A FIXED POINT THEOREM IN TOPOLOGICAL VECTOR SPACES

Olga Hadžić

Prirodno-matematički fakultet. Institut za matematiku. 21 000 Novi Sad, ul. dr Ilije Đuričića 4, Jugoslavija.

Abstract. In this paper we shall prove a fixed point theorem in topological vector space, using the theory of the topological semifield and a result of Kasahara.

1. First, we shall give some notations and definitions which will be used in the following text. By R we shall denote the set of all real numbers. Further, let X be a vector space over \mathcal{K} (real or complex number field), R_{Δ} the set of all mappings from Δ into R with the Tychonoff product topology and the operations + and scalar multiplication as usual. If $f, g \in R_{\Delta}$ we shall say that f < g iff $f(t) \leq g(t)$, for every $t \in \Delta$ and $f \neq g$. By P_{Δ} we shall denote the cone of nonnegative elements in R.

DEFINITION 1. The triplet $(X, \|\cdot\|, \Phi)$ is a Φ -paranormed space iff $\|\cdot\|: X \to P_{\Delta}$, Φ is a linear, continuous, positive mapping from R_{Δ} into R_{Δ} such that the following conditions are satisfied:

- 1. $||x|| = 0 \Leftrightarrow x = 0$.
- 2. $\|\lambda x\| = \|\lambda\| \|x\|$, for every $x \in X$ and every $\lambda \in \mathcal{K}$.
- 3. $||x+y|| \le \Phi(||x||) + \Phi(||y||)$, for every $x, y \in X$.

Let us denote by \mathcal{U} the family of neighbourhoods of zero in R_{Δ} and for every $U \in \mathcal{U}$ we shall denote the set:

$$\{x \mid x \in X, \|x\| \in U\}$$

by V_{U} . Then X is a topological vector space in which $\{V_{U}\}_{U\in\mathcal{U}}$ is the family of neighbourhoods of zero in X.

In [2] it is proved that every Hausdorff topological vector space X is a paranormed space $(X, \|\cdot\|, \Phi)$ over a topological semifield R_{Δ} and we shall say that the triplet $(X, \|\cdot\|, \Phi)$ is the associated paranormed space.

DEFINITION 2. Let X be a Hausdorff topological vector space and $(X, \|\cdot\|, \Phi)$ be the associated paranormed space. The set $K \subset X$ is of Φ -type iff for every $n \in N$:

$$\|\sum_{i=1}^{n} \lambda_{i} x_{i}\| \leqslant \sum_{i=1}^{n} \lambda_{i} \Phi(\|x_{i}\|), \quad \text{for every } x_{i} \in K-K (i=1, 2, \ldots, n)$$

and every $\lambda_i \in [0, 1], \sum_{i=1}^n \lambda_i = 1$.

DEFINITION 3. Let X be a topological vector space, $K \subset X$ and \mathcal{V} be the fundamental system of neighbourhoods of zero in X. The set K is locally convex iff for every $W \in \mathcal{V}$ and every $x \in K$ there exists $U \in \mathcal{V}$ such that: $\operatorname{co}((x+U) \cap K) \subset W + x$.

In [5] Bogdan Rzepecki proved the following fixed point theorem.

THEOREM A. Let E be a Hausdorff topological vector space and let K be a nonempty, closed and convex subset of E. Suppose that T is a continuous mapping from K into a compact subset Z of K. Assume, moreover that the following condition is satisfied:

(*) For every x in Z and every neighbourhood W of x there exists a neighbourhood V of x such that:

$$co(V \cap Z) \subset W$$
.

Then T has a fixed point in K.

Using Theorem A and the following proposition we shall obtain a fixed point theorem.

PROPOSITION 1. Let X be a topological vector space and K be a subset of X of Φ -type. Then K is a locally convex subset of X.

