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1. Before proceeding to a consideration of our subject we would like to give
a short survey of our instruments.

First we shall give the following definitions (see [1]).

DEFINITION 1. The Boolean functions of n variables (BFn) over the Boole-
an algebra (B, V, +,0,1> are determined by the following rules:

0) For every acB, the constant function f: B*—B defined by

(1.1 Vx1,...,%0€B) fa(x1,...,xn)=a
is a BFn.
1) For every i=1,2,...,n, the projection function e;: B*—B defined by
(1.2) (Vx1,...,%xs€B) et (x1,...,%n)=2x¢
ts a BFn.

2) If f, g:B*—~B are BFn, then the functions fVg, fg, f:B"—>B defined by
(1.3) (Vx1,..-,2B) (V) (x15 .. -5 xn)=f (A1y . - -5 X)) VE (X15 . « . 5 Xn)

(1.9 (Vxt, ... xn€BY(fg) (%15 - - - s Xa)=f (X1, . . . s Xn) "€ (X15 . . . 5 Xn)
(1.5) (Vs .. s x0€B)f (%15« - o5 Xn)=F (X15 . . . 5 Xn))’
are BFn.

3) Any BFn is obtained by applying rules 0), 1) and 2) a finite number of times.

DEFINITION 2. The simple Boolean functions of n wariables (SBFn)
over the Boolean algebra {B, V,*,0,1> are determined by the following rules:

1°) For every i=1,2,...,n, the projection function (1.2) is an SBFn.

2’) If f,g:B*~>B are SBFn, then functions (1.3), (1.4), and (1.5) are SBFn.

3’) Any SBFn is obtained by applying rules 1) and 2°) a finite number of times.



198 Ratko Tosié

DEFINITION 3. Let Be={0,1} be the rwo-element Boolean algebra.
For every natural number n, every function f: B} —B, is called a truth function.

A suitable model for the investigation of some properties of Boolean functions
over finite Boolean algebras is just the B-modul defined in [2]. For this reason we
do not deal in this paper with an abstract Boolean algebra but with its isomorphic
representation — the B-modul.

DEFINITION 4. Let there be given a set Bo={0, 1}. Let us call each ele-
ment of the Cartesian power B{ the g-dimensional B-vector (or briefly wector) over
By and denote it by the symbol a=(dl, ..., a%), where ake Bz for k=1,2,...,4.
Elements a* are called coordinates of the B-vector. We shall call the set B} of all g-
-dimensional B-vectors the g-dimensional B-modul over Bs. The B-vector a=(al,

.»ad) is equal to the B-vector b=(bl, ..., b7) just when a*=b¥ for all k=1, 2,

. «» 4. By aV b we denote the disjunction of vectors a and b i.e. vector c=(cl,. .., c?)

where c¥=ak\/ b, for the coordinates holding: 0V0=0, 0V1=1V0=1VI=1. By

a-b we denote the conjunction of vectors a and b t.e. vector d=(d,. .., d?), where

dk=qak -bk, for the coordinates holding 0-0=0-1=1-0=0, 1-1=1. Vector 1=(l,

> 1) 1s called a unit vector, vector 0=(0, . .., 0) a zero vector. Vector a’ s called

a complement of vector a, if it holds aVa’=1, a'a’=0. In fact, for a=(d., ..., a9,
a=((a')’, .., (a2)"), for the coordinates holding: 0’=1, 1’=0.

It is easy to show (see [2]) that each Boolean algebra having 2¢ elements is
isomorphic with g-dimensional B-modul Bj. We define a further operation:

DEFINITION 5. The operation of multiplying of a vector acBi by element
o€By is given by the rule:

0 when «=0

a when a=1.

(1.6) a-a;a-a:[

Now it is possible to introduce in B{ a concept of a linear combination:

DEFINITION 6. A wector ceB} is a linear combination of the wvectors
a;eBS, j=1,2,..,s iff there exist o;€B2, such that

(1.7 c=a-mVag-aV...Vag-as= Vi a;-a

Vectors A1=(1,0,...,0), A2=(0,1,0,...,0),..., Ag=(0,...,0,1) are
called base vectors of the B-modul BY. In fact, they are atoms of the Boolean algebra
(Bg,\/, °y ,: 0, 1>~

In what follows, we consider only Boolean functions over a finite Boolean
algebra B having 2¢ elements, instead of B we write simply B.

An arbitrary element of B can be represented in the form

(1.8) a=VL, Aak

where

(1.9)

. 1 when a =4,
ar= 0 otherwise
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The following relations hold:

(1.10) aVb=Vi., A, (akVbk)
(1.11) a-b=\VI_, A, (ak-b¥)
(1.12) a'=Vi, Ay (ab).

