
Преглед НЦД 21 (2012), 34–40

Georgios Drakakis
13 Thornton Road, Bebington, Wirral,
CH63 5PN, UK
Mícheál Mac an Airchinnigh
School of Computer Science and Statistics
University of Dublin, Trinity College,
Dublin 2, Ireland

COMPUTER GENERATED MUSIC FOR
AN INTERACTIVE VIRTUAL MUSICAL INSTRUMENT

Abstract: In this paper we introduce an Interactive Virtual Musical Instrument that plays computer generated
music notes. The approach taken for implementing the virtual instrument is based on unique marker tracking in
the real world using live video feed. The relationship between music pitches and frequencies is discussed and
analysed, as well as the complex behaviour that derives from simple models, such as cellular automata. Music
notes are generated using both sine waves and cellular automata, and later used as the sounds played by the In-
teractive Virtual Musical Instrument.

Keywords: Cellular automata, marker, QR code, virtual musical instrument

1. Introduction

Music is merely one of the areas experiencing daily breakthroughs because of the use of com-
puters. It is evident that computer generated music using mathematical models is taking music
to a different level. For this paper, however, we combine such music with an interactive vir-
tual musical instrument. The once unlikely scenario of a computer playing music due to an
individual pressing on a piece of paper is implemented with the use of unique marker track-
ing. The instrument plays two different types of music notes; one generated with the use of
cellular automata, the other using sine waves.

2. Background

Even though there are theoretically infinite sounds, the human ear cannot pick up the subtle
difference between two similar frequencies. It was therefore necessary to splice sound –a con-
tinuous measure- into discrete pitches or frequencies, which are today’s music notes. A rather
interesting and useful property of sound is that it repeats itself; therefore discrete frequencies
sound identical at higher and lower pitches when the frequency is doubled or halved respec-
tively. Ergo, the international notation A, B, C, D, E, F, G, A, B, C...

A Cellular Automaton is a discrete model which consists of a collection of cells on a
grid, each of which has a finite number of potential states or values. The state of each individ-
ual cell is set by applying a rule set to a number of neighbouring cells. This allows the grid to
evolve at discrete time steps [1].

Georgios Drakakis, Mícheál Mac An Airchinnigh 35

Cellular Automata can have any finite number of dimensions, the simplest being the
1D binary Cellular Automaton, for which each cell can only have two different states.
Stephen Wolfram described 1D Cellular Automata that use the “nearest neighbour” rule as
“elementary cellular automata” [2]. However, in “A New Kind of Science”, he admitted that
“there was no indication that simple programs could ever produce behaviour so diverse and
often complex” [3].

The subcategory of Computer Vision which merges the real world with the computer
world is Augmented Reality (AR), allowing the user to be part of an application. AR com-
monly concentrates on graphics by projecting 3D models into live video feed, usually with the
use of 2D marker tracking. For this project we focused on marker tracking. The ARTAG SDK
(www.artag.net) uses 10x10 grid black and white markers; whereas nowadays more complex
markers are widely used for commercial applications, originally known as QR codes
(http://www.denso-wave.com/qrcode/). The two types of markers are indicated in Figure 1.
ARTAG is originally written in C++. However, we used the Goblin XNA wrapper
(http://graphics.cs.columbia.edu/projects/goblin/) for C# in this project.

Figure 1. Left: ARTAG Marker; Right: QR Code

3. Methods and Implementation

In order to achieve optimal results with the virtual instrument, we chose to design it as a series
of equally-sized, equally-spaced, fully aligned keys, somewhat resembling the white keys of a
piano. We also added a button (top right of the virtual instrument) for switching between the
two different types of computer generated sound. The prototype virtual musical instrument is
shown in Figure 2.

Figure 2. The Prototype Virtual Musical Instrument

Georgios Drakakis, Mícheál Mac An Airchinnigh 36

3.1 Music notes from sine waves. The sine Waves represent a single frequency and are there-
fore a simple way to extract music notes. The standard form of the sine function is y (t) = sin
(ωt + θ) where y is a function of time (t), θ is the phase and ω = 2πf, f being the frequency.
Between two consecutive A notes, there are another eleven discrete music notes, each of
which has a corresponding frequency. The frequency of each note is equal to the frequency of
the previous note multiplied by the twelfth root of two. Based on the online Wolfram Demon-
strations Project “The Sound of Sine Waves” [4], after picking a starting note/frequency, we
can calculate as many as we like with the following algorithm:

1. Divide the number of steps chosen to take by twelve.
2. Check if the quotient is larger than zero. This will show whether the note we are
looking for is within the next eleven notes or the notes need to be repeated.
3. Take the remainder of the division and divide it by twelve. This will help us deter-
mine the number of steps to take, with or without the repetition of notes.
4. Set X as the sum of quotient from Step 2 and the fracture from Step 3.
5. Multiply the original frequency by two to the power of X.

