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A new notion of convergence in gradual normed linear
spaces

Chiranjib ChoudhuryEl, Shyamal Debnatkﬂ and Ayhan Es

Abstract. In this paper we introduce the notion of Z)—statistical
convergence of sequences as one of the extensions of Z— statistical con-
vergence in the gradual normed linear spaces. We investigate some fun-
damental properties of the newly introduced notion and its relationship
with Z— statistical convergence. In the end, we introduce and investigate
the concept of Z)—statistical limit points, cluster points and establish
some implication relations.
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1. Introduction

The idea of fuzzy sets [37] was first introduced by Zadeh in the year 1965
which was an extension of classical set-theoretical concept. Nowadays it has
wide applicability in different branches of science and engineering. The term
“fuzzy number” plays a crucial role in the study of fuzzy set theory. Fuzzy
numbers were basically the generalization of intervals, not numbers. Even
fuzzy numbers do not obey a few algebraic properties of the classical numbers.
So the term “fuzzy number” is debatable to many authors due to its different
behavior. The term “fuzzy intervals” is often used by many authors instead
of fuzzy numbers. To overcome the confusion among the researchers, in 2008,
Fortin et al. [15] introduced the notion of gradual real numbers as elements of
fuzzy intervals. Gradual real numbers are mainly known by their respective as-
signment function which is defined in the interval (0, 1]. So in some sense, every
real number can be viewed as a gradual number with a constant assignment
function. The gradual real numbers also obey all the algebraic properties of
the classical real numbers and have been used in computation and optimization
problems.
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In 2011, Sadeqi and Azari [28] first introduced the concept of gradual
normed linear space. They studied various properties of the space from both
the algebraic and topological points of view. Further progress in this direction
has occurred due to Ettefagh et al. [I2] [13] and many others. An extensive
study on gradual real numbers [I], TT], 23] can be addressed, where many more
references can be found.

On the other hand, the notion of statistical convergence was first introduced
by Fast [14] and Steinhaus [32] independently in the year 1951. Later on, it
was further investigated and studied from the sequence space point of view
by Fridy [I7], Salat [36], and many others. In 2000, statistical convergence
was extended to A—statistical convergence by Mursaleen [26] involving a non-
decreasing sequence of positive numbers A = (\,,) satisfying

(1.1) A =1 Ag1— A, <land ), — coasn — co.

Later on, several works have been carried out in this direction by Colak and
Bektag [3], Savag and Mohiuddine [29], and many others. In 2001, the idea of
T —convergence was developed by Kostyrko et al. [2I] mainly as an extension
of statistical convergence. They showed that many other known notions of
convergence were a particular type of Z—convergence by considering particu-
lar ideals. Consequently, this direction successively gets more attention from
the researchers and became one of the most active areas of research. Several
investigations and extensions of Z—convergence can be found in the works of
Kostyrko et al. [20], Tripathy and Hazarika [35] B3] B34], and many others.

Combining the notion of statistical convergence and Z—convergence, in
2011, Savag and Das [31] introduced the notion of Z—statistical convergence
and 7, —statistical convergence. The generalized de la Vallée-Poussin mean is
defined by

tn((zk)) = 55 32 @k,

" kel,

where I, = [n — A, + 1, n]. A sequence (xy) is said to be Z — [V, A] summable
[31] to I if

7 lim to((w) =1

For Z = Zy, the class of all finite subsets of N, Z—[V, \] —summability reduces to
[V, A\]—summability [22]. Several investigations on Z—statistical convergence,
T, —statistical convergence, and their generalized notions have been carried out
by Das and Savag [7], Das et al. [§], Savag [30], Sengiil et al. [6], and many
others [2, @, [10].

