

Semi-extending ideals and st-closed ideals in lattices¹

Pratibha S. Kshirsagar² and Rupal C. Shroff³⁴

Abstract. This paper aims to study some results on semi-essential ideals of lattices. It defines fully essential and fully prime lattices and studies relation between them. The concepts of the st-closed ideal and semi-extending ideal in a lattice are introduced. Some characterizations of semi-extending lattices are given with respect to semi-essential ideals and st-closed ideals.

AMS Mathematics Subject Classification (2010): 06B05; 06B10

Key words and phrases: essential ideal; semi-essential ideal; extending ideal; semi-extending ideal; fully essential lattice; fully prime lattice; st-closed ideals

1. Introduction and Preliminaries

The study of extending modules and their generalization has been studied by several authors in the last two decades. In [7], Mijbass and Abdullah introduced the concept of semi-essential submodules and semi-uniform submodules. In [1], Ahmed and Abbas studied also studied semi-essential submodules. In [6], Ahmed and Abbas studied semi-extending modules as a generalization of extending modules. They obtained conditions under which semi-extending modules can be extending. Module M is called semi-extending if every submodule of M is semi-essential in the direct summand of M . Ahmed and Abbas also studied st-closed submodules in [2]. In [4], Behboodi et. al studied fully prime module such that every proper submodule is prime and in [3], Ahmed and Dakheel called a module M to be fully essential if every nonzero semi-essential submodule of M is an essential submodule of M .

In [9], Nimborkar and Shroff studied the concept of essential ideals and their various properties. They defined extending ideals in a lattice and proved some important characterizations of such ideals in modular lattices. As a generalization of essential ideals, Nimborkar and Patil [8] defined semi-essential ideals in a lattice and studied some of their results.

¹Author dedicates this article to Late Professor Dr. Shriram Nimborkar. His valuable suggestions helped to improve the manuscript. Authors are thankful for his encouragement and guidance.

²School of Mathematics and Statistics, Dr. V.D. Karad MIT World Peace University, Pune, e-mail: pratibha.kshirsagar@mitwpu.edu.in, ORCID iD: orcid.org/0009-0006-3495-9721

³School of Mathematics and Statistics, Dr. V.D. Karad MIT World Peace University, Pune, e-mail: rupal.shroff@mitwpu.edu.in, ORCID iD: orcid.org/0000-0002-5258-9107

⁴Corresponding author

The present study introduces and studies semi-extending lattices. It defines st-closed ideals and semi-uniform ideals in a lattice and studies some of their properties. It provides conditions under which a semi-extending lattice can be extending. Let us recall some concepts of lattice theory from Grätzer [5].

Definition 1.1. A poset (P, \leq) is called lattice if infimum and supremum exist for every pair a, b in P .

Definition 1.2. A non-empty subset I of lattice L is called ideal if the following conditions hold:

1. $a, b \in I$ implies $a \vee b \in I$.
2. If $x \leq a$ for $a \in I$, $x \in L$ then $x \in I$.

An ideal generated by an element $a \in L$ is denoted by $(a]$ and is defined as $(a] = \{x \in L : x \leq a\}$.

Definition 1.3. An ideal I of a lattice L is said to be a prime ideal if for $a, b \in L$, $a \wedge b \in I$ implies either $a \in I$ or $b \in I$.

It is noted that every lattice is an ideal of itself. The set $Id(L)$ of all ideals of a lattice L forms a lattice under set inclusion as the partial order. In fact, if L is a lattice with the least element 0, then $Id(L)$ is a complete lattice.

Throughout this paper, L denotes a lattice with the least element 0. The following concepts are from [9].

Definition 1.4. Let I and J be any two nonzero ideals of a lattice L . The ideal I is said to be essential in J if $I \cap K \neq (0)$, for every nonzero ideal $K \subseteq J$ of L . It is denoted by $I \leq_e J$.

If $I \leq_e J$, then J is called an essential extension of I . The ideal I is essential in lattice L if $I \cap K \neq (0)$, for every nonzero ideal K of L .

Definition 1.5. Let I and J be any two nonzero ideals of a lattice L . The ideal I is said to be closed in J if it has no proper essential extension in J . The ideal I is closed in a lattice L if it has no proper essential extension in L .