Seven notes starting from C were generated using MATHEMATICA and exported as .wav
files in ascending order.

3.2 Music from Cellular Automata. The choice of Cellular Automaton used for this applica-
tion was somewhat arbitrary, as it was solely based on the fact that Rule 30 is Stephen Wolf-
ram’s favourite automaton of all time [5]. As elementary cellular automata rules use two-letter
alphabets, we can plot Rule 30 using black and white squares on a grid with the use of
MATHEMATICA software to show its behaviour (Figure 3). Each row of black and white
squares is one time step. For example, step 9 of Rule 30 (B - Black and W - White) is:
W - B - B - W - B - B - B - B - W - B - B - W - W - B - W - W - W - B - B - B – W

Figure 3. Rule 30 Cellular Automaton visualized using a black and white grid

Figure 4. Left: Individual Lists; Right: Flattened List for Rule 30 Cellular Automaton

Georgios Drakakis, Mícheál Mac An Airchinnigh 37

For each s tep 9, for

oduce sound by playing a list of integers when pro-
vided w

1. Find frequency of the music note required (Section 3.1).
p 1 and round it up to the

The mu .wav files in ascending order.

.3 The interactive virtual musical instrument. The XNA SOUNDEFFECT class was cho-

lin XNA wrapper uses a scene graph to help with the scene manipulation and
renderi

e application begins by capturing live video from a computer’s webcam. It waits for
ten sec

 corner of
the virt

es whether the task assigned to
the ma

tep we now derive a list of ones and zeros instead of black and white. S
instance, becomes: [0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0]. Problems such as
limited variety and small list size can be easily solved by using a large number of steps and
later merging or flattening all lists into one (Figure 4) according to Wolfram Demonstrations
Project “Hearing Cellular Automata” [6].

MATHEMATICA enables us to pr
ith a sample rate. The sample rate can be initially chosen arbitrarily in order to pro-

duce sound depending on the number of integers in the flattened list. However, there is a rela-
tionship between the music note frequency, the number of steps and the sample rate that al-
lows us to generate the specific music note we desire. The sample rate is equal to the product
of the number of steps multiplied by the music notes frequency. Therefore, after three simple
steps we can generate the sound of a specific music note using the Rule 30 Cellular Automa-
ton.

2. Multiply the number of steps by the frequency from Ste
nearest integer. The sample rate must be an integer as we are dealing with indices.
3. Play the list of integers using the sample rate from Step 2 as input for
MATHEMATICA commands.

sic notes were then exported as

3
sen for the construction of the sound manager of the application. The sound manager creates
sixteen new sound effects: seven for the notes generated from sine waves, seven for those
generated using cellular automata and another two for pre-recorded messages that inform the
user which of the two types of notes is in use. The sounds are then loaded into the application
from the Content folder and mapped to the sound effects. The sound effects are played with
the use of a sound instance, which allows multiple and simultaneous calls of the functions that
play the notes.

The Gob
ng [7]. The scene graph consists of various nodes such as the marker node and the

camera node. Goblin XNA allows the addition of nodes to the root node. Each marker is de-
fined in the configuration file (unique ID, name, size, minimum number of points), loaded
into the program as a marker node and finally added to the root node to be included in the ap-
plication.

Th
onds, allowing the user to place the virtual piano within the camera’s range. It then be-

gins to attempt to track all markers that have been and set in the configuration files.
There are seven equally-sized markers in a row and one more in the top right
ual piano. If one of the seven aligned markers is pressed, the application can no longer

track the specific marker and plays the equivalent music note. The duration of each note is
fixed, and the notes pressed will not be played again until the user lifts his or her finger off the
marker. The application assumes that a marker is not tracked only when the user is attempting
to obstruct it by pressing on it. The marker in the top right corner functions in the same way,
but is only used to switch between two different types of music notes, those generated from
sine waves and those generated from the Rule 30 automaton.

There is a Boolean variable for each marker that defin
rker can be performed or not. The application assumes that the markers will be found

Georgios Drakakis, Mícheál Mac An Airchinnigh 38

when initiated; therefore the initial value for the Boolean variables is 0 or “the task can be
performed”.

The function used to check whether a marker is tracked and whether a music note
should be played is based on the variation of the Goblin XNA embedded tutorial marker
tracking algorithm that follows:

1. Set initial value for the Boolean variable to 0, meaning “the task can be performed”.
2. If the marker is tracked, set the Boolean variable to 0. If the marker is not tracked,
check whether the value of the Boolean variable is 0 and proceed to Step 3.
3. If the Boolean variable is set to 0, play the note and set the variable to 1, meaning
“the task cannot be performed” as it has already been performed and the marker is ob-
structed.
4. Go back to Step 2 until the user exits the application.

