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In [6] Zima proved a generalization of Schauder’s fixed point theorem
in paranormed space and in [2] some generalizations of Zima’s result for multi-
valued mappings in a topological vector space are obtained. So in [2], the following
theorem is proved.

THEOREM 1. Let K be a closed and convex subset of a Hausdorff topo-
logical vector space E, <l the system of neighbourhoods of zero in E, F:K—2K be a
compact mapping such that co F (x)=F (x), for every xe K. If for every Vel
there exists U € 9 such thar:

0 co (U n (F(K)—FK)cV

then there exists x € K such that x e F (x).

In [2] it is shown that in a paranormed space (E, | ||*) for every set KcE
which satisfies Zima’s condition, the relation (1) holds.

Using the principle of duality we shall prove, similarly as in [5] ,a fixed po-
int theorem which is dual to Theorem 1. First we shall give some notations and
definitions which we will use further in the text.

If F:K—2E, where 2F is the collection of all the subsets of E,then for each
ye F(K):

F1(y)={x|x€eK, yeF(x)}

and so F-1:F(K)—>2&. It is obvious that x is a fixed point of the mepping F, if
and only if x is a fixed point of F-1. Tarafdar and Husain have remarked in [5]
that if X, ¥ and F (X) are compact topological spaces (F: X—2Y) and F (x)=F (x),
for each x € X, F1 (y)=F-1(y), for each y € F (X), then F is uppersemicontinuous
if and only if the inverse mapping F1:F(X)—2¥ is uppersemicontinuous.

In the following theorem we shall denote bu % the family of neighbourhoods
of zero in E.
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THEOREM 2. Let K be a nonempty compact subset of a Hausdorff topo-
logical wector space E such that for every V el there exists Ue Y so that
co (Un (K—K))cV. Let F:K—~>2E be an uppersemicontinuous mapping such that
K< F(K), F (x)=F (), for every xeK, o F1 (x)=F-1 (x), for every x e F(K).
and F (K)=cCo F(K). Then there exists xo€ K such that xo € F (x).

Proof: Let us define the mapping T:F(K)—2K by T (x)=F-1(x), for
every xe F(K). Since F(x)=F (x) (xeK) and F-1(y)=F-1(y)(y e F(K)), the
mapping T is uppersemicontinuous. Further, for every Ve </ there exists U e U
such that:

co (U A (T (F(R)—T (F (K< V

since co (U n (K—K))c V. So, from Theorem 1 it follows that there exists
x0 € F(K) such that xo e T (xo) and so xo is a fixed point of the mapping F.

Similarly as in [2], we shall prove, using Théorem 2, a fixed point theorem
for the multivalued mapping F+ S, where F is a singlevalued and S is a multivalued
mapping.

THEOREM 3. Let E be a Hausdorff topological vector space, K be a no-
nempty, compact subset of E such that for every V € 9 there exists Ue9 so that
co (U n (K—K))< V. Further, suppose that F:E—E is a linear continuous mapping,
S:K—>2E {5 an uppersemicontinuous mapping such that (I—F) (K)<= S (K) and that
the following conditions are satisfied:

1. S(K) is compact and convex.

2. S(x)=co S (x), for every xe K and S-1(y)=c0 S-1(y), for every y € S (K).

3. For every y € S (K) there exists one and only one x (y) € E so that x (y)=
=Fx (y)+y and the set {x(¥)}yeSw)eS(K) is compact. Then Fix (F+S)#0.

