SOME FIXED POINT THEOREMS FOR MULTIVALUED MAPPINGS IN TOPOLOGICAL VECTOR SPACES

Olga Hadžić and Ljiljana Gajić Prirodno-matematički fakultet. Institut za matematiku. 21 000 Novi Sad, ul. dr Ilije Đuričića 4, Jugoslavija.

In [6] Zima proved a generalization of Schauder's fixed point theorem in paranormed space and in [2] some generalizations of Zima's result for multivalued mappings in a topological vector space are obtained. So in [2], the following theorem is proved.

THEOREM 1. Let K be a closed and convex subset of a Hausdorff topological vector space E, \mathcal{U} the system of neighbourhoods of zero in E, $F:K\to 2^K$ be a compact mapping such that $\overline{\operatorname{co}}\ F(x)=F(x)$, for every $x\in K$. If for every $V\in \mathcal{U}$ there exists $U\in \mathcal{U}$ such that:

(1)
$$\operatorname{co}\left(U \cap (F(K) - F(K))\right) \subseteq V$$

then there exists $x \in K$ such that $x \in F(x)$.

In [2] it is shown that in a paranormed space (E, || || *) for every set $K \subset E$ which satisfies Zima's condition, the relation (1) holds.

Using the principle of duality we shall prove, similarly as in [5], a fixed point theorem which is dual to Theorem 1. First we shall give some notations and definitions which we will use further in the text.

If $F: K \to 2^E$, where 2^E is the collection of all the subsets of E, then for each $y \in F(K)$:

$$F^{-1}\left(y\right){=}\left\{ x\mid x\in K,\ y\in F\left(x\right)\right\}$$

and so $F^{-1}:F(K)\to 2^K$. It is obvious that x is a fixed point of the mapping F, if and only if x is a fixed point of F^{-1} . Tarafdar and Husain have remarked in [5] that if X, Y and F(X) are compact topological spaces $(F:X\to 2^Y)$ and $F(x)=\overline{F(x)}$, for each $x\in X$, $\overline{F^{-1}(y)}=F^{-1}(y)$, for each $y\in F(X)$, then F is uppersemicontinuous if and only if the inverse mapping $F^{-1}:F(X)\to 2^X$ is uppersemicontinuous.

In the following theorem we shall denote bu $\mathcal U$ the family of neighbourhoods of zero in E.

THEOREM 2. Let K be a nonempty compact subset of a Hausdorff topological vector space E such that for every $V \in \mathcal{U}$ there exists $U \in \mathcal{U}$ so that $co(U \cap (K-K)) \subseteq V$. Let $F: K \rightarrow 2^E$ be an uppersemicontinuous mapping such that $K \subseteq F(K)$, $F(x) = \overline{F(x)}$, for every $x \in K$, \overline{co} $F^{-1}(x) = F^{-1}(x)$, for every $x \in F(K)$. and $F(K) = \overline{co}$ F(K). Then there exists $x_0 \in K$ such that $x_0 \in F(x_0)$.

Proof: Let us define the mapping $T: F(K) \to 2^K$ by $T(x) = F^{-1}(x)$, for every $x \in F(K)$. Since $F(x) = \overline{F(x)}(x \in K)$ and $\overline{F^{-1}}(y) = F^{-1}(y)(y \in F(K))$, the mapping T is uppersemicontinuous. Further, for every $V \in \mathcal{U}$ there exists $U \in \mathcal{U}$ such that:

$$co(U\cap (T(F(K))-T(F(K)))\subseteq V$$

since co $(U \cap (K-K)) \subseteq V$. So, from Theorem 1 it follows that there exists $x_0 \in F(K)$ such that $x_0 \in T(x_0)$ and so x_0 is a fixed point of the mapping F.

Similarly as in [2], we shall prove, using Theorem 2, a fixed point theorem for the multivalued mapping F+S, where F is a singlevalued and S is a multivalued mapping.

THEOREM 3. Let E be a Hausdorff topological vector space, K be a nonempty, compact subset of E such that for every $V \in \mathcal{U}$ there exists $U \in \mathcal{U}$ so that $co(U \cap (K-K)) \subseteq V$. Further, suppose that $F: E \to E$ is a linear continuous mapping, $S: K \to 2^E$ is an uppersemicontinuous mapping such that $(I-F)(K) \subseteq S(K)$ and that the following conditions are satisfied:

- 1. S(K) is compact and convex.
- 2. $S(x) = \cos S(x)$, for every $x \in K$ and $S^{-1}(y) = \overline{\cos} S^{-1}(y)$, for every $y \in S(K)$.
- 3. For every $y \in S(K)$ there exists one and only one $x(y) \in E$ so that x(y) = Fx(y) + y and the set $\{x(y)\}_y \in S(K) \in S(K)$ is compact. Then $Fix(F+S) \neq \emptyset$.