There is a small difference in the function that checks whether the switch marker has

been pressed. Even though it works with the same logic, this function uses one more Boolean
variable that stores the type of sound that is getting played, providing the previous algorithm
with the information for playing the notes in Step 3.

4. Results and Evaluation

The measure of performance for the computer-generated music notes is based solely on the
sound quality. The notes generated using sine waves were clear, as they each represent a sin-
gle frequency, providing us with a straightforward way to generate pitch-perfect notes.

The music notes generated from Rule 30 were also pitch perfect but did not sound as
clear, as we are ultimately playing a discrete list of integers. When the number of steps or the
sample rate is small, the only sound produced is a few discrete “taps”. As these numbers in-
crease, the taps also increase and begin to form sounds of a certain pitch. The best word to
describe the output sounds is “electronic” music notes.

The virtual musical instrument was the most troublesome part of the application, as it
depended on the environment. The ARTAG SDK can lose track of a marker if:

1. There are bad lighting conditions (Shadows, bright lights).
2. The angle between the marker and the camera is smaller than a certain threshold.
3. The marker is too far away.

Figure 5. The Interactive Virtual Musical Instrument in action

Georgios Drakakis, Mícheál Mac An Airchinnigh 39

Finally, ART re is in fact a
small d

AG may give the impression that it runs in real time but the
elay [8]. Figure 5 shows the virtual instrument in action and Figure 6 demonstrates

three cases for which the application partially lost marker tracking.

Figure 6. Loss of tracking due to Bright Light (Left),

5. Conclusion and Future Work

This project combined the areas of music, mathematics and computer vision to suc-
cessful

 dissertation, there are countless possibili-

realistic look and feel.

ombinations of sine waves, mul-

l Instruments.

 final ents implemented with the use of

References

[1] Weisstein, E.W. Cellular Automaton, From MathWorld--A Wolfram Web Resource. [cited 2011 July 27];

Shadow (Centre) and Large Angle (Right)

ly create an interactive virtual instrument. The fact that a piece of paper cannot replace
a musical instrument is given; however, this project has hopefully opened up a new dimension
for researchers, computer scientists and musicians.
Due to the broad gamut of features included in this
ties to explore in order to improve or evolve this project. Some suggestions are:

1. Visually Relatable Markers: instead of unidentifiable black and white blocks.
2. Extra Controls: such as volume and pitch shifting.
3. Visualization of the Virtual Instrument: for a more
4. Multi-Camera Environment: configuration for better marker tracking.
5. Interactive Sound Duration: based on user gesture.
6. More Complex Music Generation: variations and c
tidimensional Cellular Automata.
7. More Interactive Virtual Musica

A note for the reader: Interactive Musical Instrum
marker tracking could be the start of something very special…

Available from: http://mathworld.wolfram.com/CellularAutomaton.html
[2] Weisstein, E.W. "Elementary Cellular Automaton" From MathWorld--A Wolfram Web Resource. [cited

2011 July 27]; Available from: http://mathworld.wolfram.com/ElementaryCellularAutomaton.html
[3] Wolfram, S., A new kind of science2002, Champaign, IL: Wolfram Media. xiv, 1197 p.

http://mathworld.wolfram.com/CellularAutomaton.html
http://mathworld.wolfram.com/ElementaryCellularAutomaton.html

Georgios Drakakis, Mícheál Mac An Airchinnigh 40

[4] Nussey, A. The Sound of Sine Waves, From The Wolfram Demonstrations Project--A Wolfram Web
Resource. [cited 2011 March 1]; Available from:
http://demonstrations.wolfram.com/TheSoundOfSineWaves/.

[5] Lockhart, R. "Hearing Cellular Automata” From The Wolfram Demonstrations Project -- A Wolfram Web
Resource. [cited 2011 March 1]; Available from:
http://demonstrations.wolfram.com/TheSoundOfSineWaves/.

[6] Wolfram, S. ” On Starting a Long-Term Company” From Publications by Stephen Wolfram - Some
Writings and Speeches, A lecture given at the Y Combinator Startup School held at Harvard University,
October 15, 2005. 2005 [cited 2011 March 1]; Available from:
http://www.stephenwolfram.com/publications/recent/ycombinatorschool/

[7] Oda, O. and S.K. Feiner, Goblin XNA User Manual, 2009, Columbia University : New York. p. 5-6.
[8] Cawood, S. and M. Fiala, Augmented Reality: A Practical Guide2008: The Pragmatic Bookshelf (O'Reilly

Media).

drakakig@tcd.ie
mmaa@cs.tcd.ie

http://demonstrations.wolfram.com/TheSoundOfSineWaves/
http://demonstrations.wolfram.com/TheSoundOfSineWaves/
http://www.stephenwolfram.com/publications/recent/ycombinatorschool/
mailto:drakakig@tcd.ie
mailto:mmaa@cs.tcd.ie