LEMMA 1.1. For a, beB, a <b iff ak <b* for all k=1,2,...,q.
Proof. a<beraVb=b
Vi A (@*VER)=Vi_ | Agb¥
<>akVE=b¥ for all k=1,2,...,q
<>ak <bk for all k=1,2,...,q.
LEMMA 1.2. For any Boolean function f:B"—>B holds
(1.13) F(X)=Vi. Apft (XF)
where f¥:B}—>Bz (k=1,2, ..., q) is a truth function such that, for all XeB"

1 when f(X)=A,

* (XF)—

(1.19) Fr D) [O otherwise.

Proof. Follows from (1.8), (1.10), (1.11) and (1.12).

According to (1.13), every BFn can be represented as an o1dered g-tuple of truth
functions f¥: B}—Bs (k=1, 2, . . ., q), f*¥ being the k-th component of BF#n f: B*—B.

It ic easy to show that a BFn f: B®»—B is simple iff fl=f2=...=f4, and in
that case the analytic expression of that SBFn is identical to the analytic expression
of any of its components.

2. Now, we shall use the componentwise treatment in oreder to prove some
properties of BFn.

DEFINITION 7. We say thatr BFn f:B®*=B preserves a constant acB
iff fla,a, ..,a)=a.

Constant-preserving Boolean functions are of special importance in the swit-
ching theory.

"LEMMA 2.1. BFn f:B*—>B preserves a constant acB iff, for all k=1, 2,
.. q, the truth function f%; B} — By preserves the constan ak e Bs.
Proof. Let f(a,a,...,a)=a for some aeB. Then
Vi Apf¥ (a*, ak, ... ,a")=Vi_; A,ak,

hence
J% (a%, a¥, . . ., a¥)=aF, for all k=1,2,...,q.
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Conversely, if for all 2=1,2,...,¢,
f¥(ak, ak, ..., a¥)=ak, then f(a, a,...,a)=
=V, Apf* (ak, ak, ..., a")=Vi_; Apa¥=a.

Now, the following theorems about the constant-preserving Boolean functions
can be proved:

THEOREM 2.1. Let BFn f:B*»>B satisfy the condition
2.1 f00,0,...,00<f(1,1,..., D).
Then f(c,¢,...,¢)=c fiff
(2.2) f00,0,...,00<e<f(1,1,..., D).
Proof. Let (f(0,0,...,0<c<f(1,1,...,1), then for all k=1,2,...,4
(2.2¥) f500,0,...,00<cv<fx(1,1,...,1).
Now, there are three possibilities:
(A) f¢0,0,...,00=0 (A"
£, 1,...,)=0 (A")
In that case ¢*=0, and by (A"): f* (c%, ¢¥, . . . , cK)=ck.
(B) f%(0,0,...,0)=1 B)
f L., D=1 (B™)
In that case ¢*=1 and by (B”): f¥(ck,c¥,...,c¥)=CcF,
<  f%0,0,...,0=0 (C)
L., D=1 c
In that case, there are two possibilities:
) k=0, hence by (C"): f¥(c¥,ck,...,cH)=c*
(ii) c¥=1, hence by (C"): f* (c*, ¥, . . . , c¥)=Cck.

In any case, f¥(ck, c¥,...,c¥)=ck, for all k=1,2,...,q; from Lemma
2.1, it follows: f(c,¢,...,¢)=c. .
Conversely, let f(c,¢c,...,c)=c, for some ce B. Then

(2.3%) fe(ck, c*, ..., cF)=ck for all k=1,2,...,q.
On the other hand, from (2.1) follows

(2.1%) f%¥0,0,...,00<f*(1,1,...,1) for all 2=1,2,...,q.
From (2.3%¥) and (2.1¥) follows:

(2.2%) f5(0,0,...,0)<c*<f¥(1,1,...,1) for all k=1,2,...,4,

hence (2.2) follows.
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THEOREM 2.2. A necessary nad sufficient condition for a BFn f:B*"—B
to be preserving at least ome conmstant ic

@.1) £00,0,...,00<f(I,1,...,1)

Proof. Sufficiency follows from Theorem 2.1.

To prove the necessity, suppose that for some ce B, f(c, ¢, .. ., ¢)=c holds,
Then, Lemma 2.1 implies

(2.3%) FE(ck, ek, ..., K)=ck for all k=1,2,...,q

Now, we consider two possibilities:

(i) c¥=0, hence, according to (2.3%), it follows: f*¥ (0,0, ..., 0)=0 which,
independently of the value of f¥(1,1,...,1), implies

(2.2%) F(0,0,...,0)<ck<f*(1,1,...,1)

(ii) c*=1, hence, according to (2.3¥), it follows: f¥(1,1,..., 1)=1 which,
independently of the value of f¥(0,0,...,0), implies (2.2%).

In any case, (2.2%) holds for all 2=1,2,...,¢ and from Lemma 1.1 we
have that (2.2) holds, which implies (2.1).

Besides (2.1), there are two other possibilities:
f(0,0,...,0) and f(1,1,...,1) to be noncomparable and
f0,0,...,00>f(1,1,...,1). The latter case is considered in the following
theorem.