Proof: Since for every $y \in S(K)$ there exists $x(y) \in E$ so that x(y) = Fx(y) + y, we define the mapping $R: S(K) \to E$ in the following way: Ry = x(y), for every $y \in S(K)$. Let us prove that the mapping R is continuous. Suppose that $\{y_{\alpha}\}_{\alpha} \in \mathcal{A} \subseteq S(K)$ is a convergent net and $\lim y_{\alpha} = y$ and let us prove that $\lim Ry_{\alpha} = Ry$. We

have that for every $\alpha \in \mathcal{A}$, $Ry_{\alpha} = FRy_{\alpha} + y_{\alpha}$. Since the set $\{Ry \mid y \in S(K)\}$ is compact, there is a subnet $\{y_{\alpha\beta}\}$ such that $\lim Ry_{\alpha\beta} = z$. Then:

$$\lim_{\beta} Ry_{\alpha\beta} = F(\lim_{\beta} Ry_{\alpha\beta}) + \lim_{\beta} y_{\alpha\beta}$$

and so z=Fz+y, which implies that z=Ry. Since every convergent subnet of $\{Ry_{\alpha}\}$ has the limit Ry, it follows that $\lim Ry_{\alpha}=Ry$. Further, there exists R^{-1} :

 $:R(S(K)) \to S(K)$ and since $R^{-1} z = z - Fz$, for every $z \in R(S(K))$ the mapping R^{-1} is also a continuous mapping. Let us define the mapping $R^*:K \to 2^E$ in the following way:

$$R^*x = \bigcup_{y \in Sx} Ry$$
.

We shall show that the mapping R^* satisfies all the conditions of Theorem 2. First, the relation $K \subseteq R^*(K)$ follows from Ry = FRy + y ($y \in S(K)$) since for

every $z \in K$, there exists $y \in S(K)$ such that z - Fz = y and so $z = Ry \in RS(K)$. Since R is continuous and S is uppersemicontinuous, it follows that R^* is uppersemicontinuous. Since R is an affine homeomorphism, it follows that R(S(x)) is closed $(x \in K)$ and $R^*(K)$ is the compact and convex subset of E. It remains to prove that for every $x \in R(S(K))$ the set $(R^*)^{-1}(x)$ is closed and convex. Since $(R^*)^{-1} = S^{-1} R^{-1}$, we have that this condition is satisfied. From Theorem 2, we conclude that $Fix(R^*) \neq \emptyset$ and since $Fix(R^*) \subseteq Fix(F+S)$, it follows that $Fix(F+S) \neq \emptyset$.

The following theorem is a generalization of the fixed point theorem from [4].

DEFINITION 1. [4] A subset A of a topological vector space is almost convex if for every $V \in \mathcal{U}$ and every finite set $\{x_1, x_2, \ldots, x_n\} \subset A$ there exists a subset $\{z_1, z_2, \ldots, z_n\} \subset A$ such that $z_i - x_i \in V$ $(i = 1, 2, \ldots, n)$ and co $\{z_1, z_2, \ldots, z_n\} \subset A$. We shall suppose in the following text that every $V, V \in \mathcal{U}$, is closed and symmetric.

Similarly as in [4], we shall prove the following fixed point theorem.

THEOREM 4. Let K be a nonempty and compact subset of a Hausdorff topological vector space, $G: K \to 2^K$ be an uppersemicontinuous mapping so that $G(x) = \overline{\operatorname{co}} G(x)$, for every $x \in A$ where A is a dense almost convex subset of G(K). If for every $V \in \mathcal{U}$ there exists $U \in \mathcal{U}$ such that

$$co(U \cap (G(K) - G(K)) \subseteq V$$

then there exists at least one fixed point of the mapping G.