The usual convergence of sequences in gradual normed linear spaces was in-
troduced by Ettefagh et al. [I3]. Recently, Choudhury and Debnath [4] [5] have
extended it to Z—convergence and Z—statistical convergence using the concept
of ideals. From that point of view, the study of Z,—statistical convergence of
sequences in gradual normed linear spaces is very natural.
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2. Definitions and Preliminaries

Definition 2.1. [I5] A gradual real number 7 is defined by an assignment
function Az : (0,1] — R. The set of all gradual real numbers is denoted
by G(R). A gradual real number 7 is said to be non-negative, if for every

€ (0,1], Az(¢) > 0. The set of all non-negative gradual real numbers is
denoted by G*(R).

In [I5], the gradual operations between the elements of G(R) was defined
as follows:

Definition 2.2. Let * be any operation in R and suppose 71,72 € G(R) with
assignment functions Az, and Ay, respectively. Then 71 * 72 € G(R) is defined
with the assignment function Az, .7, given by

"47:1*7:2 (90) = *Afl (90) * AF2 (@)7 V(p € (07 1]

Then, the gradual addition 71 + 72 and the gradual scalar multiplication ¢7(c €
R) are defined by

Ay 175 (0) = Ary (9) + Ar () and  Acr(p) = cAz(p), Vo € (0,1].

For any real number p € R, the constant gradual real number p is defined by
the constant assignment function A;(p) = p for any ¢ € (0,1]. In particular, 0
and 1 are the constant gradual numbers defined by Az(p) = 0 and A;(¢) = 1
respectively. One can easily verify that G(R) with the gradual addition and
gradual scalar multiplication forms a real vector space [15].

Definition 2.3. [28] Let X be a real vector space. The function ||-||, : X —
G*(R) is said to be a gradual norm on X if, for every ¢ € (0, 1], the following
conditions hold for any z,y € X:

(i) Aja), (¢) = Ag(¢) if and only if = = 0;

(@) Ajcall, (@) = [c| Az, (¢) for any c € R;

(#00) Aty (0) < Ajaf o (0) + Ay (#)-

The pair (X, ||-||) is called a gradual normed linear space (GNLS).

Definition 2.4. [28] Let (x;) be a sequence in the GNLS (X, |-||5). The
(zx) is said to be gradual convergent to z € X, if for every ¢ € (0 1] a
e > 0, there exists N(= N:(¢)) € N such that Allmk—m\lg( ) <e& VkE>N

Symbolically, xj M T.

Example 2.5. [28] Let X = R™ and for z = (21,22, - ,Tm) € R™, ¢ € (0,1],

define | by
Aja)l, () = €7 Z |4

Then, [-|| is a gradual norm on R™, and (R™, ||-||) is a GNLS.
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Definition 2.6. [21] Let X be a non-empty set. A family of subsets Z C P(X)
is called an ideal on X, if

(i) for each A,B € 7 implies AU B € Z, and (ii) for each A € Z and B C A
implies B € 7.

Definition 2.7. [2I] Let X be a non-empty set. A family of subsets F C P(X)
is called a filter on X, if

(i) for each A, B € F implies AN B € F, and (ii) for each A € F and B D A
implies B € F.

An ideal Z is called non-trivial if Z # @) and X ¢ Z. The filter F(Z) =
{X\ A:Ae€TZ} is called the filter associated with the ideal Z. A non-trivial
ideal Z C P(X) is called an admissible ideal in X if and only if Z D {{z} : z € X}.

Definition 2.8. [21I] Let Z C P(N) be a non-trivial ideal on N. A real-valued
sequence (xy) is said to be Z-convergent to [, if for each € > 0, the set

Ce)={keN:|z,—1|>¢}

belongs to Z. In this case, [ is called the Z-limit of the sequence (x) and it is

. . I
written as 7 — hin rp =1lor xp = I.

Definition 2.9. [I9] Let K C N and K,, denote the set {k € K : k€ I,}.
Then, the Z)—density of K is defined by

dI(K) =17 — lim K=l

n— oo n

provided that the limit exists, where I, = [n — A, + 1, n], n € N.