THEOREM 2.3. For every Boolean function f:B"—B, the following two
conditions are equivalent:

(2.4) f@,0,...,00>f(1,1,...,1)

(2.5) floe ..., 0=f(,1,...,)VIf(0,0,...,0) for all ce B.
Proof. Let (2.4) be true. Then, from Lemma 1.1, we have:

(2.4%) F%(0,0,...,00>f%(1,,1...,1) for all k=1,2,...,q
Now, the relation

(2.5%) FE(ck, ck, ..., B)=fE(1,1,..., DV (F)f(0,0,...,0)

is true for all k=1,2,...,q, because for ¢¥*=0 it becomes: f¥(0,0,...,0)=

=fe(l,1,..., )Vf¥(0,0,...,0), which is equivalent to (2.4¥) and for c¥=1

we obtain an identity. So, (2.5) is true.

Conversely, let (2.5) be true, for all ce B. Taking ¢=0, we obtain:
f0,0,...,0=f(1,1,...,)VSf(0,0,...,0) which is equivalent to (2.4).
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REMARK. It is easy to see that

A, 1,000, 1, £(0,0,...,0LV,5f(1,1,...,1),f(0,0,...,0)>

is a Boolean algebra, where f:B®—+B is any BFn satisfying (2.4), and for any
celf(1,1,...,1),f(0,0,...,0]:
c=f(c,¢,...,6); however [f(1,1,...,1),f(0,0,...,0)] is not a subalgebra
of (B, V,0,",0, I>.

3. It is worth pointing out some consequences of the previous theorems,
concerning the numbers of constant-preserving functions over the finite Boolean
algebra having 27 elements.

COROLLARY 1. A Boolean function f:B#»—B preserves all constants
(.e. f(a,a,...,a)=a for all ae B iff it preserves the constants 0 and 1 (i.e
iff £(0,0,...,0)=0 and f(1,1,...,1)=1.

COROLLARY 2. A Boolean function f:B"-s>B preserves exactly one
constant ae B iff £(0,0,...,0)=a and f(1,1,..., )=a.

COROLLARY 3. For any Boolean function f:B*—B, the following two
conditions are equivalent:

@ fla,a,...,a)7a for all ae B

@) £(0,0,...,0)<%kf(,1,...,1).

COROLLARY 4. For any Boolean function f:B*—B, the following two
conditions are equivalent:

@ fla,a,...,a)=a’ for all aeB

(i) £(0,0,...,0)=1 and f(1,1,...,1)=0.

COROLLARY 5. Let ¢B, V,0,’, 0, 1> be a finite Boolean algebra having
27 elements. Then, the number of Boolean functions f: B#»—B preserving at least
one constant is 39-29@"-2); the number of BFn not preserving any constant is
2q¢ @"-2) (22¢—34); the number of BFn preserving all constants of a given interval

and only them is 27 @*-2) (it is worth remarking that this number is independent
of the interval); the number of BFn preserving exactly 2” constants (0 <m<gq)

is ( q]-za @-1)-m,
m

COROLLARY 6. Any simple Boolean function f: B%—B belongs to one
and only one of the following four classes:

Koo — the class of SBFn preserving only constant 0;

Koy — the class of SBFn preserving all constants;

Kip — the class of SBFn not preserving any constant;

K1 — the class of functions preserving only constant 1.

A SBFn belongs to the class Ky (57 € {0, 1}) iff £(0,0,...0)=i and

f@, 1., ., D=
Any of the class Ky; contains exactly -22*-2 functions.
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O KLASI BULOVIH FUNKCIJA KOJE CUVAJU KONSTANTE NAD
KONACNIM BULOVIM ALGEBRAMA

Ratko Todié

REZIME

U radu se ispituje klasa Bulovih funkcija od n promenljivih (BFrn) koje fuvaju konstante
nad konaénim Bulovim algebrama. Za BFn f: B*—B kaZemo da ¢uva konstantu a akko f(a, a, ...
c.,a)=a.

Dokazana su sledeéa tvrdenja:
TEOREMA 2.1. Neka BFn zadovoljava uslov
@10 f0,0,...,0<f(1,1,..., 1.
Tada je f(c;¢,...,0)=c akko
2.2 f(0,0,...,0)0<e<f(1,1,...,1).
. TEOREMA 2.2. Potreban ¢ dovoljan uslov da BFn f:B"—>B &uva barem jednu konstantu
e
](2.1) f00,0,...,00<f(1,1,...,D).
TEOREMA 2.3. Za svaku BFn f:B"-»>B, sledeca dva tvrdenja su ekvivalentna:
2.4 f@©,0,...,0>f(1,1,...,1)
(2.5) fle,ese.s0)=f(1,1,...,D)Vcf(0,0,...,0) za svaki ceB.
Izveden je niz posledica koje se odnose na broj BFn koje ¢uvaju konstante nekog intervala

i broj BFn koje éuvaju odreden broj konstanti. IzvrSena je klasifikacija prostih BFn na &etiri klase
iste kardinalnosti.



