal I is called non-trivial if I ̸= ∅ and X /∈ I. The filter F(I) =
{X \A : A ∈ I} is called the filter associated with the ideal I. A non-trivial
ideal I ⊂ P (X) is called an admissible ideal inX if and only if I ⊃ {{x} : x ∈ X}.

Definition 2.8. [21] Let I ⊂ P (N) be a non-trivial ideal on N. A real-valued
sequence (xk) is said to be I-convergent to l, if for each ε > 0, the set

C (ε) = {k ∈ N :| xk − l |≥ ε}

belongs to I. In this case, l is called the I-limit of the sequence (xk) and it is

written as I − lim
k

xk = l or xk
I−→ l.

Definition 2.9. [19] Let K ⊆ N and Kn denote the set {k ∈ K : k ∈ In}.
Then, the Iλ−density of K is defined by

dIλ(K) = I − lim
n→∞

|Kn|
λn

,

provided that the limit exists, where In = [n− λn + 1, n], n ∈ N.

Definition 2.10. [31] A real-valued sequence (xk) is said to be Iλ−statistically
convergent to l, if for every ε > 0, δ > 0,{

n ∈ N : 1
λn

|{k ∈ In : |xk − l| ≥ ε}| ≥ δ
}
∈ I.

Equivalently, dIλ({k ∈ N : |xk − l| ≥ ε}) = 0. Symbolically, xk
Ist
λ−−→ l.

If (xmk
) is a subsequence of the sequence (xk) and dIλ({m1,m2, · · · }) = 0,

then (xmk
) is said to be an Iλ−thin subsequence of (xk).

On the other hand, if dIλ({m1,m2, · · · }) > 0 or the set {m1,m2, · · · } fails
to have Iλ−density, then (xmk

) is said to be an Iλ−nonthin subsequence of
(xk).

Definition 2.11. [24] A number x0 ∈ R is said to be an Iλ−statistical limit
point of a real-valued sequence (xk), if there exists an Iλ−nonthin subsequence
of (xk) that converges to x0.

Definition 2.12. [24] A number x0 ∈ R is said to be an Iλ−statistical cluster
point of a real-valued sequence (xk), if for every ε > 0,

dIλ({k ∈ N : |xk − x0| < ε}) ̸= 0.
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Remark 2.13. (i) If we take λn = n, then Definition 2.9, Definition 2.10, Defini-
tion 2.11, and Definition 2.12 reduces to the definition of I−natural density [25],
I−statistical convergence [31], I−statistical limit point [10], and I−statistical
cluster point [27] respectively.
(ii) If we take λn = n and I = If , then Definition 2.9, Definition 2.10, Defi-
nition 2.11, and Definition 2.12 turns to the definition of natural density [16],
statistical convergence [17], statistical limit point [18], and statistical cluster
point [18] respectively.

Definition 2.14. [4] Let (xk) be a sequence in the GNLS (X, ∥·∥G). Then,
(xk) is said to be gradual I−convergent (in short, I − ∥·∥G convergent) to
x ∈ X, if for every φ ∈ (0, 1] and ε > 0, the set

B(φ, ε) = {k ∈ N : A∥xk−x∥G
(φ) ≥ ε} ∈ I.

Symbolically, xk
I−∥·∥G−−−−−→ x.

Definition 2.15. [5] Let (xk) be a sequence in the GNLS (X, ∥·∥G). Then, (xk)
is said to be gradually I−statistical convergent (in short, Ist−∥·∥G convergent)
to x ∈ X, if for every φ ∈ (0, 1] and ε > 0, δ > 0,{

n ∈ N : 1
n

∣∣{k ≤ n : A∥xk−x∥G
(φ) ≥ ε

}∣∣ ≥ δ
}
∈ I.

Symbolically, xk
Ist−∥·∥G−−−−−−→ x.

The set of all gradual I−statistical convergent sequences is denoted by
Ist(G).

Throughout the paper, we use 0, λ = (λn), and I to denote the m−tuple
(0, 0, · · · , 0, 0), a non-decreasing sequence of positive numbers that satisfies
(1.1), and a non-trivial admissible ideal in N respectively.

