THE CRAIG INTERPOLATION THEOREM FOR MIXED - VALUED PREDICATE CALCULI

Gradimir D. Vojvodić

Prirodno-matematički fakultet. Institut za matematiku. 21 000 Novi Sad, Ul. dr Ilije Đuričića 4, Jugoslavija

We shall consider mixed-valued predicate calculi. In this paper we shall prove an assertion which is an analogue of the Craig Interpolation Theorem (as in (2)).

The main characteristic of mixed-valued predicate calculi, which were introduced by H. Rasiowa in [3], is: for each predicate ρ there is an $n_p \ge 2$, such that θ is n_p -valued.

We assume that the reader is familiar with papers [2], [3], [4]. A terminology and notations are the same as in [3], [4].

The following theorem is well known (see T. 5.1.2. in [3].)

THEOREM 1. Let L=(A, T, F) be an arbitrary mixed-valued predicate language. Then for each $C \subset F$ and $\alpha \in F$

$$C \vdash \alpha \quad iff \quad C \models \alpha.$$

THEOREM 2. Formula $\alpha \Rightarrow \beta \ (\alpha \Leftrightarrow \beta)$ is a theorem of L iff $\alpha_R \ (\nu) \leqslant \beta_R \ (\nu) \leqslant \beta_R \ (\nu) \Leftrightarrow \beta_R \ (\nu)$, for every realization R and valuation v.

Proof: $\vdash \alpha \Rightarrow \beta$ iff $\models \alpha \Rightarrow \beta$ (by (T.1.))

iff $(\alpha \Rightarrow \beta_R)$ (v)= e_{ω} (by the definition of \models), iff $\alpha_R(\nu) \Rightarrow \beta_R(\nu) = e_{\omega}$ (by the definition of R and ν), iff $\alpha_R(\nu) \leq \beta_R(\nu)$ (see example in [3], p-217.).

THEOREM 3. If α , β are in F and ord $\beta=m$, then $\alpha \vdash \beta$ iff $\alpha \vdash D_{m-1}(\beta)$)

Proof: If $\alpha \vdash \beta$, then $\alpha \vdash D_i(\beta)$ for $0 < i < \omega$ (bay rule r-mix, see /3/) that is $\alpha \vdash D_{m-1}(\beta)$.

Conversely. $D_{m-1}(\beta)\Rightarrow\beta$ is a theorem for L. This follows from ord $\beta=m$, $\beta=(D_1(\beta)\cap e_i)\cup\ldots\cup(D_{m-2}(\beta)\cap e_{m-2})\cup D_{m-1}(\beta)$ and the fact that $D_{i+1}(a)\leq\leq D_i(a)$ for each element a in $P_{\omega'}$ $0< i<\omega$, and $e_0\leq e_1\leq\ldots\leq e_{\omega}$. This we obtain $\beta\cap D_{m-1}(\beta)=D_{m-1}(\beta)$, that is, $D_{m-1}(\beta)\leq\beta$. By T. 2. $D_{m-1}(\beta)\Rightarrow\beta$ is a theorem of L.

Let $\vdash D_{m-1}(\beta)$, then by modus ponens, from $\vdash D_{m-1}(\beta) \Rightarrow \beta$ and $\alpha \vdash D_{m-1}(\beta)$ we obtain $\alpha \vdash \beta$.

THEOREM 4. For each α in F° , $f_t(\alpha) = \alpha$, $0 < i < \omega$.

Proof: The proof is based on a definition of F° and f_{i} (see [4]).

THEOREM 5. If $\gamma_i \in F^\circ$ for $0 < i < \omega$, and the formulas $(\gamma_i \Rightarrow \gamma_{i-1})$, where $2 \le i < \omega$ are theorems in L, and γ is the formula $((\gamma_1 \cap e_1) \cup \ldots \cup (\gamma_i \cap e_i))$, then $(D_i(\gamma))_R(\gamma) = \gamma_{iR}(\gamma)$ for every realization R and valuation γ .

Proof: For every j, $0 < j < \omega$ we have $(D_j((\gamma_1 \cap e_1) \cup \ldots \cup (\gamma_i \cap e_i)))_R(v) = = ((D_j(\gamma_1) \cap D_j(e_1))_R(v) \cup \ldots$

... $\cup (D_j(\gamma_i) \cap D_j(e_i))_R(v) = \gamma_{jR}(v)$ (see $(p_1)(p_2)(p_6)$ in [3], and T. 1. T. 2. in [4]).

THEOREM 6. For any formula $\alpha, \beta \in F^{\circ}$, the formula $\alpha \Rightarrow \beta$ (ord $(\alpha \Rightarrow \beta) = m \ge 2$) is a theorem of L iff $f(\alpha) \Rightarrow f(\beta)$ is a theorem of K(A).

Proof: If $f(\alpha) \Rightarrow f(\beta)$ is not a theorem of K(A) (see [4]), then there is a model R_0 of K(A) and a valution ν such that α_{R_0} (ν)= e_{ω} and β_{R_0} (ν)= e_0 . By T. 5. in [4], there is a realization R of F, such that $\alpha_R(\nu)=e_{\omega}$ and $\beta_R(\nu)=e_0$. Hence, by T. 1., $\alpha \Rightarrow \beta$ is not a theorem in L. Conversely, if $\alpha \Rightarrow \beta$ is not a theorem of L, by T. 1. there is a realization R of L and valuation ν such that $(\alpha \Rightarrow \beta)_R(\nu)=(\alpha)_R(\nu)\Rightarrow \Rightarrow (\beta)_R(\nu)\neq e_{\omega}$ Hence by T. 1. in [4] $\alpha_R(\nu)=e_{\omega}$ and $\beta_R(\nu)=e_0$. By T. 5. in [4] $(f\alpha)_{R_0}(\nu)=e_{\omega}$ and $(f\beta)_{R_0}(\nu)=e_0$. Since R_0 is a model of K(A), this implies that $(f\alpha\Rightarrow f\beta)$ is not a theorem of K(A).