Definition 2.10. [31] A real-valued sequence () is said to be T —statistically
convergent to [, if for every € > 0,4 > 0,

{neN:ﬁerh:mk—Hzaﬂzé}el

Equivalently, df({k € N: |z —I| > e}) = 0. Symbolically, zj §—> l.

If (z,,,) is a subsequence of the sequence (zj) and d%({m1,ma, -+ }) = 0,
then (z,,) is said to be an Z)y—thin subsequence of (zy).

On the other hand, if d%({m1,ma,---}) > 0 or the set {my,ma,---} fails
to have Z)—density, then (z,,,) is said to be an Zy—nonthin subsequence of

(zk)-

Definition 2.11. [24] A number z( € R is said to be an T, —statistical limit
point of a real-valued sequence (), if there exists an Z), —nonthin subsequence
of (zy) that converges to xg.

Definition 2.12. [24] A number z( € R is said to be an 7, —statistical cluster
point of a real-valued sequence (zy), if for every € > 0,

dX({k € N: |z}, — mo| < €}) #0.



A new notion of convergence in gradual normed linear spaces 121

Remark 2.13. (i) If we take A,, = n, then Definition 2.9 Definition [2.10} Defini-
tion[2.11] and Definition[2.12]reduces to the definition of Z—natural density [25],
T—statistical convergence [31], Z—statistical limit point [10], and Z—statistical
cluster point [27] respectively.

(i) If we take A, = n and Z = Zy, then Definition 2.9} Definition Defi-
nition and Definition turns to the definition of natural density [16],
statistical convergence [I7], statistical limit point [I8], and statistical cluster
point [18] respectively.

Definition 2.14. [] Let (z1) be a sequence in the GNLS (X, ||-|5). Then,
(x)) is said to be gradual Z—convergent (in short, Z — ||-|, convergent) to
x € X, if for every ¢ € (0,1] and € > 0, the set

B(p,e) ={k eN: Ay 4 (p) = e} €T

Symbolically, x I, .

Definition 2.15. [5] Let (x}) be a sequence in the GNLS (X, ||-|| ;). Then, (xy)
is said to be gradually Z—statistical convergent (in short, Zst—||-||, convergent)
to z € X, if for every ¢ € (0,1] and € > 0,8 > 0,

{nEN:%Hk’ﬁn:fl”xk,m“c(g@) ZEH 25} IS

Tst—|-
Symbolically, x S—H”G> x.

The set of all gradual Z—statistical convergent sequences is denoted by

54 G).
Throughout the paper, we use 0, A = ()\,), and Z to denote the m—tuple
(0,0,---,0,0), a non-decreasing sequence of positive numbers that satisfies

(1.1), and a non-trivial admissible ideal in N respectively.

3. Main Results

Definition 3.1. Let () be a sequence in the GNLS (X, ||-||). Then, (z) is
said to be Z — [V, A]¢ summable to « € X if for every ¢ € (0,1] and € > 0,

{n e N: ﬁ (kg; Almkwla(¢)> > 6} eT.

. . I-[V\e
In this case, we write r, ———— x.

We shall denote the set of all Z— [V, A]¢ summable sequences by Z— [V, \]g.

Definition 3.2. Let () be a sequence in the GNLS (X, ||-||;). Then, (z) is
said to be gradual Z)—statistical convergent (in short, Z§* — ||-||; convergent)
to xz € X, if for every ¢ € (0,1] and € > 0,9 > 0,

{TL eN: ﬁ Hk‘ el,: ‘AH!M*JEHG(QO) > &‘}| > 5} el
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Equivalently, df ({k € N: Ajjzy—a) () 2 e}) = 0. In this case, we write,

'~
Ty ———

We shall denote the set of all gradual Z)—statistical convergent sequences
by Z5(G).
Example 3.3. Let X = R™ and || be the norm defined in Example
Take a fixed S € Z. Then, the sequence (z) defined by
(0,0,---,0,k), n—[VA\]+1<k<nné¢S
=1 (0,0,---,0,k), n—A,+1<k<nnes

