CONVOLUTION EQUATIONS IN THE COUNTABLE UNION OF EXPONENTIAL DISTRIBUTIONS

Stevan Pilipović, Arpad Takači Prirodno-matematički fakultet. Institut za matematiku. 21 000 Novi Sad, ul. dr Ilije Đuričića 4, Jugoslavija.

In this paper we consider the space \mathcal{H}'_{∞} which is of the type $K'\{M_p\}$ defined in [1]. We show that

$$\mathcal{H}'_{\infty} = \inf_{p} \mathcal{K}'_{p}$$

where \mathcal{K}_p , $p \in \mathbb{N}$, are the spaces of exponential distributions of the order p, i.e. which do not "grow" faster than a power of $\exp(|x|^p)$ in infinity ([4], [6]).

The space of convolution operators $O'_c(\mathcal{H}'_\infty)$ on \mathcal{H}'_∞ is defined in a natural way. It is obvious that

$$\bigcap_{p=1}^{\infty} O'_c(\mathcal{K}'_p) \subset O'_c(\mathcal{H}'_{\infty}).$$

In this paper we prove that the opposite inclusion is also valid. The consequence is that the convolution equation

(1)
$$T*U=V$$
, where $T\in O'_c(\mathcal{H}'_\infty)$ and $V\in \mathcal{H}'_\infty$

is solvable in \mathcal{H}'_{∞} iff it is solvable in every space \mathcal{K}'_p , $p > p_0(V)$. In addition, (1) and T are hypoelliptic in \mathcal{H}'_{∞} iff they are hypoelliptic in every \mathcal{H}'_p , $p > p_0(V)$.

1. First, let us define the spaces \mathcal{H}_{∞} and \mathcal{H}'_{∞} .

DEFINITION 1. The vector space of smooth functions $\varphi(x)$ on \mathbb{R}^n which satisfy

(2)
$$\gamma_{p}(\varphi) := \sup \{ M_{p}(x) \cdot | \varphi^{(j)}(x) | ; x \in \mathbb{R}^{n}, |j| \leq p \} < \infty$$

for every $p \in N$, is denoted by \mathcal{H}_{∞} .

 $M_p(x)$ are the continuous functions

(3)
$$M_{p}(x) := \begin{cases} e & |x| \leq 1 \\ \exp(|x|^{p}), & |x| > 1 \end{cases}$$

We see that $M_p(x) \leq M_{p+1}(x)$ for arbitrary $x \in \mathbb{R}^n$ and $p \in \mathbb{N}$. It is possible to redefine the functions $M_p(x)$ for $|x| \leq 1$ so that they become smooth on \mathbb{R}^n ; we shall denote these functions by $\overline{M_p(x)}$.

The space \mathcal{H}_{∞} is of the type $K\{M_p\}$ ([1], ch. II). It is easy to show that \mathcal{H}_{∞} is a complete nuclear space. From the finitness of $M_p(x)$ and the nuclearity of \mathcal{H}_{∞} we get that \mathfrak{D} is dense in \mathcal{H}_{∞} and that the convergence in \mathfrak{D} is finer than the incuded one from \mathcal{H}_{∞} . Hence, \mathcal{H}'_{∞} (the dual space of \mathcal{H}_{∞}) is a proper subspace of the space of distributions \mathfrak{D}' . From [1], p. 113, we get the following

PROPOSITION 1. A distribution T is in \mathcal{H}'_{∞} iff there exist $m \in \mathbb{N}_0^n$, $p \in \mathbb{N}$ and a bounded continuous function f(x) on \mathbb{R}^n so that

(4)
$$T(x)=D^{m}(f(x)\cdot\exp(|x|^{p}))$$

where $D^m = D_1^{m_1} \dots D_n^{m_n}$, $m = (m_1, \dots, m_n) \in N_0^n$ and $D_j^{m_j} = \frac{1}{i^{m_j}} \frac{\partial^{m_j}}{\partial x_j^{m_j}}$, $j = 1, 2, \dots, n$ in the distributional sense.

Namely, $T(x) = \sum_{|j|=0}^{|m|} D^j(f_j(x)) \exp(|x|^p)$ for some $m \in \mathbb{N}_0^n$, $p \in \mathbb{N}$ and for some bounded continuous functions $f_j(x)$, $|j| \leq |m|$, but, integrating if necessary, a sufficient number of times, each member of this sum, we obtain (4).

