
Преглед НЦД 23 (2013), 44–50

Djordje Djordjević
University Niš
Srbislav Nešić
Construction Cluster Dundjer, Niš

DAPHNIA BIO-SENSOR DATA TRACKING,
RECORDING, AND RANDOM GENERATION

Abstract. One of the most used bioassays for toxicity screening of chemicals and for toxicity monitoring of ef-
fluents and contaminated waters is the acute toxicity test performed with Daphnia Magna. Standard methods
have been developed and gradually improved by national and international organizations dealing with toxicity
testing procedure, in view of its application within a regulatory framework. As for all toxicity tests, the organ -
isms used for the acute Daphnia magna assay have to be obtained from live stocks which are cultured in the lab -
oratory on live food (micro-algae). The technical and biological problems inherent in year-round culturing and
the culturing/maintenance costs of live stocks restricts its application to a limited number of highly specialized
laboratories. This bottleneck in toxicity testing triggered investigations forward the concept of “microbiotests”
or “small-scale” toxicity tests.
This paper deals with the measurement of changes in the behavior of Daphniae using device BIOTOXI-
NOMER, awarded by Ministry for Science and Technological Development of Republic Serbia with Diploma
for best Innovation idea in year 2010 in category Medicine, Health, and Ecology. Actually, the main topic is dig-
italization of bio-monitoring results and random number generating on the base of Daphniae movement (dis-
tance). The on-line monitoring is available on site www.dundjer.co.rs/Daphniae and open-source software sup-
port is available on the same site.
 Keywords. Bio-sensoring, Water quality, Random number generator.

1 Basic working principle of device
BIOTOKSINOMER is the device for water quality control using small water crustacean –
(shrimp) Daphnia, named water flea (Fig. 1.), which is very sensitive to the presence of toxins
in the water and therefore informs and warns in real time on presence of toxins in water.

Fig.1. Daphnia

http://www.dundjer.co.rs/Daphniae

Djordje Djordjević, Srbislav Nešić

The innovation of the device is in the function of real time identification and early warning
system for bad quality of drinking and river water, what is realised by implementation of
device on the entrance of raw water into water purification plant or entry of waste water into
the river, or using bypass for taking river water for Daphnia test. In that way this unique
device provides on-line 24-hour monitoring of water quality or identification the presence of
dangerous substances in water. The device achieves it in a quick, inexpensive and ecologic-
ally acceptable way. If Daphnia can survive in test water, then the water is safe for humans
and water animals. If Daphnia dies (or only reduce movement), it means that water is in some
way contaminated. This water test is quality water test which should be followed by quantity
test (chemical analysis) after any indications of contamination, i.e. presence of toxins.

"Biotoksinomer" works through a simple and cheap hardware and complex and soph-
isticated software. The real core of the device is an unique software that has the ability to per-
ceive the death of Daphniae in real time (by counting them) or indicate slower activity (move-
ment) of Daphniae and immediately informs the competent.

The device consists of bioassay with 2 chambers, one with a control group Daphnia,
which is located in stable water conditions (conditions that are imitating Daphnias natural en-
vironment) and the second chamber through which flows constantly raw water, with desired
dynamics, before treatment into the drinking water, that contains Daphnia testing group (Fig.
2).

Fig. 2. Biotoksinomer

Using simple web camera and own designed software, this system is at least 10 times cheaper
than similar devices (using infra-red rays camera). This camera in a short period of time
(every 300-500 msec. or even 1 sec.), round a clock (24 hours a day) shoots and records
Daphnia position, number, size, and movement in chambers. Actually, software performs the
analysis of successive photographs captured by webcam, and monitors the number, size and
mobility of Daphnia. When the numbers of live Daphnia in the test chamber falls below 50%
or more (limit determined by European Daphnia test of toxicity, EC50), the alarm is activated
in order to inform that raw water is not correct for the standard treatment into the drinking

45

Djordje Djordjević, Srbislav Nešić

water (because of the presence of toxic substances), or that waste water is polluted, or that
river water is dangerous for river life, i.e. river ecosystem.

