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Let A=(4, Q) be an algebra, S a semigroup and « |- ® a mapping of Q into
S, such that A= S and

€)) w(ay,...,am)=0a...a

for every n-ary operator weQ and every ai,..., aned. A=(4, Q) is called a
subalgebra of the semigroup S.

It is well known ([1] p. 185) that every algebra is a subalgebra of some semi-
group. Subalgebras of commutstive semigroups are characterized in [2].

In this paper we describe the class of algebras which are subalgebras of semi-
lattices.

THEOREM. An algebra A=(A4, Q) is a subalgebra of some semilattice if

and only if the following condition is satisfied:
(*) For every patr of terms ty and ta, with the same sets of symbols, t1=tg is an identity
in A.

Proof. It is obvious that the condition (*) is satisfied in every subalgebra of
a semilattice.

Suppose that the condition (*) is satisfied in the algebra A=(4, Q). We are
going to prove that this algebra is a subalgebra of a semilattice. We can assume that:

(i) A and Q are disjoint sets;
(ii) Different operators from Q define different operations in A4;

(1ii) € does not contain 0-ary operators, so that the operators, i.e. elements of £,
are operaticns in A.

Le K=AuUQ and let _7 be the family of finite subsets of the set K (including
the empty set). _# is a semilattice with the set theoretical union as an operation. If
we put x={x}, for every xeK, we have K< _#, so that _/ may be considered as a
free semilattice with an identity on the base K.
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Define in _# a relation of ,,neighbourhood® in the following way:
If S, TeH and

§=Sva, T=SVi{w,a1,...,as}
whete a=o (a1, . . . , an) in the algebra o4, we say that (S, T) and (7, S) are two
pairs of neighbours generated by the operation .

If there exists a sequence So, S, ..., Spe/# such that S=3S,, T=Sp, p=>0
and (Si-1, Si) is a pair of neighbours for every i€{1,2, ..., p}, we say that S and
T are equivalenr and denote this S~T.

The relation ~ is a congruence on the semilattice _/ and
2 a=ow (a1, ..., a) (in AD=a~{w, a1, ..., an}.
We are going to prove the following implication:
3 a, beA=>(a~b=>a=b),

from which, because of (2), we come to the conclusion that the algebra -4 is a subal-
gebra of the semilattice p=_#/~.

To every element Se_/ we correspond its ,,value” [S] in the following way:
If one of the sets Sp=5SnQ, S4=Sn 4 is empty, we put [S]=S.
Let

Sa={w1, ..., 0}, Sa={a1,...,as}
be non-empty sets. If all the operations from Sg are unary we put
[S1={b1, ..., bs},
where .
b=w1...0r (@), v=1,...,s5.

Finally, suppose that at least one of the operations from Sg for instance wr, is not
unary. There exist positive integers ¢, j such that w; ws. ..ok (a}, az .. .,as) is
a ,,continued product® and if a is the value of this product we put [S]=a. From
t_he_ condition (*), it follows that [S] does not depend on the quadruple ws a1,
7, ]

Further on we denote [S1v Sau. ..U Sg] with [S1, Sz, ..., Sk).

The following lemmas are simple consequences from the condition (*) and
the definition of the transformation [ 1J.

LEMMA 1. [[S]]=[S].

LEMMA 2. If Sa=Ta—= o, then
[S, T, Ul=IS, [T, U]

LEMMA 3. If a= (a1, - . ., an) in of and [S,aled then
[S,a]=[S, @ a1, - - - » an. '

We are going to prove the following
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LEMMA 4. Let a=S80, S1;...,Sp be a sequence of elements from _/,
where acA, and (Si, Si+1) is a pair of neighbours for every {0, 1,...,p~—1}. If
wi 15 the generating operation for the pair (Si, Si+1) then

[wvw al=[w1, ..., 0p, Sy]=a

for every ve{l, ..., p}.
Proof, If p=1 then we have

S1={(1)1, Als o v s aﬂ} or S1={a, ©ly Ay« o a,.}
where i1 (a1, .- -, as)=a. Then
[01, al=w1 (@) =01 (@1(a15 ..., ax))?)=w1 (a1, . .., an)=a

[w1, S1]=w1 (a1, w1 (a1, . . ., an))=w1 (@®)=a, n>2
and
[01, S1]=[w1, 1, a1]=06? (a1)=w1 (@) =a, for n=1.