3. Main Results

Definition 3.1. Let (xk) be a sequence in the GNLS (X, ∥·∥G). Then, (xk) is
said to be I − [V, λ]G summable to x ∈ X, if for every φ ∈ (0, 1] and ε > 0,{

n ∈ N : 1
λn

( ∑
k∈In

A∥xk−x∥G
(φ)

)
≥ ε

}
∈ I.

In this case, we write xk
I−[V,λ]G−−−−−−→ x.

We shall denote the set of all I− [V, λ]G summable sequences by I− [V, λ]G.

Definition 3.2. Let (xk) be a sequence in the GNLS (X, ∥·∥G). Then, (xk) is
said to be gradual Iλ−statistical convergent (in short, Ist

λ − ∥·∥G convergent)
to x ∈ X, if for every φ ∈ (0, 1] and ε > 0, δ > 0,{

n ∈ N : 1
λn

∣∣{k ∈ In : A∥xk−x∥G
(φ) ≥ ε

}∣∣ ≥ δ
}
∈ I.
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Equivalently, dIλ
({

k ∈ N : A∥xk−x∥G
(φ) ≥ ε

})
= 0. In this case, we write,

xk
Ist
λ −∥·∥G−−−−−−→ x.

We shall denote the set of all gradual Iλ−statistical convergent sequences
by Ist

λ (G).

Example 3.3. Let X = Rm and ∥·∥G be the norm defined in Example 2.5.
Take a fixed S ∈ I. Then, the sequence (xk) defined by

xk =


(0, 0, · · · , 0, k), n− [

√
λn] + 1 ≤ k ≤ n, n /∈ S

(0, 0, · · · , 0, k), n− λn + 1 ≤ k ≤ n, n ∈ S

0, otherwise

is Ist
λ − ∥·∥G convergent to 0.

Justification. For any ε > 0 (0 < ε < 1), since

1

λn

∣∣{k ∈ In : A∥xk−0∥G
(φ) ≥ ε

}∣∣ = [
√
λn]

λn
→ 0

as n → ∞ and n /∈ S, so for every δ > 0,

(3.1)

{
n ∈ N :

1

λn

∣∣{k ∈ In : A∥xk−0∥G
(φ) ≥ ε

}∣∣ ≥ δ

}
⊂ S ∪ {1, 2, · · · , k1}

for some k1 ∈ N. Since I is admissible, it follows from (3.1) that xk
Ist
λ −∥·∥G−−−−−−→ 0.

Theorem 3.4. Let (xk) be a sequence in the GNLS (X, ∥·∥G). Then,

(i) xk
I−[V,λ]G−−−−−−→ x implies xk

Ist
λ −∥·∥G−−−−−−→ x but the converse is not true;

(ii) If (xk) is gradually bounded and xk
Ist
λ −∥·∥G−−−−−−→ x then, xk

I−[V,λ]G−−−−−−→ x.

Proof. (i) Let xk
I−[V,λ]G−−−−−−→ x. Then, for any ε > 0 and φ ∈ (0, 1], the following

inequation holds∑
k∈In

A∥xk−x∥G
(φ) ≥

∑
k∈In

A∥xk−x∥G
(φ)≥ε

A∥xk−x∥G
(φ)

≥ ε
∣∣{k ∈ In : A∥xk−x∥G

(φ) ≥ ε
}∣∣ .

Consequently for a given δ > 0,

1

λn

∣∣{k ∈ In : A∥xk−x∥G
(φ) ≥ ε

}∣∣ ≥ δ ⇒ 1

λn

∑
k∈In

A∥xk−x∥G
(φ) ≥ εδ.

This implies that{
n ∈ N :

1

λn

∣∣{k ∈ In : A∥xk−x∥G
(φ) ≥ ε

}∣∣ ≥ δ

}
⊆

{
n ∈ N :

1

λn

∑
k∈In

A∥xk−x∥G
(φ) ≥ εδ

}
∈ I.
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Hence, xk
Ist
λ −∥·∥G−−−−−−→ x.