The space \mathcal{K}_p analysed in [4] and [6] is the vector space of smooth functions $\varphi(x)$ on \mathbb{R}^n which satisfy

(5)
$$\rho_{p,k}(\varphi) := \sup \left\{ \exp\left(k |x|^p\right) \cdot |\varphi^{(j)}(x)|; \quad |j| \leqslant k, \quad x \in \mathbb{R}^n \right\} < \infty$$

for every $k \in N$; p is an arbitrary but fixed natural number. Obviously, \mathcal{K}_p is a Fréchet space; since $\lim_{|x| \to \infty} \frac{\exp(k|x|^p)}{\exp(k+1)|x|^p)} = 0$, for every $k \in N$, \mathcal{K}_p is a Schwartz space. Observing that $\mathcal{K}_{p+1} \to \mathcal{K}_p$ for every $p \in N$, we can define the projective topology in $\bigcap_{p=1}^{\infty} \mathcal{K}_p$ (the sign \to stands for the continuous injection). Let us prove

THEOREM 2. The spaces \mathcal{H}_{∞} and proj \mathcal{K}_{p} are equal in a set-theoretical and topological sense. The spaces \mathcal{H}'_{∞} and ind \mathcal{K}'_{p} are equal in a set-theoretical and topological sense when \mathcal{H}'_{∞} and every \mathcal{K}'_{p} (the dual space of \mathcal{K}_{p}) are endowed with the strong topology.

Proof. It is clear that $\operatorname{proj} \mathcal{K}_p \to \mathcal{H}_{\infty}$. Let $\varphi(x) \in \mathcal{H}_{\infty}$, and let $p, k \in N$ be given. We put $p_0 := \max\{k+1, p+1\}$. Then $\rho_{1,k}(\varphi) \leq C \cdot \gamma_{p_0}(\varphi)$ for a suitable C > O, and this means that $\varphi \in \operatorname{proj} \mathcal{K}_1$. Using the same inequalities, we obtain that the function $I: \varphi \mapsto \varphi$, $I: \mathcal{H}_{\infty} \mapsto \operatorname{proj} \mathcal{K}_p$ is continuous.

Let us prove that $\mathcal{H}'_{\infty} = \operatorname{ind} \mathcal{K}'_{p}$. It is shown in [4] and [6] that \mathcal{D} is dense in every \mathcal{K}_{p} . Along with the considerations preceding Theorem 2. we obtain that

the conditions of 4.4.b) in [7] are satisfied. Using the mentioned statement we get

$$\mathcal{H}'_{\infty} = (\operatorname{proj} \mathcal{K}_p)' = (\bigwedge_{p=1}^{\infty} \mathcal{K}_p)' = \bigvee_{p=1}^{\infty} \mathcal{K}'_p = \operatorname{ind} \mathcal{K}'_p$$

both in a set-theoretical and topological serse.

Let us notice that $\mathcal{H}'_{\infty} \neq \mathcal{D}'_F(\mathcal{D}'_F)$ is the space of distributions of a finite order). For example, $\exp(\exp(x)) \in \mathcal{D}'_F$ does not belong to \mathcal{H}'_{∞} .

2. The convolution between $T \in \mathcal{H}_{\infty}'$ and $\varphi \in \mathcal{H}_{\infty}$ is defined in the usual way by

(6)
$$(T*\varphi)(x) := (\varphi*T)(x) := \langle T(t), \varphi(x-t) \rangle.$$

Using Proposition 1. and the inequality $\left|\frac{t}{2}\right|^p \le |x|^p + |t-x|^p$, for arbitrary $t, x \in \mathbb{R}^n$, we prove.

PROPOSITION 3. The convolution (6) is a smooth function on \mathbb{R}^n which satisfies

(7)
$$|(T*\varphi)^{(j)}(x)| \leq C_j \cdot \exp(|x|^p), |j| = 0, 1, 2, ...$$

for some $p \in N$ and $C_j > 0$.