The data is automatically sent to the server, and by SMS or the Internet to the authorities that
are in charge to switch off the flow of water. Then it is necessary immediately to switch off
the supply of raw water to treatment plant because the water contains some toxin(s) that
caused the death (or immobility) of Daphnia. The software automatically sends data to the
server and graphically displays the state of Daphnia in the last 24 hours, and throughout the
year, what can be monitored online via Internet.

The program could be given the thresholds so that when the number of “fleas” is not
into the given interval, the alarm is activated. Quiet alarm is red light on the desk. Sound
alarm is emitted by small PC loud speakers. In addition, there is a Skype alarm where PC
sends the messages to enlisted users and e-mail alarm with sending e-mails to pre-defined ad-
dresses. With installed GSM Gateway program, PC could send additional SMS alarm or ne-
cessary information. The data collected from all measure stations are stored on server and
presented on its WEB page. There is also a possibility to send current (real-time) and period-
ical reports to distinct addresses in a different way (e-mail, Skype, SMS).

In addition to WEB report, using developed software - client application, it is possible to
reach all the data from any measure point and get miscellaneous reports, control the measure
stations on distance, or simple get measure data for own analysis.

2 Data Tracking and Recording

Web camera is shutting the aquarium round o clock, in distinct period of time (300 ms, 600
ms, or 1sec), depending on camera and Daphnia state. After first shutting, we have gray scale
picture given in upper part of Fig. 3.

46

Djordje Djordjević, Srbislav Nešić

Fig.3. First taken picture (upper part), next (middle part), superimpose (lower part)

The Daphnia coordinates and magnitude (in pixels) are recording in SQL data base. The next
picture is taken after some delay, what is in this case given in middle part of Fig. 3.
The position and magnitude are recorded in the same way as from previous picture. The out-
put file with recorded data before and after move, is given in Fig. 4.

UTC 2010.09.13 16:19:00.000 --- before move:

 1. 9 (600,348)-(602,351) [3 x 4]
 2. 9 (316,386)-(319,389) [4 x 4]
 3. 9 (210,390)-(213,393) [4 x 4]
 4. 10 (335,137)-(338,139) [4 x 3]
 5. 10 (314,364)-(317,367) [4 x 4]
 6. 10 (245,330)-(247,334) [3 x 5]
 7. 11 (312,308)-(314,311) [3 x 4]
 8. 12 (296, 7)-(300, 9) [5 x 3]
 9. 12 (317,411)-(321,415) [5 x 5]
 10. 14 (225,383)-(228,388) [4 x 6]
 11. 15 (256,382)-(260,386) [5 x 5]
 12. 16 (284, 44)-(287, 47) [4 x 4]
 13. 17 (308,232)-(311,238) [4 x 7]
 14. 18 (22,416)-(27,420) [6 x 5]
 15. 18 (299, 96)-(302,101) [4 x 6]
 16. 18 (282,414)-(287,418) [6 x 5]
 17. 22 (288,394)-(292,403) [5 x 10]
 18. 22 (232,356)-(237,361) [6 x 6]
 19. 22 (285,304)-(288,310) [4 x 7]
 20. 24 (216,399)-(220,404) [5 x 6]
 21. 24 (445,366)-(450,370) [6 x 5]
 22. 25 (311,288)-(315,294) [5 x 7]
 23. 26 (345,364)-(350,370) [6 x 7]
 24. 26 (210,293)-(214,299) [5 x 7]
 25. 27 (284,339)-(289,346) [6 x 8]

UTC 2010.09.13 16:19:01.000 --- after move:

 1. 9 (312,327)-(316,329) [5 x 3]
 2. 9 (300,257)-(303,259) [4 x 3]
 3. 9 (255,245)-(258,248) [4 x 4]
 4. 10 (296,226)-(298,229) [3 x 4]
 5. 11 (374,378)-(378,380) [5 x 3]
 6. 11 (381, 56)-(383, 60) [3 x 5]
 7. 11 (276,417)-(279,420) [4 x 4]
 8. 11 (303, 83)-(305, 87) [3 x 5]
 9. 12 (288, 44)-(292, 48) [5 x 5]
 10. 12 (259,234)-(261,238) [3 x 5]
 11. 12 (226,316)-(229,320) [4 x 5]
 12. 14 (309,223)-(313,227) [5 x 5]
 13. 14 (214,411)-(217,415) [4 x 5]
 14. 16 (283,381)-(285,387) [3 x 7]
 15. 17 (306,155)-(311,158) [6 x 4]
 16. 18 (234,392)-(238,396) [5 x 5]
 17. 18 (289,401)-(293,405) [5 x 5]
 18. 19 (205,282)-(208,288) [4 x 7]
 19. 20 (299, 44)-(302, 49) [4 x 6]
 20. 20 (310,281)-(314,287) [5 x 7]
 21. 21 (294,291)-(300,296) [7 x 6]
 22. 22 (472,369)-(477,374) [6 x 6]
 23. 23 (298, 20)-(302, 26) [5 x 7]
 24. 24 (340,380)-(346,385) [7 x 6]
 25. 24 (286,344)-(289,351) [4 x 8]

47

Djordje Djordjević, Srbislav Nešić

 26. 27 (278,278)-(282,285) [5 x 8]
 27. 27 (272,390)-(277,396) [6 x 7]
 28. 29 (634,129)-(639,135) [6 x 7]
 29. 31 (260,244)-(263,252) [4 x 9]
 30. 31 (298,343)-(304,349) [7 x 7]
 31. 35 (204,336)-(209,344) [6 x 9]
 32. 36 (290,369)-(297,377) [8 x 9]
 33. 38 (265, 4)-(272, 10) [8 x 7]
 34. 40 (240,235)-(245,243) [6 x 9]
 35. 41 (480,366)-(488,373) [9 x 8]
 36. 45 (311,343)-(317,351) [7 x 9]
 37. 46 (251,232)-(257,241) [7 x 10]
 38. 46 (505,207)-(511,215) [7 x 9]
 39. 49 (285,317)-(290,327) [6 x 11]
 40. 52 (361,356)-(368,364) [8 x 9]
 41. 75 (275, 6)-(282, 18) [8 x 13]
 42. 95 (300,326)-(315,337) [16 x 12]

 26. 25 (288, 0)-(296, 3) [9 x 4]
 27. 25 (610,132)-(615,138) [6 x 7]
 28. 26 (262,416)-(266,422) [5 x 7]
 29. 26 (215,325)-(220,331) [6 x 7]
 30. 29 (273,395)-(279,401) [7 x 7]
 31. 30 (246,362)-(250,369) [5 x 8]
 32. 31 (308,410)-(313,420) [6 x 11]
 33. 34 (285, 27)-(290, 34) [6 x 8]
 34. 35 (300,365)-(308,370) [9 x 6]
 35. 36 (305,164)-(310,173) [6 x 10]
 36. 37 (273,284)-(277,292) [5 x 9]
 37. 37 (237,218)-(242,226) [6 x 9]
 38. 38 (512,206)-(517,215) [6 x 10]
 39. 38 (389,364)-(394,371) [6 x 8]
 40. 50 (349,366)-(356,372) [8 x 7]
 41. 51 (279,312)-(284,322) [6 x 11]
 42. 52 (257,204)-(262,214) [6 x 11]
 43. 53 (303,320)-(311,329) [9 x 10]
 44. 73 (307,334)-(317,347) [11 x 14]
 45. 86 (261,382)-(273,394) [13 x 13]
 46. 86 (272,403)-(282,415) [11 x 13]
 47. 126 (281, 8)-(299, 21) [19 x 14]

Fig. 4. Data recording before and after Daphniae move

Comparison of successive photos given in upper and middle part in Fig. 3 gives resulting pho-
to with Daphnias before move (blue) and after move (red), and their superimpose gives pic-
ture presented in the lower part of Fig. 3.