Proof: Since for every y € S (K) there exists x (y) € E so that x (y)=Fx (y)+y,
we define the mapping R:S(K)—E in the following way: Ry=x(y), for every
y € S (K). Let us prove that the mapping R is continuous. Suppose that {y,}ee4<S
€ S(K) is a convergent net and lim y,=y and let us prove that lim Ry,=Ry. We

aEA eEA
have that for every « € o#; Ry,=FRy,+,. Since the set {Ry | y € S(K)} is com-
pact, there is a subnet {y,,} such that lim Ry,,=z. Then:
B

lim Rydﬁ=F (lim Ryag) +limyag
B 8 8

and so z=Fz+y, which implis that 2=Ry. Since every convergent subnet of
{Ry.} has the limit Ry, it follows that lim Ry,=Ry. Further, there exists R1:

:R(S(K)—S(K) and since R z=z— Fz, for every z € R(S(K)) the mapping
R-1is also a continuous mapping. Let us define the mapping R*: K—2Z in the fol-
lowing way:
R¥x=uURy.
vesSz
We shall show that the mapping R* satisfies all the conditions of Theorem 2.
First, the relation K< R* (K) follows from Ry=FRy-+y(ye S(K)) since for
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every z € K, there exists y € S (K) such that z—Fz=y and so z=Ry e RS (K).
Since R is continuous and S is uppeisemicontinuous, it follows that R* is upper-
semicontinuous. Since R s an affine homeomorphism, it follows that R (S (x))
is closed (x € K) and R* (K) is the compact and convex subset of E. It remains to
prove that for every x € R (S (K)) the set (R“‘)—1 (x) is closed and convex. Since
(R*)1=8-1 R-1, we have that this condition is satisfied. From Theorem 2, we
conclude that Fix (R*)-4@ and since Fix (R*) <= Fix (F4S), 1t follows that Fix
(F+8)#8.

The following theorem is a generalization of the fixed point theorem from
[4].

DEFINITION 1. [4] A subset A of a topological vector space ts almost convex
if for every V €9l and every finite set {x1, %2, ...,xn}<A there exists a subset
{21, 25, . . . ; Zn}c A suchthat 2i—xi€ V (i=1,2,...,n)andco {21, 22, . . . , 2n} = A.
We shall suppose in the following text that every V, V € 9, is closed and symmetric.

Similarly as in [4], we shall prove the following fixed point theorem.

THEOREM 4. Let K be a nonempty and compact subset of a Hausdorff
topological vector space, G:K 2K be an uppersemicontinuous mapping so that G (x)=
=c0 G (x), for every x € A where A is a dense almost convex subset of G (K) If for
every V e U there exists U e such that

co(Un(GRK)-GK)sV
then there exists at least one fixed point of the mapping G.

Proof: As in [4], for every Ve let Fr={x|xe(Gx)+V)nK}. It
is obvious that N{Fy | V e 9}50 implies that Fix (G)70. Since for every Ve
there exists U (V) e % so that:

co(UMn(GK)-GK)HsV
let us denote by F§ the set:
Fi—{x|xe K, xc G )+ (U (Nn(G (K)—G K)).
Since F¢§< Fy, for every Ve, it is enough to prove that:
N{Fp | Ve U}~D.

Since K is compact and Fjy~v<FpnFg, we shall prove, s1m11ar1y as in [4], that
F¢ is nonempty and convex, for every Ve 9.

For every Ve let:
Gy (x)=(G (x)+co (U (M)N(G(K)—GK))NK, xeK
Ry (x)=(x+Co (U (V)n(G (K)—G (K))NK, xekK.

As in [4] the mapping Gy is uppersemicontinuous on K and the graph gr Gy is
closed in Kx K. If A is the diagonal in K x K then Fy is the projection of the
compact set Angr Gy onto the Dom (Gy) and so F¥ is closed. The rest of the proof
is as in [4]. The following theorem is a generalization of Browder’s fixed point
theorem [1].
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THEOREM 5. Let K be a convex subset of topological vector space E, Ky
be a compact and comvex subset of topological vector space F with ! as the fundamental
system of neighbourhcods of zeroin F and T and S two mapping K into 2K; so that
the following conditions are satisfied:

(A) The mapping T is uppersemicontinuous and T (u) is the nonempty closed
and convex subset of Ki, for every ue K.
(ii) For every ue K, S (u) is open in Ky and S-1 (v) is nonempty and convex
subset of K, for every ve Ki.
(iii) For every V € there exists U € % sohat:

co(Un(TK)—-TEK))) V.
Then there exists ug € K so that:
T (wo) O S (u0)79.
Proof: As in [1] let {t1, us, ..., un} be such a subset of K that:

n
KicusS (w).
=1

If {Be}i-1 is the partition of the unity subordinated to the open covering {S (4)}=1
let p:K1—K be defined by:

p (@)= gl Bs (@us, vekK.