Proof: As in [4], for every $V \in \mathcal{U}$, let $F_V = \{x \mid x \in (G(x) + V) \cap K\}$. It is obvious that $\bigcap \{F_V \mid V \in \mathcal{U}\} \neq \emptyset$ implies that Fix $(G) \neq \emptyset$. Since for every $V \in \mathcal{U}$ there exists $U(V) \in \mathcal{U}$ so that:

$$co(U(V)\cap (G(K)-G(K)))\subseteq V$$

let us denote by F_{V}^{*} the set:

$$F_{V}^{*}=\{x\mid x\in K,\,x\in G\left(x\right)+\overline{\operatorname{co}}\left(U\left(V\right)\cap\left(G\left(K\right)-G\left(K\right)\right)\right)\}.$$

Since $F_V^* \subseteq F_V$, for every $V \in \mathcal{U}$, it is enough to prove that:

$$\cap \{F_V^* \mid V \in \mathcal{U}\} \neq \emptyset.$$

Since K is compact and $F_{U \cap V}^* \subseteq F_V^* \cap F_U^*$, we shall prove, similarly as in [4], that F_V^* is nonempty and convex, for every $V \in \mathcal{U}$.

For every $V \in \mathcal{U}$ let:

$$G_V(x)=(G(x)+\overline{co}(U(V)\cap(G(K)-G(K))))\cap K, \quad x\in K$$

$$R_V(x)=(x+\overline{\operatorname{co}}(U(V)\cap(G(K)-G(K))))\cap K,$$
 $x\in K.$

As in [4] the mapping G_V is uppersemicontinuous on K and the graph gr G_V is closed in $K \times K$. If Δ is the diagonal in $K \times K$ then F_V^* is the projection of the compact set $\Delta \cap \operatorname{gr} G_V$ onto the Dom (G_V) and so F_V^* is closed. The rest of the proof is as in [4]. The following theorem is a generalization of Browder's fixed point theorem [1].

THEOREM 5. Let K be a convex subset of topological vector space E, K_1 be a compact and convex subset of topological vector space F with $\mathcal U$ as the fundamental system of neighbourhoods of zero in F and T and S two mapping K into $2K_1$ so that the following conditions are satisfied:

- (i) The mapping T is uppersemicontinuous and T(u) is the nonempty closed and convex subset of K_1 , for every $u \in K$.
- (ii) For every $u \in K$, S(u) is open in K_1 and $S^{-1}(v)$ is nonempty and convex subset of K, for every $v \in K_1$.
- (iii) For every $V \in \mathcal{U}$ there exists $U \in \mathcal{U}$ so hat:

$$co(U \cap (T(K)-T(K))) \subseteq V$$
.

Then there exists $u_0 \in K$ so that:

$$T(u_0) \cap S(u_0) \neq \emptyset$$
.

Proof: As in [1] let $\{u_1, u_2, \ldots, u_n\}$ be such a subset of K that:

$$K_1 \subseteq \bigcup_{i=1}^n S(u_i).$$

If $\{\beta_i\}_{i=1}^n$ is the partition of the unity subordinated to the open covering $\{S(u_i)\}_{i=1}^n$ let $p:K_1 \to K$ be defined by:

$$p(v) = \sum_{j=1}^{n} \beta_j(v)u_j, \quad v \in K_1.$$

Then $v \in S(p(v))$, for every $v \in K$ and let:

$$R(v) = T(p(v))$$
, for every $v \in K_1$.

Then $R: K_1 \to 2K_1$ and for every $v \in K_1$, R(v) is the nonempty, convex and closed subset of K_1 . Since p is continuous and T is uppersemicontinuous, it follows that R is uppersemicontinuous. Further, $R(K_1) \subseteq T(K)$ and since co $(U \cap (T(K) - T(K))) \subseteq V$ we conclude that:

$$\operatorname{co}\left(U\cap\left(R\left(K_{1}\right)-R\left(K_{1}\right)\right)\right)\subseteq\operatorname{co}\left(U\cap\left(T\left(K\right)-T\left(K\right)\right)\right)\subseteq V.$$

So, all the conditions of Theorem 1 are satisfied for R and K_1 and so there exists $u_0 \in K_1$ such that $u_0 \in R(u_0)$. Then:

$$T(p(u_0)) \cap S(p(u_0)) \neq \emptyset.$$

Now, we shall give two examples of topological vector space E and of set K such that for every $V \in \mathcal{U}$ there exists $U \in \mathcal{U}$ such that $\operatorname{co}(U \cap (K-K)) \subseteq V$.

Example 1. Let E be a linear space over the real or complex number field and $\| \|^* : E \to [0, \infty)$ so that the following conditions are satisfied:

- 1. $||x||^*=0 \Leftrightarrow x=0$.
- 2. $||x||^* = ||-x||^*$, for every $x \in E$.
- 3. $||x+y||^* \le ||x||^* + ||y||^*$, for every $x, y \in E$.