That algorithm enables immediately counting of Daphniae. In the left down corner of
superimposed picture are given time and number of Daphniae. In the right down corner of
picture is given random number generated by position of Daphniae. The resulting graphic,
with numbers of Daphnia in last 24 hours and trend with standard deviation in last hour is giv-
en in Fig. 5.

48

Djordje Djordjević, Srbislav Nešić

Fig. 5. Round-o-clock number of Daphniae

The data recording round-a-clock for all period the laboratory is working (more than one
year) are available on server. SQL data base with cloud technology will enable accessibility to
the data globally. The graphic presentation of number of Daphniae in bioassay for longer peri-
od of time (in this case, one year), with trends which enable stronger analysis of different in-
fluence factors, is also available.

3 Bio-Random Number Generator

It is often to use linear congruent method that for one random number computes next number
as x i+1=(x ia+c)mod m . Because it always holds 0≤x<m , then 0≤x /m<1 , so that ran-
dom number is in interval (0,1) . The value x0 is called seed of random number. Random
number generator of hypothetical processor MMIX, which works with 64 bits, has a constants
a=6364136223846793005 , c=1442695040888963407 , and m=264 , what is given in
the following code.

type octa=int64;
var seed:octa=0;
const
 mmixa=6364136223846793005; //$5851F42D4C957F2D
 mmixc=1442695040888963407; //$14057B7EF767814F

function nextseed:octa;
begin
 seed:=seed*mmixa+mmixc;
 result:=seed;
end;

In a similar way it is possible to calculate previous random number x i=(xi+1b+d)mod m .
Herewith we have ((x ia+c)b+d)mod m=(x iab+cb+d)mod m . In order to hold for every
x , it must be ab=1mod m and mdcb mod−= . Of course, it holds
x i=((xib+d)a+c)mod m , wherefrom follows da=−c modm . Next procedure will com-

pute the corresponding values for a and c , b=−4568 919 932 995 229 531 and
d=−7 379 792 620 528 906 219 .

procedure inversion(a,c:octa;var b,d:octa);
var m:octa;
begin
 b:=0;d:=1;m:=0;
 while d<>0 do begin
 m:=m or d;
 if(a*b and m)<>1 then b:=b or d;
 d:=d shl 1;
 end;
 d:=-c*b;
end;

This procedure will compute the previous value of seed:

const
 mmixb=-4568919932995229531; //$C097EF87329E28A5
 mmixd=-7379792620528906219; //$9995B5B621535015

function prevseed:octa
begin

49

Djordje Djordjević, Srbislav Nešić

 seed:=seed*mmixb+mmixd;
 result:=seed;
end;

Regardless of using functions nextseed or prevseed, it is the same generator. The same series
of numbers will be generated, but direction depends on function choice. For this purpose, the
direction will be defined by logical variable direction.

var direction:boolean=true;

function calcseed:octa;
begin
 if direction
 then result:=nextseed
 else result:=prevseed;
end;

The whole code of random number generator using as a seed Daphnia movement is given in
Appendix.

4 Conclusion
The most important advantage of BIOTOKSINOMER is its prevention function, i.e. prevent-
ing the negative consequences of delay of results of standard methods for water quality exam-
ination. The standard methods usually give late results because taking water samples in dis-
continuity, in periods of time. Water sampling for BIOTOKSINOMER is continuous and test-
ing proceeds 24 hours a day. Besides, standard methods demand expensive equipment and re-
agents, high qualified staff, and they are time consuming. Until results of standard analyses
reach the responsible persons, water is already consumed (humans, fish, biosphere) and toxins
are spreading through organisms. BIOTOKSINOMER solves this problem in quick, cheap,
and ecologically efficient way.