For the converse part, consider Example 3.3. It was shown that xk
Ist
λ −∥·∥G−−−−−−→

0. But clearly
1

λn

∑
k∈In

A∥xk−0∥G
(φ) → ∞ as n → ∞.

This shows that (xk) is not I − [V, λ]G summable to 0.

(ii) Let xk
Ist
λ −∥·∥G−−−−−−→ x and (xk) is gradually bounded, say

A∥xk−x∥G
(φ) ≤ M, ∀k ∈ N.

Then, for any ε > 0 and φ ∈ (0, 1], we have

1

λn

∑
k∈In

A∥xk−x∥G
(φ) =

1

λn

∑
k∈In

A∥xk−x∥G
(φ)≥ε

A∥xk−x∥G
(φ)

+
1

λn

∑
k∈In

A∥xk−x∥G
(φ)<ε

A∥xk−x∥G
(φ)

≤ M

λn

∣∣{k ∈ In : A∥xk−x∥G
(φ) ≥ ε

}∣∣+ ε.

Let

B(φ, ε) =
{
n ∈ N : 1

λn

∣∣{k ∈ In : A∥xk−x∥G
(φ) ≥ ε

}∣∣ ≥ ε
M

}
.

Then, by hypothesis, B(φ, ε) ∈ I and for any n ∈ N \B(φ, ε),

1

λn

∑
k∈In

A∥xk−x∥G
(φ) < 2ε.

Consequently, the inclusion{
n ∈ N :

1

λn

∑
k∈In

A∥xk−x∥G
(φ) ≥ 2ε

}
⊆ B(φ, ε)

holds and the rest follows from the hereditary property of I.

Theorem 3.5. Let (xk) be a sequence in the GNLS (X, ∥·∥G) such that xk
Ist
λ −∥·∥G−−−−−−→

x. Then x is unique.

Proof. If possible suppose xk
Ist
λ −∥·∥G−−−−−−→ x and xk

Ist
λ −∥·∥G−−−−−−→ y holds for x, y ∈ X

with x ̸= y. Then, for any ε > 0 and φ ∈ (0, 1], we have

dIλ(B1(φ, ε)) = dIλ(B2(φ, ε)) = 1,
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where

B1(φ, ε) =
{
k ∈ N : A∥xk−x∥G

(φ) < ε
}

and

B2(φ, ε) =
{
k ∈ N : A∥xk−y∥G

(φ) < ε
}
.

Choose m ∈ B1(φ, ε)∩B2(φ, ε), then A∥xm−x∥G
(φ) < ε and A∥xm−y∥G

(φ) < ε.
Consequently,

A∥x−y∥G
(φ) ≤ A∥xm−x∥G

(φ) +A∥xm−y∥G
(φ) < ε+ ε = 2ε.

Since ε is arbitrary, so A∥x−y∥G
(φ) = A0̃(φ) and so we must have x = y.

Theorem 3.6. Let (xk) be a sequence in the GNLS (X, ∥·∥G) such that xk
λst−∥·∥G−−−−−−→

x. Then, xk
Ist
λ −∥·∥G−−−−−−→ x.

Proof. xk
λst−∥·∥G−−−−−−→ x implies that for every φ ∈ (0, 1] and ε > 0,

lim
n

1

λn

∣∣{k ∈ In : A∥xk−x∥G
(φ) ≥ ε

}∣∣ = 0.

So for every φ ∈ (0, 1], ε > 0, and δ > 0, the set{
n ∈ N : 1

λn

∣∣{k ∈ In : A∥xk−x∥G
(φ) ≥ ε

}∣∣ ≥ δ
}

is a finite set and eventually becomes a member of I, as I is admissible.

Remark 3.7. The converse of the above theorem is not necessarily true. One
can easily verify the fact by considering Example 3.3.

Remark 3.8. For a sequence (xk) in the GNLS (X, ∥·∥G), xk
I−∥·∥G−−−−−→ x implies

xk
Ist
λ −∥·∥G−−−−−−→ x. But the converse is not necessarily true.