Definition 1.6. Let I and J be any two nonzero ideals of a lattice L . The ideal I is said to be uniform in J if every nonzero ideal $K \subseteq I$ is essential in I . The ideal I is uniform in lattice L if every ideal contained in I is essential.

Definition 1.7. Let $I, J, K \in Id(L)$ such that $I \cap J = (0)$ and $K = I \vee J$ then I and J are called direct summands of K .

Definition 1.8. An ideal I of a lattice L is said to be extending if every ideal J contained in I is essential in a direct summand of I .

2. Semi-essential Ideals

This section discusses some results on semi-essential ideals in lattices. The concept of a semi-essential ideal is defined as follows [8].

Definition 2.1. An ideal I of a lattice L is said to be a semi-essential ideal if $I \cap P \neq (0]$, for every nonzero prime ideal P of L . It is denoted by $I \leq_{se} L$.

Let us say that $I \leq_{se} J$ if for every prime ideal $P \subseteq J$, $I \cap P \neq (0]$.

If $I \leq_{se} J$, then J is called a semi-essential extension of I .

Remark 2.2. Every essential ideal is a semi-essential ideal in L . However, converse does not need to be true.

The following remark is obvious by the definition.

Remark 2.3. Let L be a lattice and I and J be ideals of L such that $I \subseteq J$. If I is prime in L , then I is prime in J .

Lemma 2.4. Let L be a lattice and I and J be ideals of L such that $J \not\subseteq I$ and I is prime in L . Then $I \cap J$ is a prime ideal in J .

Proof. Let I be a prime ideal of L and $J \not\subseteq I$. Let $a, b \in J \subseteq L$ such that $a \wedge b \in I \cap J$. Then $a \wedge b \in I$ and $a \wedge b \in J$. But I is prime therefore $a \in I$ or $b \in I$. Hence, $a \in I \cap J$ or $b \in I \cap J$. Therefore, $I \cap J$ is a prime ideal of J . \square

Theorem 2.5. Let L be a lattice with 0 and I, J, K be ideals of L such that $(0] \neq I \subseteq J \subseteq K$. If $I \leq_{se} J$ and $J \leq_{se} K$ then $I \leq_{se} K$.

Proof. Let P be a prime ideal of K such that $I \cap P = (0]$.

Now $(0] = I \cap P = (I \cap J) \cap P = I \cap (J \cap P)$. If $J \subseteq P$, then $(0] = I \cap (J \cap P) = I \cap J$. But $I \subseteq J$, which implies $I = (0]$, a contradiction. Hence, $J \not\subseteq P$. By Lemma 2.4, $J \cap P$ is the prime ideal in J . Further, $I \leq_{se} J$ and $I \cap (J \cap P) = (0]$ implies $J \cap P = (0]$. But $J \leq_{se} K$ and P is the prime ideal in K , which implies $P = (0]$. Hence, $I \leq_{se} K$. \square

Now, a fully prime lattice is defined as follows:

Definition 2.6. A lattice L is called fully prime if every proper ideal of L is the prime ideal of L .

Remark 2.7. Consider the lattice shown in Figure 1, in which all ideals $\{0, a\}$, $\{0, b\}$, $\{0, a, b, c\}$ are prime ideals. Therefore, the lattice is fully prime.

Consider the lattice shown in Figure 2, the ideal $\{0, a\}$ is not prime. Therefore, the lattice is not fully prime.

The following is the definition of a fully essential lattice.

Definition 2.8. A lattice L with least element 0 is said to be a fully essential lattice if every nonzero semi-essential ideal of L is an essential ideal of L .

The following remark is a direct consequence of definitions 2.6 and 2.8.

Remark 2.9. Every fully prime lattice is fully essential.

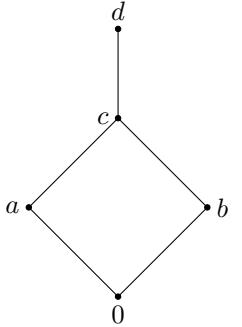


Figure 1:

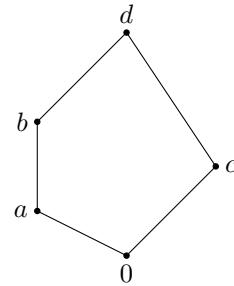


Figure 2:

Remark 2.10. Consider the lattice shown in Figure 3, lattice L has prime ideals $\{0, a\}$, $\{0, b, e\}$, $\{0, a, b, c, d, e, g\}$, $\{0, a, b, c, d, f\}$. The ideals $I=\{0, a, b, c\}$, $J=\{0, a, b, c, d\}$, $K=\{0, a, b, c, d, e, g\}$, $P=\{0, a, b, c, d, f\}$ have nonzero intersection with all prime ideals. Therefore, I , J , K and P are semi-essential ideals. Note that these ideals are essential in L . Hence, lattice L is a fully essential lattice.