Proof: We shall prove that for every $W \in \mathcal{U}$ and every $x \in K$ there exists $U \in \mathcal{U}$ such that:

$$co((x+U)\cap K)\subset x+W$$

which means that K is a locally convex subset of X. Let $W \in \mathcal{U}$. Let $(X, \|\cdot\|, \Phi)$ be the associated Φ paranormed space over the topological semifield R_{Δ} . Then there exists $\mu = \{t_1, t_2, \ldots, t_n\} \subset \Delta$ and $\varepsilon > 0$ such that the following implication holds:

$$||u|| \in U_{\mu, \varepsilon} \Rightarrow u \in W$$

where:

$$U_{\mu, \epsilon} = \{x \mid \|x\| \ (t) < \epsilon, \text{ for every } t \in \mu\}.$$

Since the mapping Φ is linear and continuous there exists a neighbourhood U_1 of zero in R_{Δ} such that:

$$||u|| \in U_1 \Rightarrow \Phi(||u||) \in U_{\mu, \varepsilon}.$$

Suppose, further that U_2 is a symmetric neighbourhood of zero in X such that $U_2 \subset V_U$. Let us prove that:

(1)
$$\operatorname{co}\left((x+U_2)\cap K\right)\subset x+W.$$

Suppose that $u \in \operatorname{co}((x+U_2)\cap K)$. Then $u=\sum_{i=1}^n \lambda_i x_i$, where $x_i \in (x+U_2)\cap K$ (i=

=1, 2, ..., n) and $\lambda_i \in [0, 1]$, $\sum_{i=1}^n \lambda_i = 1$. Then we have:

$$||u-x||(t) = ||\sum_{i=1}^{n} \lambda_{i}(x_{i}-x)||(t) \leq \sum_{i=1}^{n} \lambda_{i} \Phi(||x_{i}-x||)(t) < \varepsilon$$

for every $t \in \mu$. So, it follows that $||u-x|| \in U_{\mu, \varepsilon}$ and consequently $u-x \in W$ which completes the proof, since (1) holds.

COROLLARY. Let X be a topological vector space, K be a nonempty, closed and convex subset of X and T be a continuous mapping from K into a compact subset $Z \subset K$ of Φ type. Then T has a fixed point in K.

In [4] the following problem is proposed:

PROBLEM. If $K \subset X$, X is a topological vector space and K is a locally convex subset under which conditions K has the following property:

 $A \subset K$ and A is precompact \Rightarrow co A is precompact.

PROPOSITION 2. Let X be a topological vector space, K be a subset of X of Φ type, $0 \in K$ and A is a precompact subset of K. Then co A is precompact.

Proof: It is known that co A is precompact iff for every $W \in \mathcal{U}$ there exists a finite set $\{y_1, y_2, \dots, y_n\} \subset O$ A such that:

$$\operatorname{co} A \subseteq \bigcup_{i=1}^{n} \{y_i + W\}.$$

Let $W \in \mathcal{U}$ and $\varepsilon > 0$, $\mu = \{t_1, t_2, \ldots, t_m\} \subset \Delta$ such that:

$$||u|| \in U_{\mu, \varepsilon} \Rightarrow u \in W.$$

Since Φ is a linear and continuous mapping there exists a neighbourhood V_1 of zero in R_{Δ} such that:

$$\|u\| \in V_1 \Rightarrow \Phi(\|u\|) \in U_{\mu, \frac{\varepsilon}{2}}$$

and an open, symmetric neighbourhood of zero in X such that:

$$u \in V_2 \Rightarrow ||u|| \in V_1.$$

Since the set A is precompact there exists a finite set $\{x_1, x_2, \ldots, x_n\} \subset A$ such that:

$$A\subseteq \bigcup_{i=1}^n \{x_i+V_2\}.$$

Let S be the subset of R^n consisting of all $s=(s_1, s_2, \ldots, s_n)$ such that:

$$s_i \ge 0$$
, $i=1, 2, ..., n$ and $\sum_{i=1}^n s_i = 1$.