Example 3.9. Let X = Rm and ∥·∥G be the norm defined in Example 2.5.
Consider λn = n and the ideal I = If , ideal consisting of all finite subsets of
N. Define the sequence (xk) as

xk =

{
0, k = n3, n ∈ N
(0, 0, · · · , 0, 1), otherwise

.

Then, (xk) is Ist
λ −∥·∥G convergent to (0, 0, · · · , 0, 1) but not I−∥·∥G convergent

to (0, 0, · · · , 0, 1).

Theorem 3.10. Let (xk) be a sequence in the GNLS (X, ∥·∥G). If every sub-
sequence of (xk) is Ist

λ −∥·∥G convergent to x ∈ X, then (xk) is also Ist
λ −∥·∥G

convergent to x.
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Proof. If possible suppose (xk) is not Ist
λ − ∥·∥G convergent to x in spite of

having all the subsequences Ist
λ − ∥·∥G converging to x. Then, by definition,

there exists particular ε > 0 and δ > 0 such that the set

B = B(φ, ε, δ) =

{
n ∈ N :

1

λn

∣∣{k ∈ In : A∥xk−x∥G
(φ) ≥ ε

}∣∣ ≥ δ

}
/∈ I.

Now admissibility of I ensures that B contains an infinite number of elements.
Put B = {n1 < n2 < · · · < nj < · · · } and define yj = xkj , j ∈ N. Then, (yj) is
a subsequence of (xk) that is not Ist

λ −∥·∥G converging to x, which contradicts
our assumption.

Remark 3.11. The converse of the above theorem is not necessarily true. One
can easily verify this fact by considering Example 3.9.

Theorem 3.12. Let (xk) and (yk) be two sequences in the GNLS (X, ∥·∥G)

such that xk
Ist
λ −∥·∥G−−−−−−→ x and yk

Ist
λ −∥·∥G−−−−−−→ y. Then,

(i) xk + yk
Ist
λ −∥·∥G−−−−−−→ x+ y and

(ii) cxk
Ist
λ −∥·∥G−−−−−−→ cx, c ∈ R.

Proof. (i) From the hypothesis, we can conclude that for every φ ∈ (0, 1] and
ε > 0, δ > 0, the two sets C1 = C1(φ, ε, δ), C2 = C2(φ, ε, δ) ∈ I, where

C1 =

{
n ∈ N :

1

λn

∣∣∣{k ∈ In : A∥xk−x∥G
(φ) ≥ ε

2

}∣∣∣ ≥ δ

2

}
and

C2 =

{
n ∈ N :

1

λn

∣∣∣{k ∈ In : A∥yk−y∥G
(φ) ≥ ε

2

}∣∣∣ ≥ δ

2

}
.

Then, (N \ C1) ∩ (N \ C2) ∈ F(I) and so (N \ C1) ∩ (N \ C2) ̸= ∅. Choose
n ∈ (N \ C1) ∩ (N \ C2). Then, the following inequality

1

λn

∣∣{k ∈ In : A∥(xk+yk)−(x+y)∥G
(φ) ≥ ε

}∣∣
≤ 1

λn

∣∣∣{k ∈ In : A∥xk−x∥G
(φ) ≥ ε

2

}∣∣∣
+

1

λn

∣∣∣{k ∈ In : A∥yk−y∥G
(φ) ≥ ε

2

}∣∣∣ ,
holds and consequently, we have the following inclusion:
(3.2)

(N\C1)∩(N\C2) ⊆
{
n ∈ N :

1

λn

∣∣{k ∈ In : A∥(xk+yk)−(x+y)∥G
(φ) ≥ ε

}∣∣ < δ

}
.