Acknowledgement
The device described here has been awarded from Ministry of Science and Technology of Re-
public Serbia by Diploma for the Best Innovation Idea in the field of Medicine, Health, and
Environment in the year 2010. This work is in part supported by the Serbian Ministry of Edu-
cation and Science (research projects III44006 and TR37003).

References
Knuth, D.E.: The Art of Computer Programming, Addison-Wesley, 1969, vol. 2, pp. 1-160.

Djordjević, Dj., Ignjatović, L.,Nešić, S.: “Biotoksinomer” – A Bio-Device for Water Quality Control,
International Conference “Innovation as a Function of Engineering Development”, Faculty of Civil
Engineering and Architecture, Niš, November 25-26, 2011, Proceedings, pp. 91-96.

DJOKA@NI.AC.RS
SrbaNesic @gmail.com

50

mailto:SrbaNesic@gmail.com
mailto:djoka@ni.ac.rs

Djordje Djordjević, Srbislav Nešić

Appendix

unit Nasumica64;

interface

uses classes,idhttp;

type octa=int64;

function rdtsc:octa;
procedure gethttp(url:string;var buf;len:octa);
function getocta(url:string):octa;
function daphniae:octa;

procedure inversion(a,c:octa;var b,d:octa);

var
 seed:octa=0;
 direction:boolean=true;

procedure deadseed;
procedure liveseed;

function nextseed:octa;
function prevseed:octa;
function newseed:octa;
function oldseed:octa;

function uniform:extended; overload;
function uniform(p:extended):extended; overload;
function uniform(p,q:extended):extended; overload;
function anyangle:extended;
function anybyte:byte;
procedure enigma(var s:string);

function exponential:extended; overload;
function exponential(lambda:extended):extended; overload;
function geometric(p:extended):integer;
function normal:extended; overload;
function normal(mu,sigma:extended):extended; overload;
function poisson(lambda:extended):integer;
function chisquare(k:integer):extended;
function studentt(mu:extended;nu:integer):extended; overload;
function studentt(nu:integer):extended; overload;
function snedecorf(d1,d2:integer):extended;

function discrete(n:integer):integer;

51

Djordje Djordjević, Srbislav Nešić

function shuffle(s:string):string;
function ordered(n:integer):string;
function permutation(n:integer):string;
function carddeck:string;
function bingodrum:string;
function tomboladrum:string;
function kenodrum:string;

implementation

function rdtsc:octa; assembler;
asm db 0fh,31h end;

procedure gethttp(url:string;var buf;len:octa);
var
 w:tidhttp;
 s:tmemorystream;
begin
 s:=tmemorystream.create;
 w:=tidhttp.create(nil);
 if len>0 then w.request.contentlength:=len;
 try
 w.get(url,s);
 finally
 s.seek(0,0);
 s.read(buf,len);
 end;
 w.free;
 s.free;
end;

function getocta(url:string):octa;
begin
 gethttp(url,result,sizeof(result));
end;

function daphniae:octa;
begin
 result:=getocta('http://www.dundjer.co.rs/daphniae/liveseed.dat');
end;

procedure inversion(a,c:octa;var b,d:octa);
var m:octa;
begin
 b:=0; d:=1; m:=0;
 while d<>0 do begin
 m:=m or d;
 if (a*b and m)<>1 then b:=b or d;

