

Преглед НЦД 37 (2020), 46–51

Aleksandar Veljković
Faculty of Mathematics, University of Belgrade, Serbia

ALGORITHM FOR DOCUMENT AUTHORSHIP IDENTIFICATION AND
PLAGIARISM EVALUATION BASED ON GENERALIZED SUFFIX TREE

Abstract. Identifying an author of an anonymous text document is an important problem when
dealing with historical data. As authors have their own characteristic writing styles, expressed through
specific phrases, sentence constructions or word choices, their text documents incorporate the style and create
implicit connection with the author. This paper proposes an approach for identification of authors of the
anonymous documents, based on generalized suffix tree data structure and defined similarity score, suitable
for analysis of digitized historical text documents. The following method can also be used for detecting and
evaluating plagiarism, where the document author is known, but the document shows a high similarity with
documents from another author.

1. Introduction

When an anonymous historical text document is discovered and digitized, finding an author
of the document is not a trivial task. For solving this problem, the base requirement is to
provide a database of text documents from potential authors, against which the new
document can be compared. Second requirement is defining a similarity scoring function
which will evaluate similarity between the anonymous document and documents stored in
the database. Another issue that may appear when analyzing digitized historical documents
is that some parts of text may not be readable or simply missing so the similarity measure
should be robust and account for the missing text parts. To successfully query a database of
text documents, it is necessary to provide an efficient indexing data structure. The data
structure proposed in this paper for indexing a large database of text documents is
generalized suffix tree.

Linear space and time algorithms for suffix tree construction introduced efficient
approaches for text data analysis in various research domains [1]. The suffix tree is an
alphabet agnostic data structure, suitable for applications in the domain of natural language
processing [2, 3], as it can execute pattern matching queries on multiple text documents in
linear time [4]. Pattern matching queries on generalized suffix trees provide references to
all documents where a specific pattern has been found, which is used when comparing the
amount of text shared between a new text document and the database of text documents
indexed with the tree. Ukkonen's algorithm [5] for construction of suffix trees has an on-
line property that enables extensions of the existing trees with indices of new documents.

Suffix trees can be used for calculating similarity scores between text documents
[6]. Similarity measure proposed in this paper is based on lengths of continuous exact text
matches between the query document and indexed document. The similarity score is then
used to determine which documents are the most similar to the anonymous query

A.Veljković 47

document. The author of the majority of the most similar documents is identified as the
author of the anonymous document. It is important to note that the proposed similarity
measure is asymmetric, due to differences in lengths of documents. The same measure can
be used to evaluate plagiarism, as the plagiarism of a document with a known author is
reflected in high similarity between documents with different authors. Special case of
plagiarism is auto-plagiarism, where an author plagiarized his own texts.

Plagiarism in general is not easily detected as the high similarity can be achieved
not only by copying exact parts of text from other documents, but the copied parts can be
rephrased, arranged in different order or substituted with synonymous words, keeping the
same meaning of text but not easily recognizable by the machine as a plagiarism [7]. There
are approaches for evaluating plagiarism of natural language text on a semantic level using
deep learning [8] but also using suffix trees for programming code plagiarism [9].

Algorithm proposed in this paper is based on generalized suffix trees and it is easily
adaptable for any language. As the plagiarism doesn't often occur in the entire document,
but only in specific sentences, proposed algorithm accounts for that by calculating
similarity on unit level, where the unit can be any logically separated text block.

Complete authorship identification process consists of four steps. First step is data
preprocessing, which prepares text documents for the analysis. Second step is construction
of a generalized suffix tree, containing indices of all database documents. Third step is
pattern matching and similarity scoring of anonymous text against database documents
using the previously constructed suffix tree. The final, fourth step is authorship
identification of the anonymous document based on computed similarity with database
documents.

2. Data preprocessing

As digitized text documents often come in forms of scanned images of photographs, the
initial preprocessing step is optical character recognition and transformation of documents
into text format. Text documents are then split into smaller units, such as chapters,
paragraphs or sentences. Every unit receives a unique identifier which contains reference to
source document and unit order number. Units are then split into separate words,
transformed to lowercase and cleaned from interpunction. To account for diversity of
different word forms with the same stem, words are stemmed using language specific
stemmer. Additionally, language specific stop words are removed. Units are represented as
sequences over an infinite alphabet of word stems. To account for synonymous words,
multiple stems are mapped to one stem that will represent a group of its synonyms. Defined
preprocessing steps improve quality of plagiarism evaluation when dealing with translated
parts of text from different languages.