Consider the lattice shown in Figure 4, lattice L has prime ideals $\{0, a\}$, $\{0, a, b, c, d, e, g\}$. But the semi-essential ideal $\{0, a\}$ is not essential in L . Therefore, the lattice is not a fully essential lattice.

Here it is noted that not every prime ideal is semi-essential.

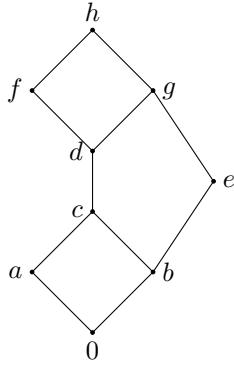


Figure 3:

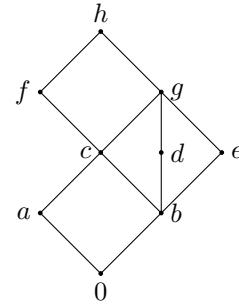


Figure 4:

Theorem 2.11. Let L be a lattice with 0 and I, J be any two ideals of L such that $I \subseteq J$. Then $I \leq_{se} J$ if and only if L is fully prime and $I \leq_e J$.

Proof. Suppose that $I \leq_{se} J$. Let K be an ideal of L such that $K \subseteq J$ and $I \cap K = (0)$.

Since L is fully prime, both I and K are prime ideals of L . By Remark 2.3,

$K \subseteq J$ implies K is the prime ideal of J . Now, $I \leq_{se} J$ and K is the prime ideal of J , together implies $K = (0)$. Therefore, $I \leq_e J$.

Converse is true by the definition. \square

Now, a semi-uniform ideal in a lattice is defined and a relation between a semi-uniform and an essential lattice is given.

Definition 2.12. Let L be a lattice with 0 and J be a nonzero ideal of L . Then, J is called semi-uniform if every nonzero ideal $I \subseteq J$ is semi-essential in J .

Remark 2.13. Consider the lattice shown in Figure 5, lattice has prime ideals $I=\{0, a, b, c, j, d, e\}$, $J=\{0, a, b, c, d, f, i\}$ and $K=\{0, a, b, c, d, e, f, g, i, j\}$. Every nonzero ideal of lattice has nonzero intersection with I, J and K and therefore, is semi-essential in L . Hence, the lattice is semi-uniform.

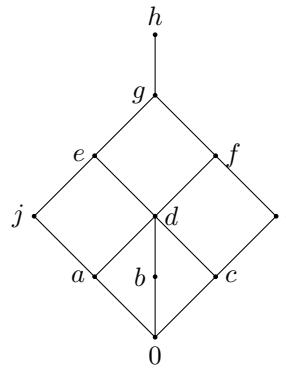


Figure 5:

Remark 2.14. Every uniform lattice is semi-uniform. But, the converse does not need to be true.

Consider the lattice L in Figure 5. It is a semi-uniform lattice but $\{0, b\}$ is not essential in L . Therefore, L is not uniform.

Theorem 2.15. *The lattice L with the least element 0 is uniform if and only if L is semi-uniform and fully essential.*

Proof. Suppose L is a fully essential lattice. Since L is semi-uniform, every nonzero ideal is semi-essential in L . Further, L is fully essential, therefore every semi-essential ideal is essential in L . Hence, every nonzero ideal is essential ideal in L and so L is uniform.