The space of convolution operators on \mathcal{K}_p' , $p \in \mathbb{N}$, is denoted by $O'_c(\mathcal{K}_p')$. From the representations of elements from \mathcal{K}_p' and $O'_c(\mathcal{K}_p')$ (see [4], [6]), it follows that if $1 \leq p < r < \infty$ $(p, r \in \mathbb{N})$ then $\mathcal{K}_p' \subset \mathcal{K}_r'$ and $O'_c(\mathcal{K}_r') \subset O'_c(\mathcal{K}_p')$.

DEFINITION 2. With $O'_c(\mathcal{H}'_\infty)$ we denote the subset of elements from \mathcal{H}'_∞ with the property

(8)
$$T \in O'_{c}(\mathcal{H}'_{\infty}) \Rightarrow (\forall \varphi \in \mathcal{H}_{\infty} \text{ is } (T * \varphi)(x) \in \mathcal{H}_{\infty})$$

and the mapping $\varphi \mapsto T * \varphi$ of the space \mathcal{H}_{∞} into itself is continuous.

It is obvious that $\bigcap_{p=1}^{\infty} O'_c(\mathcal{K}'_p) \subset O'_c(\mathcal{H}'_{\infty})$. From the following Theorem 4 we shall obtain that the opposite inclusion is also valid, i.e. that the following equality holds:

$$O'_{c}(\mathcal{H}'_{\infty}) = \bigcap_{p=1}^{\infty} O'_{c}(\mathcal{K}'_{p})$$

THEOREM 4. A distribution $T \in \mathcal{H}'_{\infty}$ is a convolution operator on \mathcal{H}'_{∞} iff for every $p \in N$ there exist $m \in N_0^n$ and continuous functions $f_j(x)$, $|j| \leq |m|$, so that

(10)
$$T(x) = \sum_{|f|=0}^{|m|} D^{f}(f_{f}(x)) \quad and \quad f_{f}(x) = 0 (\exp(-|x|^{p}))$$

when $|x| \mapsto \infty$ for every $|j| \leq |m|$.

Before proving this theorem, let us observe that the sum in (10) can be reduced to a single member by integrating the functions $f_1(x)$ a sufficient number of times. In addition, similarly as in [5] one can prove that the condition:

"The distributions $T(x) \cdot \overline{M_p(x)}$ are tempered for every p=2, 3, ..." is necessary and sufficient for a distribution $T \in \mathcal{H}'_{\infty}$ to be a convolution operator on \mathcal{H}'_{∞} .

Proof of Theorem 4. For the purpose of (10) we shall completely use an idea from [3]. Let us suppose that T is a convolution operator on \mathcal{H}'_{∞} . Then for every $\varphi \in \mathcal{H}_{\infty}$

(11)
$$\langle T(t+x), \varphi(t) \rangle = (T(t)*\varphi(-t))(x),$$

and the expression on the right-hand side of (10) is in \mathcal{H}_{∞} . From that it follows that the set of distributions

$$\{T(t+x)\cdot\exp(|x|^p), x\in \mathbb{R}^n\}$$

is bounded in \mathfrak{D}' . This means that there exists an integer $s \geqslant 0$ and a compact neighbourhood K of zero so that for every $\psi \in \mathfrak{D}_K^s$ the function $(T*\psi)$ $(x) \cdot \exp(|x|^p)$ is a bounded continuous function. It is known that for sufficiently large $k \in \mathbb{N}$ the fundamental solution E of the equation $\Delta^k E = \delta$ (Δ is the Laplace operator) is an s times differentiable function. If $g \in \mathfrak{D}$ is such that supp $g \subset K$ and g = 1 in a neighbourhood of zero, then $gE \in \mathfrak{D}_K^s$ and $\Delta^k(gE) = \delta - \psi$, $\psi \in \mathfrak{D}_K \subset \mathfrak{D}_K^s$. This implies that $T = \Delta^k (gE*T) + \psi*T$; by which we said before, both gE*T and $\psi*T$ are $0 \text{ (exp } (-|x|^p))$ when $|x| \mapsto \infty$. Hence, T can be written in the form (10).