Since S is a compact subset of R^n , for every $\delta > 0$ there exists a finite set of points $\{\beta^j\}_{j \in J}(J \text{ is a finite set}), \beta^j = (\beta^j_1, \ldots, \beta^j_n) \in R^n \text{ such that for every } s \in S \text{ there exists } \beta^j \in \{\beta^j\}_{j \in J} \text{ such that:}$

$$\sum_{i=1}^n |s_i - \beta_i^2| \leq \delta.$$

Let $\delta > 0$ be such that for every $i=1,2,\ldots,n$ and every $r=1,2,\ldots,m$:

$$\Phi\left(\left\|x_{t}\right\|\right)\left(t_{r}\right)<\frac{\varepsilon}{2s}.$$

We shall show that:

$$\operatorname{co} A \subseteq \bigcup_{j \in J} (\sum_{i=1}^{n} \beta_{i}^{j} x_{i} + W).$$

Suppose that $y \in co$ A. Then:

$$y = \sum_{k=1}^{N} \gamma_k y_k$$
, where $y_k \in A (k=1, 2, ..., N)$, $\gamma_k \ge 0 (k=1, 2, ..., N)$, $\sum_{k=1}^{N} \gamma_k = 1$.

From (1) it follows that:

$$y_k = x_{i_k} + z_k, \quad z_k \in V_2 \quad (k = 1, 2, ..., N)$$

and so:

$$y = \sum_{k=1}^{N} \gamma_k x_{i_k} + \sum_{k=1}^{N} \gamma_k z_k = \sum_{i=1}^{n} \gamma'_i x_i + \sum_{k=1}^{N} \gamma_k z_k.$$

Suppose that β^j is such that:

$$\sum_{i=1}^{n} |\gamma_i' - \beta_i'| \leq \delta$$

and let us show that:

(2)
$$y \in \sum_{i=1}^{n} \beta_i^j x_i + W.$$

For every $r \in \{1, 2, ..., m\}$ we have that:

$$\|y - \sum_{i=1}^{n} \beta_{i}^{j} x_{i} \| (t_{r}) = \|\sum_{i=1}^{n} (\gamma_{i}^{i} - \beta_{i}^{j}) x_{i} + \sum_{k=1}^{N} \gamma_{k} z_{k} \| (t_{r}) \leq$$

$$\leq \sum_{i=1}^{n} |\gamma_{i}^{i} - \beta_{i}^{j}| \Phi (\|x_{i}\|) (t_{r}) + \sum_{k=1}^{N} \gamma_{k} \Phi (\|z_{k}\|) (t_{r}) < \frac{\varepsilon}{2\delta} \cdot \delta + \frac{\varepsilon}{2} = \varepsilon$$

and so:

$$\|y-\sum_{i=1}^n\beta_i^2x_i\|\in U_{\mu,\,\varepsilon}$$

which implies that:

$$y - \sum_{i=1}^{n} \beta_i^i x_i \in W$$

and so relation (2) is proved.

Now, let E be a Hausdorff topological vector space. In [5] a set function ψ on E (similar to a certain sense to the measure of non-compactness of Kuratowski) is introduced in the following way:

Let L be a linear space, let S be a cone in L generating the partial order \leq_S , and let S_{∞} be a set containing S. If $S_{\infty} \setminus S \neq \emptyset$ it is assumed that in S_{∞} linear operations are defined which are extensions of those in S and in S_{∞} :

$$x \leqslant y$$
 means
$$\begin{cases} x, y \in S & \text{and} \quad x \leqslant_S y \\ x, y \in S_{\infty} \setminus S & \text{and} \quad x = y \\ x \in S & \text{and} \quad y \in S_{\infty} \setminus S \end{cases}$$

Further, let the function $\psi: 2^{\mathbb{R}} \to S_{\infty}$ has the following properties:

- 1. $\psi(X \cup \{x\}) = \psi(X)$, for every $X \subset E$ and every $x \in E$.
- 2. If $X \subset Y$ then $\psi(X) \leq \psi(Y)$, for every $X, Y \subset E$.
- 3. If $\psi(X)=0$, then X is a relatively compact subset of E.

In [5] the following theorem is proved.