3. Tree construction and pattern matching

Let Sbe a sequence of length n symbols from alphabet W. Suffix Sk with length k of
sequence S is defined as a subsequence of consecutive elements from position n-k to n. All
sequence suffixes are used to construct suffix tree data structure that contains all sequence
suffixes as unique paths from suffix tree root to leaves. To address the problem of
ambiguity that appears when one suffix is a prefix of another suffix, all suffixes are
terminated using the alphabet character unique to every suffix. Suffixes of multiple

48 A.Veljković

sequences can be joined into a single generalized suffix tree, having each suffix information
extended with source sequence reference. All text document units are indexed in
generalized suffix tree structure.

Every path from tree root contains information about unit identifiers and suffix
position within the unit. Exact pattern matching using suffix trees is done by matching a
pattern with prefixes of indexed suffixes starting from the root node. Once the pattern is
matched, references stored with every matched suffix, give the information about the units
that contain the matched pattern. When using word stems as alphabet symbols, equality
between two symbols assumes that the entire sequences of stem characters from both
symbols are matched. When querying a suffix tree of document units, it is required to
preprocess the query sequence in the same way as the units are preprocessed for the tree
construction.

4. Similarity measure

Similarity between documents can be calculated by computing a number of shared words
between documents. For that purpose, Sørensen–Dice coefficient [10, 11] can be used, as
the documents are represented as word sets. [12] This approach would result in the same
similarity score independent from the ordering of words, which may not reflect semantic
similarity. Proposed solution to this problem is a similarity measure that results with a score
proportional to the length of the sequences matched between documents, consisting of
potentially multiple words in the correct order.

For example, let the query text be a sentence “The given tree is constructed using
Ukkonen’s algorithm”. Let the database contain sentences DB1: “Suffix trees are
constructed according to Ukkonen’s algorithm” and DB2: "Given algorithm construction
is based on suffix tree matching algorithm". When the units are preprocessed by the
methods defined in section 2., they are transformed into:

Query: ["given", "tree", "construct", "ukkonen", "algorithm"]

DB1: ["suffix", "tree", "construct", "accord", "ukkonen",
 "algorithm"]

DB2: ["given", "algorithm", "construct", "bas", "suffix",
"tree",
 "match"]

Similarity between query and database sentences, using Sorensen-Dice coefficient, will
result in the same score between query sentence and database sentence 1 (DB1) as well as
between query and database sentence 2 (DB2). The query sentence shares exactly 4 stems
with each database sentence. Although scores are the same, the meanings of database
sentences are different and the correct score should reflect those differences.

Adding a weight function, with values proportional to the number of consecutively
matched words in a sentence, results in a higher score for longer sequences of consecutive
matches. In a simplest form, adding weight function w, with values equal to the number of
words in consecutive matches, database sentence 1 will result in a greater score than
database sentence 2, reflecting the fact that unit 1 is more similar in meaning with the query
sentence than it is the case with database sentence 2. Weightcan be defined as any

A.Veljković 49

monotonically increasing function of consecutive match length, such are certain
polynomials, logarithms or exponentials.

Similarity between any two text units should be interpretable and comparable,
achieving the highest value when all the symbols from one unit are identical to and in the
same order as the symbols in the other unit. To achieve those properties, all match scores
between two units are summarized and normalized by dividing with the value of the
selected weighting function for the input parameter being the length of the query unit.

����������(�, �) =
∑ ����ℎ������(�, �)�

���

�(|�|)

 Normalized similarity values between two units are now in range [0,1]. One unit

can have matches with multiple units. Aggregated similarity score for all matches can be
calculated as an average or maximum over all similarity score values with other units and it
is labeled as unit similarity.

��������������(�) = ���� ����������(� , ���)

or

��������������(�) =
1

�
� ����������(�, ���)

�

���

Finally, the document similarity score is calculated as the sum of unit scores for all

of its uncited units, divided by the number of uncited units in the document. Document
similarity scores are also in range [0,1], with value 0 being associated with a document
with no similarities with any database document and 1 representing score of a document
whose units are all stored in the database.