Now, let $p_0 \in N$ be given; for $p_0 + 1$ we take $m \in N_0^n$ and the continuous functions $f_j(x)$ so that (10) holds. We have to show that for each $\varphi \in \mathcal{H}_{\infty}$ the smooth function $T * \varphi$ (see Proposition 3.) is in \mathcal{H}_{∞} . Using the inequality $-|x-t|^{p_0+1} \le -\left|\frac{x}{2}\right|^{p_0+1} + |t|^{p_0+1}(x, t \in \mathbb{R}^n)$ we obtain for every $k \in N_0^n$ and $|j| \le |m|$:

$$|(D^{j}f_{j}*\varphi)^{(k)}(x)| \leq \int_{\mathbb{R}^{n}} |f_{j}(x-t)| \cdot |\varphi^{(j+k)}(t)| \, \mathrm{d}t \leq$$

$$\leq C_{j,k} \exp\left(-\left|\frac{x}{2}\right|^{p_{0}+1}\right) \int_{\mathbb{R}^{n}} \exp\left(|t|^{p_{0}+1}\right) \cdot |\varphi^{(j+k)}(t)| \, dt$$

Since $\varphi \in \mathcal{H}_{\infty}$, the last integral converges and so for a suitable C_k and each $x \in \mathbb{R}^n$ we obtain $M_{p_0}(x) \cdot | (T*\varphi)^{(k)}(x) | \leq C_k$; hence $\gamma_{p_0}(T*\varphi)$ is finite. Similarly we can prove that the mapping $\varphi \to T*\varphi$ is continuous and by Definition 2 that T is a convolution operator.

Let us notice that $\mathscr{E}' \subset O'_c(\mathscr{H}'_\infty)$. For instance, the convolution operator $\exp(-|x|^{|x|})$ does not have a compact support.

3. In this part we shall analyse the Fourier transformations of the spaces \mathcal{H}_{∞} , \mathcal{H}'_{∞} and $O'_{c}(\mathcal{H}'_{\infty})$. We shall reserve the notation w=u+iv for an element from C^{n} . As usual, $\langle x, y \rangle = x_{1}y_{1} + \ldots + x_{n}y_{n}$ for $x=(x_{1},\ldots,x_{n})$ and $y=(y_{1},\ldots,y_{n})$, $x, y \in \mathbb{R}^{n}$ or C^{n} , and for fixed $p \in \mathbb{N} \setminus \{1\}$ q will stand for p/(p-1).

THEOREM 5. (i) Let $\varphi \in \mathcal{H}_{\infty}$. Then its Fourier transformation

(12)
$$(\mathcal{F}\varphi)(w) := \hat{\varphi}(w) := \int_{\mathbb{R}^n} \exp(-i\langle x, w \rangle) \cdot \varphi(x) \cdot dx$$

is an entire analytic function on Cn which satisfies

(13)
$$g_p(\hat{\varphi}) := \sup \{ (1 + |u|)^p \cdot \exp(-|v|^q) \cdot |\hat{\varphi}(w)| ; w \in C^n \} < \infty$$

for every $p = 2, 3, ...$

(ii) An entire analytic function on C^n which satisfies (13) for every p=2, 3, ... is the Fourier transformation of a smooth function which belongs to \mathcal{H}_{∞} .

Proof. (i) The rate of increase in infinity of $\varphi \in \mathcal{H}_{\infty}$ implies that $\hat{\varphi}(w)$ is an entire analytic function on C^n . For $p \ge 2$ by partial integration we have $(|j| \le p)$

$$|u|^{j} \cdot |\hat{\varphi}(w)| \leq |w|^{j} \cdot |\hat{\varphi}(w)| \leq \int_{\mathbb{R}^{n}} \exp(\langle x, v \rangle) \cdot |\varphi^{(j)}(x)| \cdot dx \leq$$

$$\leq C_{p} \cdot \gamma_{p}(\varphi) \exp(r|v|^{q}) \cdot \int_{\mathbb{R}^{n}} \exp\left(-\frac{1}{p}|x|^{p}\right) \cdot dx.$$

The number $r:=\frac{1}{q}/(p-1)^{1/(p-1)}$ is smaller than 1, and since $p \ge 2$ was arbitrary, relation (13) follows.

