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In this paper we consider the space Y6, which is of the type K'{My} defined
in [1]. We show that

. =ind XK,
b4

where K, peN, are the spaces of exponential distributions of the order p, i.e. which
do not ,,grow” faster than a power of exp (| x | ) in infinity ([4], [6]).

The space of convolution operators O;(F6,,) on F6,, is defined in a natural
way. It is obvious that

A~ 0L (Hp) <O (L.
p=1

In this paper we prove that the opposite inclusion is also valid. The consequence
is that the convolution equation

) T+U=V, where TeO,(P6,) and Ve,

is solvable in Y6, iff it is solvable in every space K, p>po(V). In addition, (1)
and T are hypoelliptic in F6,, iff they are hypoelliptic in every %, p>po(V).
1. First, let us define the spaces P60 and Fhoo.

DEFINITION 1. The vector space of smooth functions ¢ (x) on R® which
satisfy

@) Yo (@):=sup {Mp () | P (x)|; xeR®, |[j| <p}<<oo

for every peN, is denoted by Fhoo.
My (x) are the comtinuous fnnctions

o e %<1
2 My (#): {expclxw), lx]>1
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We see that M, (x) <Mpi (x) for arbitrary xeR” and peN. It is possible to redefine
the funcrions M, (x) for |x|<] so that they become smooth on R»; we shall
denote these functions by M, (x).

The space F6 is of the type K {Mp} ([1], ch. II). It is easy to show that Fbe,
is a complere nuclear space. From the finitness of My (x) and the nuclearity of Fe.
we get thet D is dense in Y6 and that the convergence in <) is finer than the incuded
one from F6. Hence, F62 (the dual space of F) is a proper subspace of the space
of distributions 9’. From {1], p. 113, we get the following

PROPOSITION 1. A distribution T is in F6., iff there exist meN©, peN
and a bounded continuous function f(x) on R*® so thar

) T (x)=Dm (f (x)-exp (| x |7))
- m.
where D™=DT"...Dy", m=(my, . ., my) eNg and D}"’=i 8 "]Z s J=1,2,...5n
1™ Ox;’

tn the distributional sense.
fm
Namely, T (x)= Z D7 (fj(x) exp (|x|?)) for some meNy, peN and for some
|71=0

bounded continuous functions f;(x), |7i<|m|, but, integrating if necessary,
a sufficient number of times, each member of this sum, we obtain (4).

The space K p analysed in [4] and [6] is the vector space of smooth functions
¢ (x) on R* which satisfy
(5 op.k (@):=sup {exp (k |x[2) P () |; [j|<k, xeRm}<oco
for every keN; p is an arbitrary but fixed natural number. Obviously, K, is a

v
Fréchet space; since lim M
|#|+o0 exp (k+1) |x7)
space. Observing that K ;+1-~Hp for evety peN, we can define the projective

=0, for every keN, K is a Schwaitz

topology in n FKp (the sign-—stands for the continuous injection). Let us prove
p=1 '

THEOREM 2. The spaces F6. and prof Kp are equal in a ser-theoretical
by
and topological sense. The spaces F6., and ind Ky are equal in a ser-theoretical and

?
topological sense when F6., and every K, (the dual space of Kp) are endowed with
the strong topology.

Proof. It is clear that proj Hp—— 6. Let ¢ (x) € Fbo, and let p, keN be
given. We put po:=max {k+1, p+1}. Then p,;,x (9) <C'vp, (¢) for a suitable
C>O0, and this means that peproj K,. Using the same inequalities, we obtain

)
that the function I:p|— ¢, I: Y6 | proj Kp is continuous.
»
Let us prove that 6., =ind Kp. It is shown in [4] and [6] that D is dense

P
in every K p. Along with the considerations preceeding Theorem 2. we obtain that
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the conditions of 4.4.b) in [7] are satisfied. Using the mentioned statement we get
Fbos=(proj HKp)'=( A Kp)'= V Kp=ind Ky
v D=1 p=1 P

both in a set-theoretical and topological sepse.

Let us notice that 6. #Dr(Dr is the space of distributions of a finite
order). For example, exp (exp (x)) € D does not belong to 6.