0, otherwise
is Z§' — ||-|| o convergent to 0.
Justification. For any € > 0 (0 < € < 1), since
1 VA
E’{k}EIn :AHIk,OHG((p) ZEH = N, —0

asn — oo and n ¢ S, so for every ¢ > 0,
(3.1) {NEN f‘{kEI Al\l’k 0||G >€}|>(5}CSU{172,- ,k‘l}

if
for some k; € N. Since 7 is admissible, it follows from (3.1)) that zj, Ble, g,

Theorem 3.4. Let (x1) be a sequence in the GNLS (X, ||-||5). Then,

) -V, 5=l )
(i) xx % x implies xy, 4G> x but the converse is not true;

Il I-[V\Ae

(i) If (xy) is gradually bounded and xy, —> x then, xy
Proof. (i) Let o —— ¢, & Then, for any ¢ > 0 and ¢ € (0, 1], the following
inequation holds

Y A (9) = S Apor—a) (9)

kel, kel,
Allzg—a ; (£)2E

>e|{k el Ajp,—a), () > e}

Consequently for a given § > 0,

*|{’f€f Ao —all (9 >€}/>5$*Z““Hm #lg (%) = €0.

" kel,

This implies that

{n eN: )\i Hk‘ el,: A”Ik*I”G(SD) > E}‘ > 5}

Q{TLEN ZA”“ IHG >6(5}€I

" kel,
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I~ e
Hence, xy, —>

st
For the converse part, consider Example It was shown that xj, A—”HG>
0. But clearly

)\ g Ajjz;.—0||, () = 00 asn — oo,
" kel,

This shows that (zy) is not Z — [V, \]g summable to 0.

(ii) Let e, & and (zx) is gradually bounded, say

Ajjzr—az)(#) < M, Vk € N.

Then, for any € > 0 and ¢ € (0, 1], we have

1
. =S A )= D Al ()

"kel, n kel,
Aor sl (P22

1
bW Yo A (9)

keI,
(p)<e

Allzg—el

I /\

*|{’f€f t Ajz—al o (0) 2 )| +e

Let
B(p,e) = {n eN: % }{k €Ly Ajay—a) () > 5}| > ﬁ}
Then, by hypothesis, B(p,¢) € Z and for any n € N\ B(p, ¢),
72-’4”% IHG < 2¢.
" kel,
Consequently, the inclusion
{n eN: ZAHM %) 25} C B(yp,e€)

" kel,

holds and the rest follows from the hereditary property of Z. O

=l

Theorem 3.5. Let (z,) be a sequence in the GNLS (X, ||-|| ;) such that xy, B e,
x. Then x is unique.

Proof. If possible suppose xy, ¢> z and x ¢> y holds for z,y € X

with 2 # y. Then, for any € > 0 and ¢ € (0, 1], we have

A (Bi(p.€)) = dX(Ba(,€)) = 1,
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where
Bl(@ag) = {k eN: 'AHa:kfa,’HG((p) < E}

and
Ba(p,e) = {k eN: Aka_yHG(QD) < 6}.

Choose m € B1(p,e) N Ba(p,¢), then Ay, o) () <eand A, . (¢) <e.
Consequently,

Az =yl () < Ale—allg (9) + Ayl (9) <€ +e = 2e.
Since € is arbitrary, so Aj;—y),(¢) = Aj(p) and so we must have z =y. [

Ast—||-
Theorem 3.6. Let (z},) be a sequence in the GNLS (X, ||-|| ;) such that xy, %

st
Il
x. Then, i —G>

As
Proof. xy & x implies that for every ¢ € (0,1] and € > 0,

hmek’EIn Al\wk w”c; >€}|—0

So for every ¢ € (0,1], € > 0, and § > 0, the set
{TL eN: % Hk cl,: Aka_w”G((p) > €}| > 5}
is a finite set and eventually becomes a member of Z, as 7 is admissible. O

Remark 3.7. The converse of the above theorem is not necessarily true. One
can easily verify the fact by considering Example [3.3]

Remark 3.8. For a sequence (x) in the GNLS (X, ||| 5), & Ile, , implies
¢> z. But the converse is not necessarily true.