(ii) Let us suppose that an entire analytic function on $C^n \psi(w)$ which satisfies (13) for every p=2, 3.. is given. Hence, the function

$$\varphi(x) := \frac{1}{(2\pi)^n} \cdot \int_{\mathbb{R}^n + iv_0} \exp(i\langle x, w \rangle) \cdot \psi(w) \cdot dw$$

is smooth on \mathbb{R}^n and by the Cauchy theorem does not depend on v_0 ; obviously, its Fourier transformation is just $\psi(w)$. We have to prove that $\varphi(x)$ belongs to \mathcal{H}_{∞} . Putting for the given $p \ge 2$ p' := p + n + 1 we have (again $|j| \le p$)

$$|\varphi^{(f)}(x)| \leq \frac{(1+|v_0|^f)}{(2\pi)^n} \cdot g_{p'}(\psi) \cdot \exp(|v_0|^{q'} - \langle x, v_0 \rangle) \cdot \int_{\mathbb{R}^n} (1+|u|)^{f-p'} \cdot du$$

Since this is true for arbitrary $v_0 \in \mathbb{R}^n$, we get

$$\mid \varphi^{(j)}(x) \mid \leq C_{p,j} \left(1 + \left| \frac{x}{q'} \right|^{j/(q'-1)} \right) \cdot \exp(-s \mid x \mid^{p'}) \cdot g_{p'} \cdot (\psi)$$

where $s:=\frac{(p'-1)^{p'-1}}{(p')^{p'}}$, and this implies $\gamma_p(\varphi) \leqslant C_p \cdot g_p \cdot (\psi)$.

Let us denote by H_{∞} the space of entire analytic functions on C^n which are the Fourier transformations of elements from \mathcal{H}_{∞} . If we endow H_{∞} with the topology given by the seminorms $\{g_v\}_{p=2}^{\infty}$, from the proof of Theorem 5, we get that the Fourier transformation is a topological isomorphism between \mathcal{H}_{∞} and H_{∞} . A conse-

quence of this is that the Fourier transformation is a topological isomorphism betwen \mathcal{H}'_{∞} and H'_{∞} (the dual space of H_{∞}) if they are endowed with the strong topology. As usual, the Fourier transformation of $T \in \mathcal{H}'_{\infty}$ is defined by the Parseval formula

(14)
$$\langle T, \hat{\varphi} \rangle := (2\pi)^n \langle T(x), \varphi(-x) \rangle, \quad \varphi \in \mathcal{H}_{\infty},$$

and $\hat{T} := \mathcal{F} T$ is an element from H'_{∞} .

Following [5], we denote by K_{ν} the space of entire analytic functions on C^n whose elements are the Fourier transformations of elements from \mathcal{K}_p $(p \ge 2)$. K_p is endowed with a topology given by the seminorms

$$r_{k}\left(\psi\right)\!:=\!\!\left\{\!\left(1\!+\!\mid u\mid\right)^{k}\!\cdot\!\exp\left(-\mid\upsilon\mid^{q}\!/\!k\right)\!\cdot\!\mid\psi\left(u\!+\!iv\right)\mid;\quad\!u\!+\!iv\!\in\!C^{n}\!\right\}$$

 $k=1, 2, \ldots$ Using Theorem 2, we obtain

PROPOSITION 6. The following equations hold both set-theoretically and topologically:

$$H_{\infty} = \underset{p}{\operatorname{proj}} K_{p}$$
 and $H'_{\infty} = \underset{p}{\operatorname{ind}} K'_{p}$

From relation (9) and Eskin's theorem ([5]) it follows that T is a convolution operator on \mathcal{H}'_{∞} iff its Fourier transform \hat{T} is an entire analytic function on C^n with the property: "For every $p \in \mathbb{N} \setminus \{1\}$ there exist C > 0 and $m \in \mathbb{N}_0$ such that

$$(15) \qquad |\hat{T}(u+iv)| \leq C \cdot (1+|u|)^m \cdot \exp(|v|^q).$$

Let us notice, at the end of this section, that the "exchange formula" holds for $T \in O'_c(\mathcal{H}'_\infty)$ and arbitrary $S \in \mathcal{H}'_\infty$, i.e.

$$(\widehat{T*S}) = \widehat{T} \cdot \widehat{S}$$

where the product on the right-hand side is defined by

$$\langle \hat{T} \cdot \hat{S}, \psi \rangle := \langle \hat{S}, \hat{T} \cdot \psi \rangle, \quad \psi \in H_{\infty}.$$

4. In this section we shall show, by using Theorem 4, how the conditions on solvability and hypoellipticity can be derived from corresponding statements for \mathcal{K}_p , given in [6] and [5].