2. The convolution between Te%Y6, and ¢eYb is defined in the usual
way by

© (Tr) (x):=(9+T) (x): =T (1), @ (x—0)).

¥4 .
Using Proposition 1. and the inequality \—;—I < |x|P+|t—x|?, for arbitra-

ry i, x € R?, we prove.

PROPOSITION 3. The convolution (6) is a smooth function on R® which
satisfies

M | (Tx9) O (x) | <Cyexp(lx]7), [j1=0,1,2,...

for some pe N and C;>0.

The space of convolution operators on K,, peN, is denoted by O K,).
From the representations of elements from K, and O,(K,) (see [4], [6]), it follows
that if 1 <p<r<Coo (p, reN) then K, K, and O, (K;)= O, (FK,).

DEFINITION 2. With O;(J6.,) we denote the subset of elements from 6.,
with the property

®) TeO, (Pbec)= (Vo is (Tg) (x)ePbx)
and the mapping ¢ |— T+p of the space Fbo iato itself is continuous.

(=}
It is obvious that N O (K,) = O (Fb.,). From the following Theorem 4 we
p=1

shall obtain that the opposite inclusion is also valid, i.e. that the following equality
holds:

© 0L (F)= 0, 0. (%))
THEOREM 4. A4 distribution TeF6,, is a convolution operator on F6., iff
for every peN there exist meNy and continuous functions f; (x), 1j| <|m|, so that
|m|

(10) ' T<x>=|j;f=0Df<ff<x>> and  f; (x)=0 (exp (— | x 7))

when | x| |—>oc0 for every |j| < |m].
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Before proving this theoiem, let us observe that the sum in (10) can be reduced
to a single member by integrating the functions f; (x) a sufficient number of times.
In addition, similarly as in [5] one can prove that the condition:

»The distributions T (x)- M, (x) are tempered for every p=2,3,..” is necessary
and sufficient for a distribution TeZ6,, to be a convolution operator on ¥6..

22

Proof of Theorem 4. For the purpose of (10) we shall completely use an idea
from [3]. Let us suppose that 7' is a convolution operator on .. Then for
every 96

(11) (T (t4x), ¢ @)=(T @D+ (=) (%)

and the expression on the right-hand side of (10) is in ¥6s. From that it follows that
the set of distributions
{T (¢42)-exp (I |?), xeR"}

is bounded in 9’. This means that there exists an integer s>0 and a compact
neighbourhood K of zero so that for every $€Dx the functlon (T*) (x)-exp (|x|?)
is a bounded continuous function. It is known that for sufficiently large 2cN the
fundamental solution E of the equation A*¥ E=3 (A is the Laplace operator) is an s
times differentiable function. If g9 is such that supp g= K and g=1 in a neighbo-
urhood of zero, then gEe®x and Ak(gE)=8—¢, yeDr = Dk. This implies that
T=Ak (gExT)+¢+T; by which we said before, both gE*T and {*T are
0 (exp (— | x |?)) when | x ||—oc. Hence, T can be written in the form (10).

Now, let poeN be given; for po+ 1 we take meN{ and the continuous functions

f (x) so that (10) holds. We have to show that for each 96, the smooth function
x Do+l

T« (see Proposition 3.) is in Y6.. Using the inequality — |x—¢]|Pot! < — 5

+ |e|Pet (x, teR™) we obtain for every keN% and|j| <|m|:

(D) @) < §1f3 (x—0) |-l (5) | de <
R®
X

< Cy,x exp [—

P+l .
]jexp (Ie[Po*)- [pU+h) (1) | dt

Since 9P, the last integral converges and so for a suitable Cy and each xeR»
we obtain My, (x) | (T*@) ® (x) | <Ci; hence yp, (T+p) is finite. Similarly we
can prove that the mapping ¢— T+¢ is continuous and by Definitionn 2 that T is
a convolution operator.

Let us notice that ¢'< O, (Y6.)- For instance, the convolution operstor

exp (—| x [1#!) does not have a compact support.

3. In this part we shall analyse the Fourier transformations of the spaces P,
P, and O, (F6.,). We shall reserve the notation w=u-4v for an element fiom Cn.

