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Kothe’s ,,echelon” spaces ([2]), satisfy the K-condition ([1]). Besides the
diagonal theorem this fact is the main part of the proof that the kernel theorem
holds for Ké6the’s ,,echelon” spaces and for the spaces of tempered and Schwartz’s
distributions ([1], [2]).

In this paper we prove that the K-condition is satisfied for a class of ,,echelon”
spaces of order greater than one ([4]). From that and the diagonal theorem, simi-
larly as in [2], follows the kernel theorem for some ,co-echelon” spaces of order
s=1/(1—1/r). In a special case we obtain the kernel theorem for a %¢-type spaces
of generalized functions ([5]).

Spaces of sequences

By X* we denote the set of sequences A=(as), ne No=N U {0}), such that
anp € X where X is the normed space on the field of complex numbers C, with
the norm | |.

We introduce
If AeC, AeX*, A=0a, Az, ...);
If A, Be X*, A+B=(ai1+b, az+bs,...)

If one of the sequences 4 and B is with elements from C and the other is
from X*, then we write

A-B=(aib1, azbs, . ..); (A, By=abr+asha+. ..
If all the elements of sequence A4 are real and 40 then

A1=(l}ai, l/az, .. .)
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We make use of the following notation
y f—
Al=sup lasls [Al-=" 2 lapl, r>1
€N, PEN,
and || 4 =] 4.

By
Tr=(txsp), p€No, keNp

we denote the sequence of a real positive sequences such that
(1) for every r, s e N there exists k€ No and M;,; >0 such that k>r, k>s, and
| 2rsp* tosp | <Mpss | 2iesp | P € No;

@) | Tk Te¥y [<oo.

According to sequence Tk, we obtain a class of ,,echelon” spaces of order
r>1:
A= N 7\Tk,r ()\Tpr={A eX* | TrA “f<°°})

The (normal) topology T in Ar is given by the family of seminorms

8k, r (A)=(§ 52.101 ap [NV, keNp

(g, (A)ZSL;P tk,p | ap |).
. The alfa-dual Ay of A

N= U Oz, 1) [(m.r)-={Aex*1u Ti'A<oo}, s= 11]
| —

?
is a topological dusl of Ar (1) ([4]).

It is known:
3 An—>A in ) iff for every keNp
2 thp | ang—ap 0
P
C)) Bp,—B in ); iff for some keNp

= 1
Z lk:?p | bn,p—bp | >0 [s = 0 ]
P 1L
14

Convergence (4) and weak convergence are equivalent in A}. This may be
proved directly and elementarily as it is done in [2] for the case»=1 and, implicitly,
for the case r=2 in [7].
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We denote M=d and A1=7 as in (2] and hg=Uand Ag=U"asin [6].
According to {1], we say that the convergence in A satisfies the K-condition

iff from A,—0 in A7, follows that Z An,€)s for some sub-sequence (#m).
m=1

Remark 1. (Similarly as in [2]). If sequence (T%) is given, then A, and A7
are determined for »>1. However, the converse in not true. The same spaces Ar

and A} are determined, by the sequence T+ for which conditions (1), (2) are satisfied
and for some d>0

| TTei | <d, keNo
holds. In fact, we can put Tr=d*my, ... mpTx with my=1 and

| TeTets | <mps.

Remark 2. In [2] spaces S and 7 are defined without conditions (1). This

condition is connected with spaces A, and )} for #>>1. It means that we are going
to observe a class of ,,echelon” and a class of ,,co-echelon” spaces of an order greater

than 1, which we are going to compare with spaces A1 and Al
It is easy to show that if 1<<r<Cs

(5) Schrary; MencT

also in a convergence sense.

1 1 }
Let 1 <ro, so such that —+—=1 and let 1 <r < and 5o <s <oo.
ro S0

THEOREM 1. Space M and S (respectively Ay and T) are concident with
their convergence if for some keNo

(6 I Tk || so<<oo

If tg,p—> 00 for every ReNy when p— oo, condition (6) is necessary.

Proof: Let us prove Theorem 1. for A\, and J, as the proof for Ay and T is
similar.

Sufficiency follows from Holder’s inequality and from (1).