Let us prove

THEOREM 7. The convolution equation (1) is solvable in \mathcal{H}'_{∞} iff it is solvable in every space \mathcal{H}'_p , $p > p_o(V)$.

Proof. For the proof of this Theorem it is sufficient to prove that the following conditions on $T \in O'_c(\mathcal{H}'_{\infty})$ are equivalent:

- (i) \hat{T} is q-slowly decreasing for some q, $1 < q < \infty$;
- (ii) T has a fundamental solution in \mathcal{H}'_{∞} ;
- (iii) $T*\mathcal{H}'_{\infty} = \mathcal{H}'_{\infty}$.

Let us repeat that \hat{T} is said to be q-slowly decreasing, $q \in (1, \infty]$, if it satisfies an inequality of the form

(16)
$$\sup \{ |\hat{T}(x+w)|; \quad w \in C^n, \quad |w| \leq r(x) \} \geqslant C \cdot (1+|x|)^{-N}$$

for some C>0, $N \in \mathbb{N}_0$ and $r(x) := A (\log (1+|x|))^{1/q} + B$ where A>0 and B are constants. A ∞ -slowly decreasing function is called an extremely slowly decreasing one.

From $\delta \in \mathcal{H}'_{\infty}$ it follows that (iii) \Rightarrow (ii). The implication (i) \Rightarrow (iii) follows from the Theorem in [5] which asserts that T is surjective on \mathcal{K}'_p iff \hat{T} is q-slowly decreasing, where q=p/(p-1), and Theorem 3 from [2] from which it follows that \hat{T} is q-slowly decreasing for arbitrary $q \in (1, \infty]$. Finally, if T has a fundamental solution $E \in \mathcal{H}'_{\infty}$ then there exists $p \in N$ such that T and E belong to \mathcal{K}'_p . But from [4] and [6] it follows that (i) holds and so we have proved that (ii) \Rightarrow (i).

Let us denote by $E\mathcal{H}'_{\infty}$ the space of smooth functions f(x) on \mathbb{R}^n , such that for some $p \in \mathbb{N}$ and every $j \in \mathbb{N}^n_0$

(17)
$$f^{(j)}(x) = 0 (\exp |x|^p) \quad \text{when} \quad |x| \to \infty.$$

In [5] the space $E\mathcal{K}_p'$ is defined as the space of smooth functions g(x) on \mathbb{R}^n , such that for some $k \in \mathbb{N}$ and every $j \in \mathbb{N}_0^n g(x) = 0$ (exp $(k \mid x \mid p)$) when $|x| \mapsto \infty$. First, let us observe that the following statement holds:

PROPOSITION 8. The space $E\mathcal{H}'_{\infty}$ is the subspace of \mathcal{H}'_{∞} such that $E\mathcal{H}'_{\infty} = \bigcup_{p=1}^{\infty} E\mathcal{K}'_{p}$.

A consequence of this is that the convolution between $T \in O'_c(\mathcal{H}'_\infty)$ and $f \in E\mathcal{H}'_\infty$ is an element from $E\mathcal{H}'_\infty$. The question arises whether the opposite statement is valid, or, more precisly, under what conditions on T is every solution of the convolution equation (1) an element from $E\mathcal{H}'_\infty$ when $V \in E\mathcal{H}'_\infty$. As usual, if the last property is valid, then equation (1) and T are called hypoelliptic in \mathcal{H}'_∞ . Obviously, no smooth function can be hypoelliptic in \mathcal{H}'_∞ .

THEOREM 9. The convolution equation (1) and $T \in O'_c(\mathcal{H}'_{\infty})$ are hypoelliptic in \mathcal{H}'_{∞} iff they are hypoelliptic in every space \mathcal{K}'_p , $p > p_o(V)$.

Proof. It is enough to show that for the hypoellipticity of $T \in O'_c(\mathcal{H}'_{\infty})$ in \mathcal{H}'_{∞} the following conditions are necessary and sufficient (these conditions are similar to those in Theorem I in [5].)