Now as (N \ C1) ∩ (N \ C2) ∈ F(I), so the set in the right-hand side of (3.2)

also belongs to F(I) which means that xk + yk
Ist
λ −∥·∥G−−−−−−→ x+ y.
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(ii) If c = 0, there is nothing to prove. So let us assume c ̸= 0. Then, for every
φ ∈ (0, 1] and ε > 0, the following inequation

1

λn

∣∣{k ∈ In : A∥cxk−cx∥G
(φ) ≥ ε

}∣∣ = 1

λn

∣∣{k ∈ In : |c|A∥xk−x∥G
(φ) ≥ ε

}∣∣
≤ 1

λn

∣∣∣∣{k ∈ In : A∥xk−x∥G
(φ) ≥ ε

|c|

}∣∣∣∣
holds good and the result follows.

Theorem 3.13. Ist
λ (G) ⊇ Ist(G) provided that lim inf

n→∞
λn

n > 0.

Proof. For any ε > 0 and φ ∈ (0, 1],

1

n

∣∣{k ≤ n : A∥xk−x∥G
(φ) ≥ ε

}∣∣ ≥ 1

n

∣∣{k ∈ In : A∥xk−x∥G
(φ) ≥ ε

}∣∣
≥ λn

n

1

λn

∣∣{k ∈ In : A∥xk−x∥G
(φ) ≥ ε

}∣∣
Now if lim inf

n→∞
λn

n = p, then by definition, the set
{
n ∈ N : λn

n < p
2

}
contains

a finite number of elements and consequently the following inclusion holds for
any δ > 0:{

n ∈ N :
1

λn

∣∣{k ∈ In : A∥xk−x∥G
(φ) ≥ ε

}∣∣ ≥ δ

}
⊆
{
n ∈ N :

1

n

∣∣{k ∈ In : A∥xk−x∥G
(φ) ≥ ε

}∣∣ ≥ pδ

2

}
∪
{
n ∈ N :

λn

n
<

p

2

}
.

Now if xk
Ist−∥·∥G−−−−−−→ x holds, then the set on the right-hand side belongs to I

due to the admissibility of I and as a consequence, the set on the left-hand

side also belongs to I. Hence, xk
Ist
λ −∥·∥G−−−−−−→ x.

Theorem 3.14. Ist
λ (G) ⊆ Ist(G) provided that lim

n→∞
λn

n = 1.

Proof. Let δ > 0 be given. Since lim
n→∞

λn

n = 1, we can have a m ∈ N satisfying∣∣λn

n − 1
∣∣ < δ

2 ∀n ≥ m.

Now for any ε > 0 and φ ∈ (0, 1],

1

n

∣∣{k ≤ n : A∥xk−x∥G
(φ) ≥ ε

}∣∣
=

1

n

∣∣{k ≤ n− λn : A∥xk−x∥G
(φ) ≥ ε

}∣∣+ 1

n

∣∣{k ∈ In : A∥xk−x∥G
(φ) ≥ ε

}∣∣
≤ n− λn

n
+

1

λn

∣∣{k ∈ In : A∥xk−x∥G
(φ) ≥ ε

}∣∣
≤ 1−

(
1− δ

2

)
+

1

λn

∣∣{k ∈ In : A∥xk−x∥G
(φ) ≥ ε

}∣∣
=

δ

2
+

1

λn

∣∣{k ∈ In : A∥xk−x∥G
(φ) ≥ ε

}∣∣ ,
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holds for all n ≥ m. Therefore, the following inclusion holds:{
n ∈ N :

1

n

∣∣{k ≤ n : A∥xk−x∥G
(φ) ≥ ε

}∣∣ ≥ δ

}
⊆
{
n ∈ N :

1

λn

∣∣{k ∈ In : A∥xk−x∥G
(φ) ≥ ε

}∣∣ ≥ δ

2

}
∪ {1, 2, 3, · · · ,m}.

Now if xk
Ist
λ −∥·∥G−−−−−−→ x holds, then the set on the right-hand side belongs to I

due to the admissibility of I and as a consequence, the set on the left-hand

side also belongs to I. Hence, xk
Ist−∥·∥G−−−−−−→ x.

Definition 3.15. Let (xk) be a sequence in the GNLS (X, ∥·∥G). Then, x0 ∈ X
is said to be gradual Ist

λ −limit point of (xk), if there exists an Iλ−nonthin
subsequence of (xk) that gradual converges to x0.