Since in a uniform lattice every ideal is essential, the converse holds. \square

Theorem 2.16. *Let L be a lattice with 0 and I, J and K be ideals of L such that $I \cap K \neq (0)$. Let every prime ideal of K be prime ideal of J . If $I \leq_{se} J$ then $I \cap K \leq_{se} J \cap K$.*

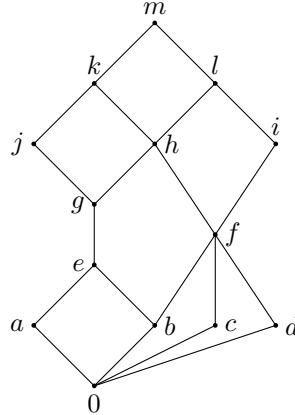


Figure 6:

Proof. Let $I \leq_{se} J$. Let P be the prime ideal in $J \cap K$ such that $(I \cap K) \cap P = [0]$. It is to be shown that $P = [0]$. Since $(I \cap K) \cap P = [0] \Rightarrow I \cap (K \cap P) = [0]$ and $K \not\subseteq P$, by Lemma 2.4, $K \cap P$ is prime ideal in K , therefore $K \cap P$ is prime ideal of J . Now $I \leq_{se} J, I \cap (K \cap P) = [0] \Rightarrow K \cap P = [0] \Rightarrow P = [0]$. \square

3. Semi-extending Ideals in Lattices

This section defines the semi-extending ideal and st-closed ideal in a lattice and discusses the relation between them.

Definition 3.1. A lattice L with 0 is said to be semi-extending if every nonzero ideal I of a lattice L is semi-essential in direct summand of L .

An ideal I of L is called semi-extending if every nonzero ideal $J \subseteq I$ is semi-essential in direct summand of I .

Remark 3.2. Every extending lattice is semi-extending.

Remark 3.3. Consider the lattice shown in Figure 6, $I = \{0, a, b, c, d, e, f, g, h, i, l\}$ and $J = \{0, b\}$, $K = \{0, c\}$, $P = \{0, d\}$, $M = \{0, b, c, d, f, i\}$, $N = \{0, b, c, d, f\}$ are ideals of lattice L . Note that the ideals J, K, P are not direct summands of I and M is a direct summand of I . Further, N and M are prime ideals in M and J, K, P have nonzero intersection with M and N . Hence, J, K, P are semi-essential in M . Note that $\{0, a\}$ is also a direct summand of I , which is semi-essential in itself. Hence, I is semi-extending.

Every essential ideal is semi-essential, by Remark 2.4. Therefore, if ideal I is essential in a direct summand of L then I is semi-essential in that direct summand of L . This implies that L is semi-extending.

However the converse does not need to be true. Consider the lattice shown in Figure 6, a semi-essential ideal J is not essential in direct summand M of I . Hence, ideal I is not extending. It is already analysed in Example 3.3 that I is semi-extending.

Definition 3.4. Let L be a lattice with the least element 0 . A nonzero ideal I of L is said to be a st-closed if I has no proper semi-essential extension in L .

Theorem 3.5. Let L be a lattice with the least element 0 . Every st-closed ideal in L is a closed ideal in L .

Proof. Let I be a st-closed ideal in L . It is to be shown that I is a closed ideal in L . Let K be an ideal of L such that $I \leq_e K \subseteq L$. Since $I \leq_e K$, implies $I \leq_{se} K$. However, I is st-closed in L . Therefore, $I = K$. Hence, I is closed in L .

The following example shows that the converse of the above statement is not necessarily true. \square

Remark 3.6. Consider the lattice shown in Figure 7, the ideal $J = \{0, b, c, f\}$ is closed in $I = \{0, a, b, c, d, e, f, g\}$.

Here $\{0, b, e, a\}$, $\{0, b, c, f\}$ are prime ideals in I . Hence, I is a semi-essential extension of J and therefore J is not a st-closed ideal of L . Ideal $K = \{0, a, d\}$ has no proper semi-essential extension in I . Hence, K is a st-closed in I .

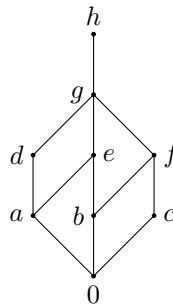


Figure 7:

Theorem 3.7. Let L be a lattice with 0 and I is a nonzero ideal of L . Then there exists a st-closed ideal J of L such that $I \leq_{se} J$.