THEOREM B. Let E be a Hausdorff topological vector space, K be a closed and convex subset of E such that for every compact subset Z of K is the condition (*) satisfied. Suppose, moreover, that the mapping ψ satisfies 1., 2. and 3. and $\psi(K) \in S$, $\psi(\overline{\operatorname{co}} X) = \psi(X)$, for each $X \subset K$. If $T: K \to K$ is a continuous mapping such that $0 < \psi(X)(X \subset K)$ implies $\psi(T(X)) < \psi(X)$ then there exists a fixed point of the mapping T.

From Theorem B we have the following Corollary.

COROLLARY. Let E be a Hausdorff topological vector space, K be a closed and convex subset of E of Φ -type, $T:K\to K$ be a continuous mapping and the mapping ψ satisfies all the conditions of Theorem B. If $\Theta < \psi(X)(X \subset K)$ implies $\psi(T(X)) < \psi(X)$ then there exists a fixed point of the mapping T.

Remark: If E is a Hausdorff topological vector space and ψ is defined by $\psi(X) = 0$ if X is a compact subset of E and $\psi(X) = 1$ if X is not a compact subset of $E(X \subset E)$ then the function ψ has in E the properties 1., 2, and 3., where $S = S_{\infty} = [0, \infty)$. From the Proposition it follows that $\psi(\overline{co} X) = \psi(X)$, for each $X \subset K$, if E is complete. It is easy to see that in the Proposition we can suppose that $0 \notin K$.

DEFINITION 1. Let E be a Hausdorff topological vector space, $\emptyset \neq K \subset E$ and $T:K \rightarrow E$. The mapping T is a generalized condensing iff:

- (a) T is continuous.
- (b) If $\emptyset \neq A \subset K$ and $T(A) \subset A$ such that $A \setminus \overline{co} T(A)$ is compact then A is relatively compact.

From Satz 1.17 [4] and the Proposition we obtain the following Corollary.

COROLLARY. Let E be a complete Hausdorff topological vector space, K be a nonempty, closed and convex subset of Φ -type of E. If T is generalized condensing mapping from K into K then there exists a fixed point of the mapping T.

- 2. Ir [3] the following theorem is proved: Let X be a Hausdorff locally convex topological vector space and G be a nonempty complete convex subset of X and let $T: G \rightarrow G$ be continuous. If:
 - (i) $\{T^n\}_{n\in\mathbb{N}}$ is an equicontinuous family of functions.
- (ii) There exists $M \subseteq G$ which is an attractor for compact sets under T, then T has a fixed point.

We shall prove a generalization of this theorem, where X is a Hausdorff topological vector space and G is a nonempty complete, convex subset of Φ -type of X.

First, we shall give some definitions and theorems which we shall need later[3].

DEFINITION 5. Let L be a Hausdorff topological vector space and $K \subset L$ be nonempty. Then a family F of mappings from K into itself is said to be equicontinuous (on K) if for each $x \in K$ and each neighbourhood U of the origin 0, there exists a neighbourhood V of 0 such that $y \in K$ and $y - x \in V$ imply $Ty - Tx \in U$, for all $T \in F$.

DEFINITION 6. Let X be a Hausdorff topological semigroup. S is said to act on X if there is a continuous map $\pi: S \times X \to X$ such that $\pi(s_1, \pi(s_2, x)) = \pi(s_1s_2, x)$, for any $s_1, s_2 \in S$ and $x \in X$.

If $s \in S$ then:

$$\Gamma_n(s) = \{\overline{s^m \mid m \geqslant n}\}, \quad \Gamma(s) = \Gamma_1(s), K(s) = \bigcap \{\Gamma_n(s) \mid n \geqslant 1\}.$$

DEFINITION 7. Let X be a topological space and $T: X \rightarrow X$. A subset M of X is said to be an attractor for compact sets under T iff:

- (i) M is a nonempty compact and $T(M) \subseteq M$.
- (ii) For any compact subset C of X and any open neighbourhood U of M, there exists an integer N such that $T^n(C) \subseteq U$, for all $n \ge N$.

In [6] Wallace proved the following theorem.