(i) There exist postive constants B and M such that

$$|\hat{T}(x)| \geqslant |x|^{-B}$$
, $x \in \mathbb{R}^n$ and $|x| \geqslant M$;

(ii) For every $q \in (1, \infty)$

$$|\operatorname{Im} z|^q/\log |z|| \to \infty$$
 when $|z|| \to \infty$, $z \in \mathbb{C}^n$ and $\hat{T}(z) = 0$.

In view of Corollary on page 59 in [8], Theorem I in [5] and relation (9) the only fact left to be checked is the necessity of condition (ii). But with the same arguments as in Theorem 7 in [5] for k=1 we obtain that for every p>1

$$|Im z|^q/\log |z| \geqslant q \cdot p^{q/p}, \quad q=p/(p-1), \quad z \in \mathbb{C}^n \quad \text{and} \quad \hat{T}(z)=0.$$

Now, if this holds for some q, then if $\varepsilon > 0$, $Imz|^{q+\varepsilon}/\log|z| \geqslant C|Imz|^{\varepsilon}$ for some C > 0, which implies condition (ii).

REFERENCES

- I. M. Gel'fand, G. F. Shilov, Generalized Functions, Volume 2., Academic Press, New York & London (1968).
- [2] O. V. Grudzinski, Examples of Solvable and Non-Solvable Convolution Equations in K'_p, p≥1, Pac. J. Math., Volume 80., pp. 561-574 (1979).
- [3] M. Hasumi, Note on the n-dimensional Tempered Ultradistrubution, Tohoku Math. J., 13, pp. 94-104 (1961).
- [4] S. Sznajder, Z. Zielezny, Solvability of Convolution Equations in K'₁, Proc Amer Math. Soc., 57, pp. 103-106 (1976).
- [5] G. Sampson, Z. Zielezny, Hypoelliptic Convolution Equations in \mathcal{K}'_p , p>1, Trans. Amer. Math. Soc., Volume 223, pp. 133-154 (1976).
- [6] S. Sznajder, Z. Zielezny, Solvability of Convolution Equations in K'_p, p>1, Pac. J. Math., Volume 63, pp. 539-544 (1976).
- [7] В. В. Жаринов, Комйакійные семеисмва ЛВП йросійрансійва FS и DFS, Успехи мат. наук, том 34., в. 4. (208), с. 97—131, (1979).
- [8] Z. Zielezny, Hypoelliptic and Entire Eliptic Convolution Equations in Subspaces of the Space of Distributions (II), Studia matematica, t. 32., pp. 47—59 (1969).

KONVOLUCIONE JEDNAČINE U PREBROJIVOJ UNIJI EKSPONENCIJALNIH DISTRIBUCIJA

Stevan Pilipović, Arpad Takači

REZIME

U radu je ispitan prostor \mathcal{H}'_{∞} za koji se pokazuje da je unija prostor \mathcal{H}'_{p} , $p=1,2,\ldots$ Elementi prostora \mathcal{H}'_{∞} su distribucije koje ne "rastu" brže u beskonačnosti od exp $(|x|^p)$ za neko $p \in N$. Pokazano je da važi tvrđenje:

Distribucija $T \in \mathcal{H}'_{\infty}$ je konvolucioni operator na \mathcal{H}'_{∞} ako i samo ako za svako $p \in N$ postoje $m \in N_0^n$ i neprekidne funkcije $f_1(x)$, $|j| \le |m|$, tako da je

$$T(x) = \sum_{|j|=0}^{|m|} D^{j}(f_{j}(x)) \quad i \quad f_{j}(x) = 0 \ (\exp(-|x|^{p}))$$

kada $|x| \rightarrow \infty$ za svako $|j| \leq |m|$.

čine

Posledice ovog tvrđenja je da su uslovi za rešivost i hipoeliptičnost konvolucione jedna-

 $T^{\star}U\!=\!V,\,T$ je konvolucioni operator na $\mathcal{H}_{\infty}',\,V\!\in\!\mathcal{H}_{\infty}'$

u prostoru \mathcal{H}'_{∞} analogni sa odgovarajućim uslovima za prostor $\mathcal{K}'_{p}.$