Example 3.9. Let X = R™ and || be the norm defined in Example

Consider A,, = n and the ideal Z = Ty, ideal consisting of all finite subsets of

N. Define the sequence (z) as

0, k=n*neN
xR = .
F (0,0,---,0,1), otherwise
Then, (21) is Z§'—|||| ; convergent to (0,0, --- ,0,1) but not Z—||-||; convergent
o (0,0,---,0,1).

Theorem 3.10. Let (z) be a sequence in the GNLS (X, ||-||5). If every sub-
sequence of (z) is I3 — ||-|| o convergent to x € X, then (xy) is also 5" — ||-|| &
convergent to x.
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Proof. If possible suppose (x) is not Z5* — ||-||; convergent to x in spite of
having all the subsequences Z3' — ||-||; converging to . Then, by definition,
there exists particular € > 0 and § > 0 such that the set

B = B(p,&,0) = {’FL e N: )\i Hk‘ el,: 'AHa:k*fEHG((p) > 6}‘ > 5} ¢ T.

Now admissibility of Z ensures that B contains an infinite number of elements.
Put B = {n; <ng <---<nj <---} and define y; = x3,,j € N. Then, (y;) is
a subsequence of (z) that is not Z§ — ||-||; converging to «, which contradicts
our assumption. O

Remark 3.11. The converse of the above theorem is not necessarily true. One
can easily verify this fact by considering Example

Theorem 3.12. Let () and (yx) be two sequences in the GNLS (X, || )

Ist7 . Ist7 .
such that xy, A—””G> x and yy, A—””G> y. Then,
, -l
(i) zp +yp —— x4+ 1y and
'l lg

(ii) cxr, ———= cx, ¢ € R.

Proof. (i) From the hypothesis, we can conclude that for every ¢ € (0, 1] and
e > 0,0 >0, the two sets C; = C1(¢,¢,0),Cs = Ca(p,,0) € I, where

1
CIZ{TLEN)\ _5

n

{k € In  Ajjzy—a| . (¥) 2 g}‘ > 6}

and

1
CQZ{TLEN:)\H

<

2
Then, (N\ C1) N (N\ Cy) € F(Z) and so (N\ C1) N (N\ Cy) # 0. Choose
n € (N\C;)N(N\ Cs). Then, the following inequality

|
3 k€ I Aitin - inle () 2 €}

13
{ke b ey (0) 2 5}‘

{k € In: Ajy—yl . (¥) 2 %}

1
<
A

n

)

s
An

holds and consequently, we have the following inclusion:
(3.2)

1
(N\C1)N(N\Cy) C {n eN: x Hk cl,: Al‘($k+yk)*($+y)uc(@) > 8}’ < 5} .

Now as (N\ C1) N (N\ Cq) € F(Z), so the set in the right-hand side of (3.2

Ist_ .
also belongs to F(Z) which means that xj + yx A—H”G> x+y.
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(ii) If ¢ = 0, there is nothing to prove. So let us assume ¢ # 0. Then, for every
v € (0,1] and € > 0, the following inequation

1 1
= HF € It Ajeay—ca) o (9) 2 e} = = [{E € I+ el Az —a) () > €}
n n
1
< ~ {k el,: Allwk—w\lg(@) > 5}‘

holds good and the result follows. O

Theorem 3.13. Z3(G) 2 Z°/(G) provided that liminf2= > 0.
n—oo

Proof. For any € > 0 and ¢ € (0,1],

1
- |{k <ncAjg—z), (@) = E}‘

Y

1

—{k € It A () = £}
An 1

= s k€ L Ajy—ay o (0) 2 €}

Now if lirginf% = p, then by definition, the set {n eN: ’\7" < g} contains

a finite number of elements and consequently the following inclusion holds for

any 6 > 0:

{n eN: )\i Hk‘ el,: A”Ik*I”G(SD) > E}‘ > 5}

1 pé An _ P

Now if zy, % x holds, then the set on the right-hand side belongs to 7

due to the admissibility of Z and as a consequence, the set on the left-hand
I3~ g

side also belongs to Z. Hence, z, — . O
Theorem 3.14. Z3/(G) C I°(G) provided that lim 2= = 1.
n—oo
Proof. Let 6 > 0 be given. Since lim )‘7" =1, we can have a m € N satisfying
n—oo

An I
o 1‘<2Vn2m.

Now for any € > 0 and ¢ € (0, 1],

1
- [{k <n s Ao, o, () = €}

1 1
=~k <n—= A A ap o (9) Z e} + — [{k € L s Ay () > €}

n_>\n 1
< I + E |{]€ €1l AHM*IHG(W) = 8}’
1) 1
<1-— <1 — 2) + [{k €L Ajay—a) . (0) > e}
é 1

=5t ke Lt A (9) 2 2}
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holds for all n > m. Therefore, the following inclusion holds:

{” eN: % [{k < Aja,—a)(9) 2 e} > 5}
- {TLGN: )\i |{k€ In:Aka—wHG((P) 26}| > g} u{1,2,3,--- ,m}.

Tst_|.
Now if zy, A—HHG> x holds, then the set on the right-hand side belongs to Z

due to the admissibility of Z and as a consequence, the set on the left-hand
Ist—||-
side also belongs to Z. Hence, xy, S—HHGS x. O

Definition 3.15. Let () be a sequence in the GNLS (X, ||-|| ;). Then, zg € X
is said to be gradual Z§'—limit point of (zy), if there exists an Z)—nonthin
subsequence of (xy) that gradual converges to z.

For any sequence (x), the set of all gradual Z5*—limit points is denoted by

I = e (Aw)-

Definition 3.16. Let () be a sequence in the GNLS (X, ||-|| ;). Then, zg € X
is said to be gradual Z3'—cluster point of (xy), if for any € > 0 and ¢ € (0, 1],

df ({k eN: ‘AHM—%HG(@) < 6}) ;é 0.
For any sequence (z), the set of all gradual Z§'—cluster points is denoted
by
I~ g (Cian))-
Theorem 3.17. Let (x) be a sequence in the GNLS (X,|-||s) such that

=l

ry ——— x. Then, T — |||l ¢ (Awmy)) = {z}.

Proof. If possible suppose Z3" — ||| (A(4,)) contains one more element y such
that y # x. Then, by definition, there exists a set M C N with M = {m; <
mg < --- <my <---} &7 such that z,, st lle z. Let

B =Bl(p,e,0) = {”€N5i|{’f61niv4|zk—y|c(sa) > e} 25}.

l—st_ .
Then B is a finite set, so N\ B € F(Z). Now, since z A—”HG> x, so for any

v € (0,1] and € > 0,9 > 0, the set

C=C(p,e,0) = {n eN: % |{k el,: A\ka—wI\G(QO) > €}| < 5} e F(I).
Put

D =D(p,e,0) = {n €M : % |{k € In  Ajjzy—a)(¥) 2 EH > 5}.
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Then since N\ D D C, so N\ D € F(Z). Thus we have, (N\ B)N(N\ D) € F(I)
and eventually (N\ B)N(N\ D) # 0. Let j € (N\ B)N(N\ D) and take
€= AHQH (¢). Then we have,