Assume that the assertion of lemma 4. for the sequence a=3Sg, S1, ..., S¢
holds. We have two possible cases:

M Sgn=8S"v{w,a,...,as}, $=5’Vb, b=w(as,...,an)
(AI) Sgna=S8'vb, Sg=S"v{w, a,...,as}, b=0(ay,...,an).
For case (I) we have
[01,...5 Wg ©, Sgr1]=[01,..., g &, &, S5 a1,...,a]=
=[w ..., 0y S50, ai,...,an].
From lemma 3. and an inductive assumption it follows that
a=[w1,..., g Sgl=[01, ..., 0 SKb]l=[0w1, ..., 0 SHw,a1,...,as]=
=[1,. .., g 0 Sgn]-
From lemma 2. we have
[w, al=[w, [®1, ..., g 0, Sgr1]]l=[w1, ..., g 0, Sgr]=a,

[(0: W15 .« .y Wy Sv]=[(°, [(01’ s ey Wy SV]]=[(°, a]=a

for v=1,...,q
Consider case (II).
we{w1,...,wg} so it follows that

[(0, Wiy .. .5 Wy Sq+1]=[(01, ooy Wy Sq+1].

By the inductive assumption we also have

[o1; .. .5 g Sgl=a.
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If in the set {w1...,w,} there is a non-unary operation, then [w1,. .. wg, Se¢]
€A, and from lemma 3. we have
[0 - - - » ©gs Sqi]=[01, . - . » 0g Sy b]=
=[d1y...,0g S, 0,a1,..., a]=[01,..., 0 Sp]=a.

If all the operations wi,...,w, are unary then in can be easily sean that
[01,..., wg Sgl=a impies that [w1,... g Sgal=a
Q.E.D.

Now, implications (3) can easily be verified. If a, beA4 and a~b, then there
exists a sequence a=Sp, S1, . . . , Sp=>~ such that (Si-1, S;) is a pair of neighbours
for every i{l, ..., p}. If p=0 then a=So==>. Let p>1 and the pair (St-1, Sy) be
generated by the operation ;. From lemma 4. it follows that

[w1, al=[wz, a]=. . .=[wp, a]=[w1, . . ., ©p, b]=a.
Consider the sequence b=3Sp, ..., S1, So=a. We have

b=[o1, ..., op,a]l=[o1, ..., 0p1, [0p, a]ll=[w1,..., wp1, al=[w1, a]=a.
By this we finish the proof of the theorem.

Notes.

1. If Q does not contain unary operators and to every m-ary operation we{)
we correspond a binary operation »’ by o’ (x,y)=w (x?71, y), then we have the
algebra (A, (O’) with binary operations, satisfying the condition (*) if and only
if the algebra (A4, Q) satisfies the same condition. We also have that

© (X1, .5 x0)=0"%1 (x1,. .., Xn).

2. We call the algebra (4, Q) Q-semilattice if there exists the semilattice P
such that A< P and

1) o(a,...,a)=a...a,

for every n-ary operation we() and ai, ..., ancAd. It can be easily verified that
(4, Q) is Q-semilattice if and only if the following condition is satisfied:
(**) For every pair of terms 21, ¢z, with the same sets of variables 13 =t is an identity
in (4, Q).

Obviously, the condition (*°) is necessary.
If (*°) is satisfied in (A4, Q) then all the operators, of the same arity n, define equal
n-ary operations, so we may take that for every » there is at most one operation in
Q. If there exists a unary operation we{) we have that o (x)=x for every xeA.
Let o be an n-ary operation in Q (n>32), and a binary operation ,,-” be defined by
xy=0o (x*1,9). Then we obtain a semilattice (A4,.) such that

p(¥15.. .5 Xm)=X1.. Xm
for every me-ary operation peQ.

3. Analgebra 4 satisfies condition (*) if and only if all the identities of the following
forms hold in A4:

3] w X1. . Xn=OW X1 Xig. . X5

3.2 o pxX1. . Xm==p O X1. . .Xm3
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33 wpx1.. Xp=wX1...%-10Xi...Xm;

1 2 7. o 8. 8
3.4 of. .. ofxP . xl=ol. .. of 2P . a5

A satisfies (*°) if it satisfies all the identities 3.1, 3.2, 3.3 and 3.4°, where

o o B B
34 w1.... 01 L xg?=p1...ps X1 ... x4

(o, p, Wy, py are arbitrary elements of €; 71, ... i, is a permutation of 1,...,n
and n, m, 1y, sy, %y By, 7, 5 are positive integers such that both the hand sides of
the corresponding identities are (-terms).
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PODALGEBRE POLUMREZE

Georgi Cupona, Gradimir Vojvodié i Sinifa Crvenkovit

REZIME

Neka je A=(A4, Q) algebra, $ polugrupa i w/—»w preslikavanje @ u § tako da je ASSi
w (a1, ceey a.,.)=6a1, vearsQn

za svaki n-arni operator » € Qi a1,...,an € A. KaZemo da je 4 podalgebra polugrupe S.

U radu je dat opis klase podalgebri polumreza. VaZi sledeéa

TEOREMA. Algebra A=(A, Q) je podalgebra neke polumreke ako i samo ako zadovoljava
sledeéi uslov:
t&*) Za proizvoljne terme t1 i tz, sa jednakim skupovima simbola u algebri A je zadovoljen identitet
1=12.