As usual, {x,v>=xyy1+ .. +xaya for x=(x1,...,xs) and v=(y1,...,¥)
%, yeR® or C#, and for fixed pe N\ {1} ¢ will stand for p/(p—1).
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THEOREM 5. (i) Let 9. Then its Fourier transformation
(12) (T @) (@)= (@):= | exp (—ix, w)) ¢ (x)dx
R#

s an entire analytic function on Cn which satisfies
(13)  gp(®):=sup {(1+ | u|)2exp(—|2]¢) | p () |; weCr}<oo
for every p=2,3,...
(i) An entire analytic function on C* which satisfies (13) for every p=2,3, .. is
the Fourier transformation of a smooth function which belongs to F6oo.

Proof. (i) The rate of increase in infinity of 96 implies that $ (w) is an
entire analytic function on C=. For p =2 by partial integration we have (|7 | <p)

lul - 1@ | <lwl 6@ < |exp o) o) de<
R®

1
<Cpyp (p) exp (r | v 9)- j‘ eXp[—; I x[?]-dx-
Rn

The number r:=i/(p—l)1/(1"1) is smaller than 1, and since p =2 was arbitrary,
q
relation (13) follows.

(ii) Let us suppose that an entire analytic function on C* ¢ (w) which satisfies
(13) for every p=2,3.. is given. Hence, the function

1 . '
e j exp (i, w))" () duo
(2m)m
R"+{ye
is smooth on R” and by the Cauchy theorem does not depend on zy; obviously, its
Fourier transformation is just ¢ (w). We have to prove that ¢ (x) belongs t0 F.
Putting for the given p =2 p':=p-+n-+1 we have (again |j|<p)

1+ , -
M'gpf@)'exp (lwo |9 —<x, vo))- S (I+]u =7 -du
(2717)” Rn
Since this is true for aibitrary weeR", we get
x 131@-D

- ]'CXP (—s|x ") gp ()
q !

le? (%) | <

| o (%) | <Cp.s (1+

(p'—1)F1
(P

Let us denote by H. the space of entire analytic functions on C* which are

the Fourier transformations of elements from P6.. If we endow H,, with the topo-

logy given by the seminorms {g;}5,, from the proof of Theorem 5, we get that the

Fourier transformation is a topological isomorphism between Y6, and Hy. A conse-

where s:= , and this implies vy, (9) <Cp-gp* ().
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quence of this is that the Fourier transformation is a topological isomorphism betwen
P6ae and H, (the dual space of H,) if they are endowed with the strong topology.
As usual, the Fourier transformation of Te%%6., is defined by the Parseval formula

(14) (T, §): = m)yr T (%), ¢ (—5)), 9T
and T:=F T is an element from HL..

Following [5], we denote by K, the space of entire analytic functions on C»
whose elements are the Fourier transformations of elements from &p (p22). K,
is endowed with a topology given by the seminorms

rie () :={(1+] u )¥-exp (—| v |9/k)-| § (u+1v) |; u+iveCn}
k=1,2,... Using Theorem 2, we obtain

PROPOSITION 6. The following equations hold both set-theoretically
and topologically:
Hy,=projKp, and Hi,=ind K,
» P

From relation (9) and Eskin’s theorem ([5]) it follows that T is a convolution

operator on 6., iff its Fourier transform T is an entire analytic function on C»
with the property: ,,For every peN™~\ {1} there exist C>0 and meNp such that

(15) | T (u+iv) | <C-(1+| u | y™exp (i v |9).

Let us notice, at the end of this section, that the ,exchange formula“ holds

for TeO,(F6.) and arbitrary SeF6o, i.e.
N P
(T*8)=T-§
where the product on the right-hand side is defined by
(T8, 4>:=(8, T{), teHy.

4. In this section we shall show, by using Theorem 4, how the conditions on
solvability and hypoellipticity can be derived from corresponding statements for
K, given in [6] and [5].

Let us prove

THEOREM 7. The convolution equation (1) 1s solvable in F6, iff it is solvable
in every space Kp, p>po(V).