2 llg

%H’f <5t Ajaya (0) 2 ef| <0

and

% (k< A,y @) 2 e}| <6

Now choosing § sufficiently small we can have an element say

pEe {k ST Ae—a) (@) 2 E} n {k <Gt Ajay—yl, () 2 5} :

But then,

1 1
e = Azza| () < 5 (sl () + Aty g1, (9) < 5 +2) =<,
which is a contradiction. ]

Theorem 3.18. For any sequence (xy) in the GNLS (X, [|-||),

I = Ml M) €3 = Il (Can)-

Proof. Let zy € Z5' — |||l (A(zy))- Then, there exists a Zy—nonthin subse-

quence (Z,,,) such that z,,, LR xo, where M = {m1 < mg < --- < my <

-+} C N. Let € > 0 be given. Since, X, Ile, xo, so for any ¢ € (0,1], the

set B = {mk : ‘A||wmk _l_OHG(ap) > E} is a finite set. Consequently, d5(B) = 0.

Now as the inclusion

M C {keN: Ajg,_a|,(¥) <e}UB
holds and d% (M) # 0, so we must have

dx ({k € N: Aoy g, (9) < }) #0.

This means that 29 € Z§' — ||| ¢ (T(sy))- Since, zg € Z5' — |||l ¢ (A(y)) is
arbitrary, so

I = e (M) € I3 = [Fllg (Can)

holds and the proof is complete. O

Theorem 3.19. Let (x) and (yx) be two sequences in the GNLS (X, ||| ~)
such that d{({k € N : @ # yr}) = 0. Then, (i) I5' — |l (Azy)) = I3 —
g (Aey) and (1) I3 = |-l g (Ta) = I3 = [l (Tin)-
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Proof. (i) Let zo € Z3" — |||l (A(z,)). Then, there exists a Zy—nonthin sub-
sequence (T, ) such that x,,, MI—G% xg, where M = {m; < mgy < -+ <

my < ---} CN. Let € > 0 be given. Since d% ({k € N: x), # y;}) = 0 holds,
so we must have dX ({my € N: 2., =y, }) # 0. Therefore from the latter

set we have an Z)—nonthin subsequence (y.,, ) such that y,, M xp. Con-

sequently, zo € Z5' — ||lo (Aqyy))- As zo € Z5' — ||l o (A(zy)) is arbitrary,
T3 — Il (M @yy) € I3 = e (Agy))- Applying similar technique, we can
prove that 5! |- (Agw) 2 T3 ~ |1l (Ay))- Hence, Z' — [l (Agyy)) =
I = Il (M)
(ii) Suppose zg € I3 — ||| (T'(z,))- Then by definition, for any ¢ > 0 and
€ (0,1],

X ({k € N: Aja,—ag) o (9) <}) #0.
Let B denote the set {k € N: zj, = y;}. Then, d%(B) = 1 and eventually
5 ({k €N: Ay —ag, (9) <€} N B) #0.

This implies that
20 € I3 = |lllg (Tye)-

Since zg € Z5' — ||| (T'(z,)) is arbitrary, so we have

Y = e ) CIX = e Te)-

Applying similar technique we can show that

Y = e Can) 2 8 = e (Cy)-

Hence, I;\t - ||HG (F(mk)) = Iit - HHG (F(yk)) N

Conclusion

In this paper, we have investigated a few fundamental properties of Z, —statistical
convergence in the gradual normed linear spaces. We also introduced Z—[V, A&
summability in the gradual normed linear spaces and established Theorem [3.4]
to reveal the interrelationship between the notions. Finally, we have intro-
duced the concept of 7, —statistical limit points, cluster points and established
Theorem and Theorem to study their interrelationship and several
properties.

Summability theory and the convergence of sequences have wide applica-
tions in various branches of mathematics particularly, in mathematical analysis.
Research in this direction based on gradual normed linear spaces has not yet
gained much ground and it is still in its infant stage. The obtained results may
be useful for future researchers to explore various notions of convergences in
the gradual normed linear spaces in more detail.
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