Proof. Consider $V = \{K \subseteq L : K \text{ is an ideal of } L \text{ and } I \leq_{se} K\}$. Since $I \in V$ implies $V \neq \emptyset$ and it is a partial ordered set by set inclusion. Let \mathcal{C} be any chain in V and let $M = \bigcup(X : X \in \mathcal{C})$. Since the union of the chain of ideals is an ideal, so, M is an ideal. Let $X \in \mathcal{C}$ and $I \leq_{se} X$. It is required to show that $I \leq_{se} M$. Let P be the prime ideal in M such that $I \cap P = (0)$. As $P \subseteq M$ implies $P \subseteq X$ for some $X \in \mathcal{C}$, since \mathcal{C} is a chain. By Remark 2.3, P is prime in X and $I \leq_{se} X$ implies $P = (0)$. Hence, $I \leq_{se} M$. So, $M \in V$. Therefore, every chain in V has an upper bound. Then by Zorn's Lemma, it has a maximal element say H . Now the study aims to prove that H is st-closed. Assume that there exists an ideal D of L such that $H \leq_{se} D \subseteq L$. Since $I \leq_{se} H$ and $H \leq_{se} D$, by Theorem 2.5, $I \leq_{se} D$. $D \in V$ and $H \subseteq D$. This is a contradiction to H which is maximal. Therefore, $H = D$. Hence, H is st-closed with $I \leq_{se} H$. \square

Theorem 3.8. *Let L be a lattice with 0. Then L is semi-extending if and only if every st-closed ideal in L is direct summand of L .*

Proof. Suppose L is a semi-extending and I is a st-closed ideal in L . Then I is semi-essential in a direct summand H of L . That is $I \leq_{se} H \subseteq L$. But I is st-closed in L therefore, $I = H$. Hence, I is direct summand of L .

Conversely, suppose every st-closed ideal in L is a direct summand of L . Let I be a nonzero ideal of L . By Theorem 3.7, there exists an st-closed ideal H in L such that $I \leq_{se} H$. Hence, L is semi-extending. \square

Remark 3.9. The following are some conditions for a semi-extending lattice L with 0 to be an extending lattice.

1. Any nonzero semi-essential extension I of an ideal J in L , is fully essential.
2. L is a fully prime lattice.
3. For every ideal I of L , there exists an st-closed ideal J of L such that $I \leq_e J$.

Acknowledgement

Authors are also grateful to referees for valuable suggestion and kind support.

References

- [1] M. A. Ahmed and M. R. Abbas. On semi-essential submodules. *Ibn AL Haitham J. P. App. Sci.*, 28(1):179–185, 2015. URL: <https://jih.uobaghdad.edu.iq/index.php/j/article/view/200>.
- [2] M. A. Ahmed and M. R. Abbas. St-closed submodules. *J. Al-Nahrain Univ.*, 18(3):141–149, 2015. URL: <https://anjs.edu.iq/index.php/anjs/article/view/321>.
- [3] M. A. Ahmed and Dakheel. S-maximal submodules. *J. of Baghdad for Science*, 12(1):210–220, 2015. URL: <https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/542>, doi:10.21123/bsj.2015.12.1.210–220.
- [4] M. Behboodi, O. A. S. Karamzadeh, and H. Koohy. Modules whose certain submodules are prime. *Vietnam J. Math.*, 32(3):303–317, 2004.
- [5] George Grätzer. *Lattice theory. First concepts and distributive lattices*. W. H. Freeman and Co., San Francisco, Calif., 1971.
- [6] Inaam M. A. Hadi and Muna A. Ahmed. Fully extending modules. *Int. J. Algebra*, 7(1-4):101–114, 2013. doi:10.12988/ija.2013.13011.
- [7] A. S. Mijbass and N. K. Abdullah. Semi-essential submodules and semi-uniform modules. *J. Kirkuk Univ.-Scientific studies*, 4(1):48–58, 2009.
- [8] S. K. Nimborkar and Y. S. Patil. On semi-essential and weak essential ideals of lattice. *Int. J. Math. Stats.*, 21(2):74–78, 2020. URL: <http://www.ceser.in/ceserp/index.php/ijms/article/view/6355>.

[9] Shriram K. Nimbhorkar and Rupal C. Shroff. Objective ideals in modular lattices. *Czechoslovak Math. J.*, 65(140)(1):161–178, 2015. doi:10.1007/s10587-015-0166-5.

Received by the editors June 30, 2022

First published online May 18, 2023