52

Djordje Djordjević, Srbislav Nešić

 d:=d shl 1;
 end;
 d:=-(c*b);
end;

procedure deadseed;
begin
 seed:=rdtsc;
end;

procedure liveseed;
begin
 seed:=daphniae;
end;

function nextseed:octa;
const
 a=6364136223846793005; //$5851F42D4C957F2D
 c=1442695040888963407; //$14057B7EF767814F
begin
 seed:=seed*a+c;
 result:=seed;
end;

function prevseed:octa;
const
 b=-4568919932995229531; //$C097EF87329E28A5
 d=-7379792620528906219; //$9995B5B621535015
begin
 seed:=seed*b+d;
 result:=seed;
end;

function newseed:octa;
begin
 if direction
 then result:=nextseed
 else result:=prevseed;
end;

function oldseed:octa;
begin
 if direction
 then result:=prevseed
 else result:=nextseed;
end;

function uniform:extended;

53

Djordje Djordjević, Srbislav Nešić

const eps=1/4294967296/4294967296;
begin
 result:=newseed*eps;
 if result<0 then result:=result+1;
end;

function uniform(p:extended):extended;
begin
 result:=p*uniform;
end;

function uniform(p,q:extended):extended;
begin
 result:=p+uniform(q-p);
end;

function anyangle:extended;
begin
 result:=uniform(2*pi);
end;

function anybyte:byte;
begin
 result:=newseed shr 56;
end;

procedure enigma(var s:string);
var
 o:octa;
 i:integer;
begin
 o:=seed;
 for i:=1 to length(s) do
 s[i]:=chr(ord(s[i]) xor anybyte);
 seed:=o;
end;

function exponential:extended;
begin
 result:=-ln(1-uniform);
end;

function exponential(lambda:extended):extended;
begin
 if lambda>0
 then result:=exponential/lambda
 else result:=0;
end;

54

Djordje Djordjević, Srbislav Nešić

function geometric(p:extended):integer;
begin
 if (0<p) and (p<1)
 then result:=trunc(exponential(-ln(1-p)))
 else result:=0;
end;

function normal:extended;
begin
 result:=sqrt(2*exponential)*cos(anyangle);
end;

function normal(mu,sigma:extended):extended;
begin
 result:=mu+sigma*normal;
end;

function poisson(lambda:extended):integer;
begin
 result:=-1;
 repeat
 result:=result+1;
 lambda:=lambda-exponential;
 until lambda<=0;
end;

function chisquare(k:integer):extended;
var i:integer;
begin
 result:=0;
 for i:=1 to k do result:=result+sqr(normal);
end;

function studentt(mu:extended;nu:integer):extended;
var v:extended;
begin
 if nu>0 then begin
 repeat v:=chisquare(nu) until v<>0;
 result:=(normal+mu)*sqrt(nu/v);
 end else result:=0;
end;

function studentt(nu:integer):extended;
begin
 result:=studentt(0,nu);
end;

55

Djordje Djordjević, Srbislav Nešić

function snedecorf(d1,d2:integer):extended;
begin
 if (d1>0) and (d2>0)
 then result:=(chisquare(d1)*d2)/(chisquare(d2)*d1)
 else result:=0;
end;

function discrete(n:integer):integer;
begin
 if n>0
 then result:=trunc(uniform*n)+1
 else result:=trunc(uniform*(1-n));
end;

function shuffle(s:string):string;
var
 i,j:integer;
 c:char;
begin
 for i:=length(s) downto 2 do begin
 j:=discrete(i);
 c:=s[i]; s[i]:=s[j]; s[j]:=c;
 end;
 result:=s;
end;

function ordered(n:integer):string;
var i:integer;
begin
 result:='';
 for i:=1 to n do result:=result+chr(i);
end;

function permutation(n:integer):string;
begin
 result:=shuffle(ordered(n));
end;

function carddeck:string;
begin
 result:=permutation(52);
end;

function bingodrum:string;
begin
 result:=permutation(75);
end;

56

Djordje Djordjević, Srbislav Nešić

function tomboladrum:string;
begin
 result:=permutation(90);
end;

function kenodrum:string;
begin
 result:=permutation(80);
end;

initialization

deadseed;

end.

57