Then v e S(p (v)), for every ve K and let:
R (v)=T(p(v)), for every veKi.

Then R:K;—2K3 and for every v € K3, R (v) is the nonempty, convex and closed
subset of Kj. Since p is continuous and T is uppersemicontinuous ,it follows that
R is uppersemicontinuous. Further, R (K;)< T (K) and since co (U n (T(K)—
—T (K)))= V we conclude that:

co(Un (RK)—RE))sco(Un(TER)-TEK)NsV.

So, all the conditions of Theorem 1 are satisfied for R and Kj and so there exists
up € K3 such that upe R (w). Then:

T (p (uo)) 0 S (p (u0)) 70

Now, we shall give two examples of topological vector space E and of set X such
that for every Ve % there exists U e %/ such that co (U n (K—K))c V.

Example 1. Let E be a linear space over the real or complex number field
and | ||*:E—[0, o) so that the following conditions are satisfied:

l. lx}|*=0<x=0.
2. | x |*=]|| —x]|*, for every xc E.
3. N xty 1*<) x |*+ |y ||* for every x,y € E.
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Then the pair (E, || [|*) is a paranormed space which is also a topological
vector space and where the fundamental system of the neighbourhood of zero
L is of the form {V.}.-0 and:

Ve={x|x€eE, |x|*<e}.

DEFINITION 2. Let K< E where (E, || |*) is a paranormed space and there
exists CG>0 such that:

@ Inx[*<Cr | x|*, xeK—K, O<i<l

Then we say that the set K satisfies Zima’s condition.

In [2] an example is given of E and K such that (2) is satisfied, i.e. that K
satisfies Zima’s condition.

Example 2. S. Kasahara proved that every real Hausdorff topological vector
space E is a ®-paranormed space (E, || ||, ®) over a topological semifield Rx

(for a definition of ® paranormed space see [3]).

DEFINITION 3. Let K be a subset of a © paranormed space (E, | |, ©)
The set K is of ®-type if for every ne N, every x;e K—K (#=1,2,...,n) and

n
Mel0,1) (G=1,2,...,n) tzlx,=1;

n n
I g x| < Zl 2D (| 24]).

In [3] it is proved that every set K of ®-type has the property that for every Ve %
there exists U e </ such that:

co(UnK-K)cV.
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NEKE TEOREME O NEPOKRETNOJ TACKI ZA VISEZNACNA PRESLIKAVANJA
U VEKTORSKO TOPOLOSKIM PROSTORIMA

Olga Had#i¢ i Ljiliana Gajié

REZIME

Koristeéi metodu dualnosti koju su uveli Husain i Tarafdar dokazane su neke teoreme o nepo-
kretnoj talki za vieznatna preslikavanja u vektorsko topolo$kim prostorima. Takode je primenom
rezultata rada [2] dokazana sledea teorema o koincidenciji.

TEOREMA 5. Neka je K konveksan podskup wvektorsko topolodkog prostora E,K1 kom-
paktan | konveksan podskup vektorsko topoloSkog prostora F &ji je fundamentalni sistem okolina nule
dat familijom % i T i S su preslikavania K u 251 tako da su zadovoljeni sledeéi uslovi:

(i) Preslikavanje T je od gore poluneprekidno i T (u) je neprazan ¢ konveksan podskup od
K, za svako ue K.
(ii) Za svako ue K, S (4) je otworen u K1 ¥ S-1 (v) fe neprazan 1 konveksan podskup od K,
za svako v e K.
(iiily Za svako V € Y postoji Ue Y tako da je:

co (Un (TEK)-TEMNHEV.
Tada postoji uo€ K tako da je:
T (u0) N S (o) #0.