For any sequence (xk), the set of all gradual Ist
λ −limit points is denoted by

Ist
λ − ∥·∥G (Λ(xk)).

Definition 3.16. Let (xk) be a sequence in the GNLS (X, ∥·∥G). Then, x0 ∈ X
is said to be gradual Ist

λ −cluster point of (xk), if for any ε > 0 and φ ∈ (0, 1],

dIλ
({

k ∈ N : A∥xk−x0∥G
(φ) < ε

})
̸= 0.

For any sequence (xk), the set of all gradual Ist
λ −cluster points is denoted

by
Ist
λ − ∥·∥G (Γ(xk)).

Theorem 3.17. Let (xk) be a sequence in the GNLS (X, ∥·∥G) such that

xk
Ist
λ −∥·∥G−−−−−−→ x. Then, Ist

λ − ∥·∥G (Λ(xk)) = {x}.

Proof. If possible suppose Ist
λ −∥·∥G (Λ(xk)) contains one more element y such

that y ̸= x. Then, by definition, there exists a set M ⊂ N with M = {m1 <

m2 < · · · < mk < · · · } /∈ I such that xmk

st−∥·∥G−−−−−→ x. Let

B = B(φ, ε, δ) =

{
n ∈ N :

1

n

∣∣{k ∈ In : A∥xk−y∥G
(φ) ≥ ε

}∣∣ ≥ δ

}
.

Then B is a finite set, so N \B ∈ F(I). Now, since xk
Ist
λ −∥·∥G−−−−−−→ x, so for any

φ ∈ (0, 1] and ε > 0, δ > 0, the set

C = C(φ, ε, δ) =

{
n ∈ N :

1

n

∣∣{k ∈ In : A∥xk−x∥G
(φ) ≥ ε

}∣∣ < δ

}
∈ F(I).

Put

D = D(φ, ε, δ) =

{
n ∈ M :

1

n

∣∣{k ∈ In : A∥xk−x∥G
(φ) ≥ ε

}∣∣ ≥ δ

}
.
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Then since N\D ⊃ C, so N\D ∈ F(I). Thus we have, (N\B)∩(N\D) ∈ F(I)
and eventually (N \ B) ∩ (N \ D) ̸= ∅. Let j ∈ (N \ B) ∩ (N \ D) and take
ε = A∥ x−y

2 ∥
G

(φ). Then we have,

1

j

∣∣∣{k ≤ j : A∥xj−x∥G
(φ) ≥ ε

}∣∣∣ < δ

and
1

j

∣∣∣{k ≤ j : A∥xj−y∥G
(φ) ≥ ε

}∣∣∣ < δ.

Now choosing δ sufficiently small we can have an element say

p ∈
{
k ≤ j : A∥xj−x∥G

(φ) ≥ ε
}
∩
{
k ≤ j : A∥xj−y∥G

(φ) ≥ ε
}
.

But then,

ε = A∥ x−y
2 ∥

G

(φ) ≤ 1

2

(
A∥xp−x∥G

(φ) +A∥xp−y∥G
(φ)
)
<

1

2
(ε+ ε) = ε,

which is a contradiction.

Theorem 3.18. For any sequence (xk) in the GNLS (X, ∥·∥G),

Ist
λ − ∥·∥G (Λ(xk)) ⊆ Ist

λ − ∥·∥G (Γ(xk)).

Proof. Let x0 ∈ Ist
λ − ∥·∥G (Λ(xk)). Then, there exists a Iλ−nonthin subse-

quence (xmk
) such that xmk

∥·∥G−−−→ x0, where M = {m1 < m2 < · · · < mk <

· · · } ⊆ N. Let ε > 0 be given. Since, xmk

∥·∥G−−−→ x0, so for any φ ∈ (0, 1], the

set B =
{
mk : A∥xmk

−x0∥
G

(φ) ≥ ε
}

is a finite set. Consequently, dIλ(B) = 0.

Now as the inclusion

M ⊆
{
k ∈ N : A∥xk−x0∥G

(φ) < ε
}
∪B

holds and dIλ(M) ̸= 0, so we must have

dIλ
({

k ∈ N : A∥xk−x0∥G
(φ) < ε

})
̸= 0.