Proof. For the proof of this Theorem it is sufficient to prove that the following
conditions on TeO, (6,,) are equivalent:

() T is g-slowly decreasing for some g, 1<<g<oo;
(i) T has a fundamental solution in Y. ;
(iii) T*F6., =F6L. '

Let us repeat that T is said to be g-slowly decreasing, ¢ge(1,00], if it satisfies
an inequality of the form

(16) sup {| T (x+w)l; weC? |w|<r@)}=C-(1+x)¥
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for some C>0, NeNy and r (x):=4 (log (14| x ))/?4-B where A>0 and B
are constants. A oo-slowly decreasing function is called an extremely slowly decre-
asing one.

From 3e76,, it follows that (iii)=(ii). The implication (i)=>(iii) follows from the
Theorem in [5] which asserts that T is surjective on K, iff Tis g-slowly decreasing,
where g=p/(p—1), and Theorem 3 from [2] from which it follows that T is g-slo-
wly decreasing for arbitrary g¢e(l, oo]. Finally, if T has a fundamental solution
E€YJ6;, then there exists peN such that T and E belong to %,. But from [4] and
[6] it follows that (i) holds and so we have proved that (ii)=(1).

Let us denote by EY6,, the space of smooth functions f (x) on R#, such that
for some peN and every jeN{
an f@ (x)=0(exp|x|?) when [x]||— oo,

In [5] the space EX,), is defined as the space of smooth functions g(x) on R®, such
that for some keN and every jeN§ g (x)=0 (exp (% | x |?)) when | x | |»> oo. First,
let us observe that the following statement holds:

PROPOSITION 8. The space EJG., is the subspace of 6., such thar
EJ6,= v EX,). '
p=1

A consequence of this is that the convolution between TeO,(Y6.,) and
feEFG!,, is an element from EY6,,. The question arises whether the opposite state-
ment is valid, or, more precisly, under what conditions on T is every solution of the
convolution equation (1) an element from EYG., when VeEYG,,. As usual, if the
last property is valid, then equation (1) and T are called hypoelhptlc in J6o.
Obviously, no smooth function can be hypoelliptic in 6.

THEOREM 9. The convolution equation (1) and TeO, (6., are hypoelliptic
in 6., iff they are hypoelliptic in every space Kp, p>po(V).

Proof. It is enough to show that for the hypoellipticity of TeO, (¥6.,) in
6., the following conditions are necessary and sufficient (these conditions are
similar to those in Theorem I in [5].)

(i) There exist postive constants B and M such that
| T | =|x|"8 xeRr and |x|=M;
(ii) For every ge(l, o)
| Imz |9/log | 2 | =0 when |z]||—>o00, zeC® and T (2)=0.

In view of Corollary on page 59 in [8], Theorem I in [5] and relation (9) the
only fact left to be checked is the necessity of condition (ii). But with the same
arguments as in Theorem 7 in [5] for 2=1 we obtain that for every p>1

| Im z |9jlog | z | =2q'p¥?, q=p/(p—1), zeC» and T (2)=0.

Now, if this holds for some ¢, then if >0, Imz|?¢/log|z|>C|Imz|* for some
C>0, which implies condition (ii).
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KONVOLUCIONE JEDNACINE U PREBROJIVO]
UNIJI EKSPONENCIJALNIH DISTRIBUCIJA

Stevan Pilipovié, Arpad Takali

REZIME

U radu je ispitan prostor 64, za koji se pokazuje da je unija prostor: 9{;, p=1,2,....
Elementi prostora J64 su distribucije koje ne ,,rastu’ brZe u beskona¢nosti od exp (| x |2) za neko
p € N. Pokazano je da vaZi tvrdenje:

Distribucija T € 6%, je konvolucioni operator na F64, ako i samo ako za svako pe N po-
stoje me€ Ny i neprekidne funkcije f5(x), |7|<|m|, tako da je
|m |
T(x)= ) DI(fi(x) i f1(x)=0(exp(—|x|?)
[2]=0
kada [x||—>o0 za svako |j|<|m].
Posledice ovog tvrdenja je da su uslovi za refivost i hipoelipti¢nost konvolucione jedna-
&ine
T*U=V, T je konvolucioni operator na F6,,, Ve H

» - v - ’
u prostoru Y6/, analogni sa odgovaraju¢im uslovima za prostor &,.