������������������ =
1

|�|
� ��������������(��)

|�|

��0

5. Implementation and Verification

The algorithm has been implemented using Python programming language and has been
tested on a small dataset of digitized documents from eLibrary hosted by the Faculty of
Mathematics. Stemmer described in [13], adapted for the Python programming language in
[14], was used for stemming words of Serbian language. The preliminary results encourage
further testing on a larger dataset. Testing should be done on a corpus of at least 100000
sentences by 5 different authors indexed using the generalized suffix tree. Furthermore,
selected 1000 sentences, by the same authors, that are not indexed, should be used for
authorship identification. Different weighting functions will be tested. For getting the
source code of the algorithm, please contact the author.

50 A.Veljković

6. Conclusion

Presented algorithm and similarity measure utilizes the benefits of suffix tree data structure
with its fast construction and pattern matching algorithms and demonstrates an efficient
approach for authorship identification, similarity and plagiarism evaluation, applied on
digitized historical text documents. The presented algorithm can be adapted for any natural
language. Further improvements may include alphabet symbol comparison based on
different alignment scores, instead of equality comparison, and assignment of specific
weights for matches of specific symbols. Testing phase will give a clearer picture on
potential bottlenecks of the algorithm and display more potential directions for further
improvements.

References

[1] Grossi, Roberto, "Suffix Trees and their Applications in String Algorithms",
https://www.researchgate.net/publication/2457466_Suffix_Trees_and_their_Applications_i
n_String_Algorithms (1997).
[2] Kennington, Annemarie, "Suffix Trees as Language Models.", Proceedings of the
Eighth International Conference on Language Resources and Evaluation (LREC2012),
European Language Resources Association (ELRA), (2012): 446–453
[3] Shareghi, Trevor. "Compact, Efficient and Unlimited Capacity: Language Modeling
with Compressed Suffix Trees." Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing. Association for Computational Linguistics,
(2015):2409–2418.
[4] Weiner, Peter "Linear Pattern Matching Algorithm". Proc 14th IEEE Symp Switching
and Automata Theory. 1-11. 10.1109/SWAT.1973.13., (1973)
[5] Ukkonen, E., "On-line construction of suffix trees." Algorithmica 14 (2005): 249–260.
[6] Chim, Hung & Deng, Xiaotie, "A new suffix tree similarity measure for document
clustering." 16th International World Wide Web Conference, WWW2007, (2007):121–130,
doi:10.1145/1242572.1242590.
[7] Maurer, Hermann A., Frank Kappe, Bilal Zaka, "Plagiarism-A survey." J. UCS 12.8
(2006): 1050–1084.
[8] D. Suleiman, A. Awajan, and N. Al-Madi, "Deep Learning Based Technique for
Plagiarism Detection in Arabic Texts.", 2017 International Conference on New Trends in
Computing Sciences (ICTCS), (2017):216–222
[9] Joy, M. and Michael Luck, “Plagiarism in programming assignments”, IEEE
Transactions on Education 42 (1999): 129–133.
[10] Sørensen, T., "A method of establishing groups of equal amplitude in plant sociology
based on similarity of species and its application to analyses of the vegetation on Danish
commons", Kongelige Danske VidenskabernesSelskab. 5 (4), (1948): 1–34.
[11] Dice, Lee R, "Measures of the Amount of Ecologic Association Between Species",
Ecology 26, no. 3, (1945):297–302, doi:10.2307/1932409.
[12] Taerungruang, Supawat, and Wirote, Aroonmanakun, "Constructing an Academic Thai
Plagiarism Corpus for Benchmarking Plagiarism Detection Systems", GEMA Online
Journal of Language Studies 18, (2018): 186–202.
[13] Vuk Batanović, Boško Nikolić, Milan Milosavljević, "Reliable Baselines for
Sentiment Analysis in Resource-Limited Languages: The Serbian Movie Review Dataset",

A.Veljković 51

Proceedings of the 10th International Conference on Language Resources and Evaluation
(LREC 2016), Portorož, Slovenia (2016):2688–2696.
[14] Milosevic, N. "Stemmer for Serbian language", arXiv preprint, arXiv
(2012):1209.4471

aleksandar@matf.bg.ac.rs