This means that x0 ∈ Ist
λ − ∥·∥G (Γ(xk)). Since, x0 ∈ Ist

λ − ∥·∥G (Λ(xk)) is
arbitrary, so

Ist
λ − ∥·∥G (Λ(xk)) ⊆ Ist

λ − ∥·∥G (Γ(xk))

holds and the proof is complete.

Theorem 3.19. Let (xk) and (yk) be two sequences in the GNLS (X, ∥·∥G)
such that dIλ({k ∈ N : xk ̸= yk}) = 0. Then, (i) Ist

λ − ∥·∥G (Λ(xk)) = Ist
λ −

∥·∥G (Λ(yk)) and (ii) Ist
λ − ∥·∥G (Γ(xk)) = Ist

λ − ∥·∥G (Γ(yk)).
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Proof. (i) Let x0 ∈ Ist
λ − ∥·∥G (Λ(xk)). Then, there exists a Iλ−nonthin sub-

sequence (xmk
) such that xmk

∥·∥G−−−→ x0, where M = {m1 < m2 < · · · <
mk < · · · } ⊆ N. Let ε > 0 be given. Since dIλ ({k ∈ N : xk ̸= yk}) = 0 holds,
so we must have dIλ ({mk ∈ N : xmk

= ymk
}) ̸= 0. Therefore from the latter

set we have an Iλ−nonthin subsequence (ymk
) such that ymk

∥·∥G−−−→ x0. Con-
sequently, x0 ∈ Ist

λ − ∥·∥G (Λ(yk)). As x0 ∈ Ist
λ − ∥·∥G (Λ(xk)) is arbitrary,

Ist
λ − ∥·∥G (Λ(xk)) ⊆ Ist

λ − ∥·∥G (Λ(yk)). Applying similar technique, we can
prove that Ist

λ − ∥·∥G (Λ(xk)) ⊇ Ist
λ − ∥·∥G (Λ(yk)). Hence, Ist

λ − ∥·∥G (Λ(xk)) =
Ist
λ − ∥·∥G (Λ(yk)).

(ii) Suppose x0 ∈ Ist
λ − ∥·∥G (Γ(xk)). Then by definition, for any ε > 0 and

φ ∈ (0, 1],

dIλ
({

k ∈ N : A∥xk−x0∥G
(φ) < ε

})
̸= 0.

Let B denote the set {k ∈ N : xk = yk}. Then, dIλ(B) = 1 and eventually

dIλ
({

k ∈ N : A∥xk−x0∥G
(φ) < ε

}
∩B

)
̸= 0.

This implies that

x0 ∈ Ist
λ − ∥·∥G (Γ(yk)).

Since x0 ∈ Ist
λ − ∥·∥G (Γ(xk)) is arbitrary, so we have

Ist
λ − ∥·∥G (Γ(xk)) ⊆ Ist

λ − ∥·∥G (Γ(yk)).

Applying similar technique we can show that

Ist
λ − ∥·∥G (Γ(xk)) ⊇ Ist

λ − ∥·∥G (Γ(yk)).

Hence, Ist
λ − ∥·∥G (Γ(xk)) = Ist

λ − ∥·∥G (Γ(yk)).

Conclusion

In this paper, we have investigated a few fundamental properties of Iλ−statistical
convergence in the gradual normed linear spaces. We also introduced I−[V, λ]G
summability in the gradual normed linear spaces and established Theorem 3.4
to reveal the interrelationship between the notions. Finally, we have intro-
duced the concept of Iλ−statistical limit points, cluster points and established
Theorem 3.18 and Theorem 3.19 to study their interrelationship and several
properties.

Summability theory and the convergence of sequences have wide applica-
tions in various branches of mathematics particularly, in mathematical analysis.
Research in this direction based on gradual normed linear spaces has not yet
gained much ground and it is still in its infant stage. The obtained results may
be useful for future researchers to explore various notions of convergences in
the gradual normed linear spaces in more detail.
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