Suppose that the natural number kcNp does not exist, such that (6) holds.
This means that for every keNo

Q) I Te* s, =00
We may assume that | TxTen | <—:12~ (Remark 1) and so

| T:T; ' | <2¢7 holds.
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Let A,, neN, be a sequence of the finite subsets of N, such that Ag N Ag+1=0 and
(8 1< D, tap<2,neN, where
PEARNSn
SnCAn such that if PESn, then In,p 21, peNo.
The existence of sequence (Ajz), for which (8) holds, follows from (7).

Let b,=0 if peS, and bp=t;,1p if peAn/Sa. The sequence B=(bp) belongs to
Ar, but does not belongs to J. So in this way we have proved that condition (6) is
necessary.

Particularly, if (6) holds fo sp=1, then ,,echelon” and ,,co-echelon” spaces of
any order greater than 1 are coincident with & and & respectively.

Remark 3. In the case when condition (6) is satisfied for some s>1, then

Ar and s are nuclear. If this condition is not satisfied these spaces are neither nulear
nor coincide with space o, respectively /.

In the following theorem we are going to suppose that (6) is not satisfied.
Before formulating this theorem we shall state some facts.

If >0 and 0<x<l
9 (a+b) <a*+b*
holds. From (9), it follows (for example), that if a;>0, 1</<n
n n n
(10) (Za{)1+z<za{l+x+ Z a;aq
=1 =1 =i

Let e=(gp)e M and 1<r<2. If
Ants0,

then there exists a sequence V, peN, of infinite subsets of Ny, such that V1> Va>
< ...and

: 1
11) | an, p " <—ep
’IIEZVP ? pA
1
(11%) 2 lan, p|<—ep
”EL‘VP " pA

where A=sup | A, |. From A,*_,0, n—oo, follows agp,p—0 if n->co, for every
neN
peNg, and so we get (11) and (11%).
Now, we shall prove:

THEOREM 2. The convergence in spaces Ay, 1<<r<<oo satisfies the K-
-condition.
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Proof: To show that the K-condition is satisfied in spaces A, we have to prove
that for any sequence An=(axs,p)r0(0eA,) there exists a subsequence (Am,) such
that

(12) . Am"=( Z Qmy o Z a’mn,l, .. .)67\7
n=1 = |

First, we shall prove this proposition for r=14x, 0<<x<<1.

Let (kp) be a strictly increasing seguence of natural numbers, such that zyeVy,
and let (mp) be a sub-sequence of (kp) such that

< 1z a+z _ 1
(13) pzolam,,,pl tn,,,gz—”—ﬂ holds.

For the sequence Am, relation (12) holds, because for every /e Np using (10)
we have.

oo ©© 1+z
(Zl arm,,,1|1+zt},+f+(z lam,.,zl) A L

n=1 n=1

% 1+z oo 1+
+(Z|amn.sl] £11,+:+...<[Zlanml|] tll-+f+lanz,.2|1ﬂtll,+az+

fn=1 . fn=1

oo 1+z o oo _
+[z|am,,2‘) t11,+;+|am1.2|“(zla’n,,,zl]tzl,+§+am1,2(zIam,,,zl)t;l,zz-l-

=1 n=2 F ]

oo oo 1+2 o [ o0 -1
<3 (z |am,.p|] D) [z lam,,.zl]z | am, » 2 855 +
=2

n=1\n=p n=p i~1

zp-1

+§[§|amn.p|]z|am.-m‘.2’+ S S (lamp ! | am ot +
=1

=2 \n=-1 (2, r) ENxXN p=3

1z
+ I amq.p Iz I a’mrnﬂ D tl,p

From relations (11) and (11*) follows that the first three sums are finite, and
from.

o 1+z iz l+z o 1+z 1+ 1
2 lamgplam,p Pt < 3 lamg,p 7 By D) lam 17 01,5 <5 o

2
p=3 p=3 P=3

it follows that the last sum is finite. So we prove Theorem 2. for r=1+4=x, 0<x<1.
If reN then we can prove this Theorem using the binom formula also. If r=n-+x
neN and 0<<x<1, then insteand of (10), (11), (11*) we use the similar but more com-
plicated relation which we get by multiplying (9) by (a+b)».