THEOREM 7. (THE CRAIG INTERPOLATION THEOREM FOR L) If α , β are formuls in L, α is closed and $\alpha \Rightarrow \beta$, (ord $(\alpha \Rightarrow \beta) = m$, $2 \le m < \omega$) is a theorem of L, then there is a closed formula γ which contains only those predicates that occur in both α and β , and the formulas $\alpha \Rightarrow \gamma$, $\gamma \Rightarrow \beta$ are theorems of L. If α and β have no common predicate, then γ is one of the propositional constants $e_0, \ldots, e_{m-2}, e_{\omega}$

Proof: Assume that predicates of α are ρ , σ and all predicates of β are σ , θ . If $\alpha \Rightarrow \beta$ is a theorem of L, then, by T. 3., T. 2. and $|p_3|$ in [3] $D_i(\alpha) \Rightarrow D_i(\beta)$ is a theorem of L for 0 < i < m. Similarly, as in [2], we have that $ff_i\alpha \Rightarrow ff_i\Rightarrow \beta$ 0 < i < m is a theorem of K(A) (by T. 6.). It follows that in K, the formula $(A_\rho \cap A_\sigma \cap ff_i\alpha) \Rightarrow (A_\theta \Rightarrow ff_i\beta)$, for 0 < i < m, is a theorem. The common predicates of $(A_\rho \cap A_\sigma \cap ff_i\alpha)$ and $(A_\theta \Rightarrow ff_i\beta)$ are some $\sigma_1, \sigma_2, \ldots, \sigma_{m-1}$, (ord $(\alpha \Rightarrow \beta) = m$). By the Craig Interpolation Theorem, for classical predicate callculi [1], there are closed formulas γ_i^* , for 0 < i < m in F, such that it contains only the predicates from $\{\sigma_1, \sigma_2, \ldots, \sigma_{m-1}\}$ and the formuls $(A_\rho \cap A_\sigma \cap ff_i\alpha) \Rightarrow \gamma_i^* \quad \gamma_i^* \Rightarrow (A_\theta \Rightarrow ff_i\beta)$ for 0 < i < m are theorems of K. Since f is a mapping from F° onto F, then there are $\gamma_i \in F^\circ$, such that $\gamma_i^* = f(\gamma_i)$, for 0 < i < m. It follows that the formulas $ff_i\alpha \Rightarrow f\gamma_i$, $f\gamma_i \Rightarrow ff_i\beta$ are theorems of K(A), for 0 < i < m. Similarly, as in [2], we have, by applying T. 6., T. 3. in [4], (p_7) in [3] and T. 2., that

$$D_{i}(\alpha) \Rightarrow \gamma_{i} \text{ and } \gamma_{i} \Rightarrow D_{i}(\beta)$$

are theorems of L for 0 < i < m. Let $\gamma'_1 = \gamma_1 \cap \ldots \cap \gamma_i$ then

- (I) $\gamma_i' \Rightarrow \gamma_{i-1}'$, for 1 < i < m, and
- (II) $D_i \alpha \Rightarrow \gamma_i'$ and $\gamma_i' \Rightarrow D_i \beta$ for 0 < i < m,

are theorems of L. Let γ be the formula

$$(\gamma_1' \cap e_1) \cup \ldots \cup (\gamma_i' \cap e_i)$$
 for $0 < i < m-1$, and $(\gamma_1' \cap e_1) \cup \ldots \cup (\gamma_{m-1}' \cup e_{\omega})$ for $i = m-1$.

By (I), (II) T. 5., T. 2. if follows that $D_i(\alpha) \Rightarrow D_i(\gamma)$, $D_i(\gamma) \Rightarrow D_i(\beta)$ are theorems of L, for 0 < i < m. By $|p_3|$ in [3] and T. 3. we have that $\alpha \Rightarrow \beta$ and $\gamma \Rightarrow \beta$ are theorems in L. A similar proof holds in general.

REFERENCES

- Kreisel, G., Krivine, J. I., Elements of Mathematical logic-model Theory, North-Hollannd, 1967.
- [2] Rasiowa, H., The Craig interpolation Theorem for m-valued predicate culuculi, Bull. Ac. Pol. Sci., Ser. Sci. Math. Astr. Phys. 20 (1972), pp. 341-346.
- [3] Rasiowa, H., Mixed-Valued predicate calculi, Studia Logic 34, (1975), pp. 215-234.
- [4] Vojvodić, G., Some Theorems for model theory of mixed-valued calculi, Publ. Inst. Math. 23 (37), 1978, pp. 229-234.

INTERPOI ACIONA TEOREMA KREJGA ZA RAZNOVREDNOSNI PREDIKATSKI RAČUN

Gradimir D. Vojvodič

REZIME

U radu je dokazana teorema analogna Interpolacionoj teoremi Krejga, za raznovrednosn predikatski račun.