Then the pair $(E, || ||^*)$ is a paranormed space which is also a topological vector space and where the fundamental system of the neighbourhood of zero \mathcal{U} is of the form $\{V_z\}_{z>0}$ and:

$$V_{\varepsilon} = \{x \mid x \in E, \|x\|^* < \varepsilon\}.$$

DEFINITION 2. Let $K \subseteq E$ where (E, || || *) is a paranormed space and there exists C > 0 such that:

(2)
$$\|\lambda x\|^* \leqslant C\lambda \|x\|^*, \quad x \in K - K, \quad 0 \leqslant \lambda \leqslant 1.$$

Then we say that the set K satisfies Zima's condition.

In [2] an example is given of E and K such that (2) is satisfied, i.e. that K satisfies Zima's condition.

Example 2. S. Kasahara proved that every real Hausdorff topological vector space E is a Φ -paranormed space $(E, \| \|, \Phi)$ over a topological semifield R_{Δ} (for a definition of Φ paranormed space see [3]).

DEFINITION 3. Let K be a subset of a Φ paranormed space $(E, || ||, \Phi)$ The set K is of Φ -type if for every $n \in \mathbb{N}$, every $x_i \in K - K$ (i=1, 2, ..., n) and

$$\lambda_i \in [0, 1] \ (i=1, 2, \ldots, n), \sum_{i=1}^n \lambda_i = 1$$
:

$$\|\sum_{i=1}^n \lambda_i x_i\| \leqslant \sum_{i=1}^n \lambda_i \Phi(\|x_i\|).$$

In [3] it is proved that every set K of Φ -type has the property that for every $V \in \mathcal{U}$ there exists $U \in \mathcal{U}$ such that:

$$co(U \cap (K-K)) \subseteq V$$
.

REFERENCES

- [1] F. Browder, Fixed point theory of multivalued mappings in topological vector space, Math. Ann. 177, (1968), 283-301.
- [2] O. Hadžić, Some fixed point and almost fixed point theorems for multivalued mappings in topological vector spaces, Nonlinear Analysis, Theory, Methods & Applications, Pergamon Press, Oxford. New York. Frankfurt, Vol. 5, No. 9. (1981), 1009-1019.
- [3] O. Hadžić, A fixed point theorem in topological vector spaces, Zbornik radova Prirodno-mate-matičkog fakulteta u Novom Sadu, knjiga 10. (1980), 23-29.
- [4] Himmelberg C. J., Fixed points of Compact Multifunctions, Jor. Mat. Anal. Appl, 38, (1972), 205-207.
- [5] A. Tarafdar, T. Hussain, Duality in Fixed Point Theory of Multivalued Mappings with Applications, Jor. Math. Anal. Appl., 63, (1978), 371-376.
- [6] K. Zima, On the Schauder fixed point theorem with respect to paranormed space, Comm. Math., 19 (1977), 421-423.

NEKE TEOREME O NEPOKRETNOJ TAČKI ZA VIŠEZNAČNA PRESLIKAVANJA U VEKTORSKO TOPOLOŠKIM PROSTORIMA

Olga Hadžić i Ljiljana Gajić

REZIME

Koristeći metodu dualnosti koju su uveli Husain i Tarafdar dokazane su neke teoreme o nepokretnoj tački za višeznačna preslikavanja u vektorsko topološkim prostorima. Takođe je primenom rezultata rada [2] dokazana sledeća teorema o koincidenciji.

TEOREMA 5. Neka je K konveksan podskup vektorsko topološkog prostora E, K_1 kompaktan i konveksan podskup vektorsko topološkog prostora F čiji je fundamentalni sistem okolina nule dat familijom $\mathcal O$ i T i S su preslikavanja K u 2^{K_1} tako da su zadovoljeni sledeći uslovi:

- (i) Preslikavanje T je od gore poluneprekidno i T (u) je neprazan i konveksan podskup od K₁, za svako u ∈ K.
- (ii) Za svako u ∈ K, S (u) je otvoren u K₁ i S⁻¹ (v) je neprazan i konveksan podskup od K, za svako v ∈ K₁.
- (iii) Za svako V∈U postoji U∈U tako da je:

$$co(U \cap (T(K)-T(K)))\subseteq V.$$

Tada postoji u₀ ∈ K tako da je:

 $T(u_0) \cap S(u_0) \neq \emptyset$.