THEOREM C. Suppose that S acts on X. Let $s \in S$ be such that $\Gamma(s)$ is compact and let $A \subseteq X$ be nonempty compact such that $sA \supset A$. Then for each $s_1 \in \Gamma(s)$, $s_1A = A$ and s_1 acts as a homomorphism on A. In particular, the unit of K(s) acts as identity map on A.

Let X be a compact Hausdorff and S=C(X,X) be the family of all continuous maps on X into itself equipped with a compact open topology. For $f,g\in S$ define $f\cdot g=f\circ g$, the composition of g followed by f. Then S is a Hausdorff topological semigroup. If $\pi\colon S\times X\to X$ is defined by $\pi(f,x)=f(x)$, for all $f\in S$, $x\in X$ then π is (jointly) continuous and S acts on X. If S=C(X,X) and $T\in S$ such that the family

 $\{T^n\}_{n\in\mathbb{N}}$ is equicontinuous then $\Gamma(T)$ is compact [3]. Further for $A=\bigcap_{n=1}^{n}T^n(X)$ is T(A)=A and so from Theorem C it follows that the unit r of K(T) acts as an

identity map on A. In [3] it is proved that r is a retraction of X onto A. As in [3] we shall prove the following theorem.

THEOREM. Let G be a nonempty, complete, convex subset of Φ type of Hausdorff topological vector space X and $T:G \rightarrow G$. If:

- (i) $\{T^n\}_{n\in\mathbb{N}}$ is an equicontinuous family of functions,
- (ii) There exists $M \subseteq G$ which is an attractor for compact sets under T, then T has a fixed point.

Proof: Let $Y = \overline{\text{co}} M$. From the Proposition 2, it follows that the set Y is compact. Let:

$$X = \frac{\overline{\bigcup_{n=0}^{\infty} T^n(Y)}}{\int_{n=0}^{\infty} T^n(Y)}, \text{ where } T^{\circ}(Y) = Y.$$

In [3] it is proved that X is compact and let $A = \bigcap_{n=1}^{\infty} T^n(X)$. Then there exists a retraction $r: X \to A$ and $g = T \cdot r$ is a continuous mapping Y into Y. From the Proposition 1, it follows that there exists $y_0 \in Y$ such that $g(y_0) = y_0$. As in [3] it follows that $y_0 \in A$ and $Ty_0 = y_0$.

REFERENCES

- [1] O. Hadžić, On the admissibility of topological vector space, Acta Scientiarum Mathematicarum, T 42, Fasc. 1-2, (1980), 81-85.
- [2] S. Kasahara, On formulations of topological linear spaces by topological semifields, Math. Jap. 19 (1974), 121-134.
- [3] H. M. Ko, K. K. Tan, Attractors and a fixed point theorem in locally convex space, CMUC, 21, 1 (1980), 71-79.
- [4] C. Krauthausen, Der Fixpunktsatz von Schauder in nicht notwendig konvexen Räumen sowie Anwendungen auf Hammersteinsche Gleichungen, Dok. Diss., Aachen, 1976.
- [5] B. Rzepecki, Remarks on Schauder's Fixed Point Theorem, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phy., 24 (1976), 589-603.

TEOREMA O NEPOKRETNOJ TAČKI U VEKTORSKO TOPOLOŠKIM PROSTORIMA

Olga Hadžić

REZIME

Korišćenjem nekih rezultata S. Kasahare [2] u ovom radu je, pored ostalog dokazana sledeća teorema o nepokretnoj tački, koja je uopštenje teoreme iz rada [3].

TEOREMA. Neka je G nefrazan, kompletan, konveksan podskup Φ tipa Hausdorffovog vektorsko topološkog prostora X i $'1:G \rightarrow G$ tako da su zadovoljeni sledeći uslovi:

- (i) {Tⁿ}n∈N je podjednako neprekidna familija.
- (ii) Postoji $M\subseteq G$ tako da je M atraktor za kompaktne skupove u odnosu na T. Tada postoji nepokretna tačka preslikavanja T.