This Theorem can also be proved by using the completness and metricability
of space A,. We give direct proof of that.
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Denote by 1A, and gA, the spaces of sequences whch correspond to sequence
1Tx=(1Lk,p), respectively 2Tr=(atx,;) and suppose that these sequences satisfy
condition, (6). Denote by W the space of matrices A =(anm), meNy X No=P2, such
that for every keP

| Ted o= 2. 1th,pothq (ap,0)<co (Tr=1Tk@eTh).
(D, QEP?
The bilinear operator T whichmaps 1A, X 2Arinto Banach spaces X is separately
continuous if the next inplications hold:

A5 A=T (An,B)>T (4, B); Bn*>B=T (A4, By)— T (4, B)

when n—oco.
From Theorems 1, 2., from [1] and [2] (p. 249) follows

THEOREM 3. For each separately continuous bilinear operator T i1y X
X ohr—>X there exists a unique continuous linear operator u:W—>X such that

(14) T (4, B)=u(A®B) (A®B)=(ap'b.), (p PeP?)

Conversely, for every continuous linear operatcr u:W—X, (14) represents a
separately continuous bilinear operator which maps 1hr X 2Ahrin X. This correspodence is
one—to—one.

Remark 4. The whole preceding theory continues to apply when we replace
sequences (vectors) A=(ap), pcNo, by matrices of any arbitrary, but fixed, number
of dimension A=(ay), pePr. Still more generaly, this theory continues to apply on
the functions, matrices, defined on the countable set K with values in a given normed
space X. It is only necessary to accomodaste notations and notions to that case in
the same way as ir is done in [ 2] (p. 244). Simply, it means that in the preceding
text instead of peNp we can put pek.

Spaces of generalized functions

Space of generalized function -4’ which elements may be expanded into a
series are introduced by Zemanian [7]. In [5] we develop the theory of space %/’
in the multi dimensional case. 4’-type spaces are examples of %/’-type spaces.

From [6] it follows that the following mappings are homeomorphic

U3 D, apbperA=(ap)eU (U=)

peEPT
Ws 2, aplperA=(ar)el’ (U’=1r3)
pEPT
wW's Z a4, O 4";7 ¢3HA#a(p, oW’
(P, q)EPTH

4t is the spa~e of test functions in r-dimensional case; %', and 7’ ere the %'
-type spaces in r-dimensional, respectively in r+ /-dimensional, case.
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Spaces U and U’ correspond to sequence Tk=(iﬁ) where n=(v1,...,Vn) €PT
and lf.zx’fl‘lf, .. .7\\’,‘". Spacee W corresponds to the sequence Tk=(7\’;, . 7\’;),

(p, QePr+l.

1
It for some keNjy, Z iﬁ<oo holds (sp=2), we denote the correspon-
PEPT AL

ding spaces of matrices with Up and Uy, space of test functions with %/ and the
space of generalized functions with %/,.

From Theorem 3 follows the kernel theorem for the spaces of %/4-type.

THEOREM 4. If f is a bilinear, separately continuous functional in the
cartesian product Q1,0 (RT) X DUy (RY), then there is a generalized function F from
UL (RrHY) such that

(15 T(‘b: ¢)=U’ (b@‘\b):

where d@Y=0 (%). ¢ (¥) (xeRr, yeR!) for every bel1,0(R") and Yeils,o (RY).
Conversely, for any feUY (Rr+t) (15) represents a separately continuous bilinear
functional on Ui,0 (RT) X FUz,0 (RY) This correspodence is one-to-one.
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TEOREMA O JEZGRU ZA NEKE PROSTORE

S. Pilipovié

REZIME

Koteov ,echelon® prostor ({2]) zadovoljava K-uslov ([1]). Pored dijagonalne teoreme
ta Cinjenica predstavlja najvaZniji deo dokaza da teorema o jezgru vaZi z. K&teov ,,co-echelon
prostor kao i za prostore temperiranih i Svarcovih distribucija {1, 2.

U ovom radu pokazujemo da K-uslov vaZi za jednu klasu ,,echelon® prostora reda r veéeg
od 1 ([4]). Odatle i iz dijagonalne teoreme, slino kao u [2] sledi da teorema o jezgru vaZi za neke
nco-echelon® prostore reda s=(1—1/r). U specijalnom sluaju dobijamo teoremu o jezgru za
prostore uopstenih funkcija tipa 2§ ([5]).



