
Преглед НЦД 13 (2008), 27–36

Saša Malkov
(Faculty of Mathematics
University of Belgrade)

ON PHOTOGRAPH LIBRARY DESIGN – GROMAN LIBRARY

Abstract: The development of digital photograph libraries introduces many technical problems. To

develop a useful solution, it is necessary to make it efficient and simple. On the other side, to fulfill its primary
purpose of information preserving, the solution has to be based on general principles and to support the gathering
of as general data and metadata as possible. A general model of digital photograph library is presented in this
paper. The common problems are discussed and appropriate solutions are proposed. The discussion and
propositions are based on experiences of development of Groman photograph library.

Key words: digital library, photography, design

1. Introduction

The development of a contemporary online photograph library faces many different

problems. Among the most usual problems are: wide variety of digital photographs formats;
wide image size range; a variety of sources; the necessity for many different instances of
single photograph; multiple classifications of photographs and many different client interfaces
for all kinds of users, from archival officials to public online users.

A discussion on designing a digital photograph library is presented here. The initial
design was introduced for development of Groman Library. Groman Library consists of XIX
century photographs made by Russian military photographer I. V. Groman. The photographs
present Belgrade, Jagodina, Paraćin and other Serbian towns, as well as battlefields. These
photographs are among the first pictorial evidences about Belgrade and Serbia in the XIX
century [1].

During the development of the Groman Library, it became obvious that most of the
problems present with this specific library are common with many other photograph libraries
and archives. Thus, some generalizations of the design elements are introduced, in order to
provide a more general photograph library design template. However, while the generalization
was an important designing principle, at the same time the model is kept as simple and
flexible as possible. Different kinds of additional functionalities are not included, in order to
avoid any complexities, which are important for specific libraries only.

In the following sections, the problems and proposed solutions are presented. Finally,
a relational database scheme for the model is presented.

2. Problems and Solutions

2.1. Variety of Digital Formats. A photograph may be stored in many different digital
formats. The characteristics of the formats make each of them appropriate for some of the
possible purposes, but no single format is perfect. If a digital format preserves the highest
possible original image quality, without any data loss, then it provides no significant
compression and requires more memory and higher communication bandwidth. On the other

Saša Malkov 28

side, if a format features a high compression, then it allows for smaller memory and
bandwidth requirements, but introduces some image quality loss.

If a digital library is intended for many different purposes, it is necessary to support
many different formats for each of the photographs in the library. However, sometimes it is
not possible or practical to provide each of supported digital formats. For example, if a
photograph is originally made using a digital camera and saved in a format with data loss
compression, it would be a waste of space and time to add to the library the same photograph
in some additional lossless format, because the quality would be the same. On the other side,
if the photograph is additionally processed, then it is reasonable to save it in both kinds of
formats, with and without quality loss.

2.2. Image Size Range. It is not easy to select a preferable image resolution for a library. A
higher resolution allows (and often is necessary) for better quality, but results in larger files
and more difficult image content manipulation. On the other side, lowering the resolution
results in smaller images and easier manipulation, but may limit the usability.

It is desirable to support many different resolutions for each of the photographs in the
library. At least three different sizes are recommended:
• Original size – the highest possible resolution; if image is scanned, then the highest

possible resolution is to be used. This resolution is highly influential on future use of the
library, and should not be compromised. However, it is of no use to select a scan
resolution that is much higher then the quality of original analog sources.

• Screen size – a resolution optimized for presentations on computer display, for preview
purposes, including Web, presentations and other applications. The final image size
should be near the estimated display resolutions. For example, in the Groman library we
decided to use image width up to 1200 and height up to 800 pixels. The choice of this
resolution is not as important as the previous one, because it is always possible to
automatically resize all original images to a new screen size.

• Thumbnail size – a resolution optimized for image lists, when many different images are
to be presented in the same time, for browsing or searching purposes. The image size
depends on estimated applications requirements. In general, it should be at least three
times lower than screen size. For example, in the Groman Library we used images with
width up to 300 and height up to 200 pixels. Like with screen size, this resolution choice
is easy to customize at any time. Moreover, if the library is used for many different
applications, it is reasonable to support many different thumbnail sizes.

2.3. Multiple Instances. A feature that is often necessary, and almost always useful, is a
support for multiple different instances of the same photograph. The motifs include the
presented variety of digital formats and different image resolutions, as well as many other
significant factors, like different scanning techniques, details extraction and many others. The
proposed solution is to introduce two different model entities: a photograph and a photograph
instance. UML model [2] of the solution is presented in Figure 1.

A photograph (class Photo) is a library item, while a photograph instance
(PhotoInstance) is a single digital image content preserved in the library. Each photograph
instance is related to a single photograph and has a specific digital format (DigitalFormat)
and other important attributes. The instance attributes include InstanceType, which is used for
instance classifications. Possible instance types are “original”, “thumbnail”, “detail” and
others.

Saša Malkov 29

Figure 1. UML class diagram: Photograph instances

2.4. Multiple Photograph Classification. One of the main library features is good content
classification. A basic classification assumes that each item has to be assigned to a category
from a list of categories. However, contemporary libraries are expected to provide more than
that. Two significant improvements are suggested: dynamic category hierarchy and support
for multiple photograph classification.

A category hierarchy assumes that all categories are organized in a tree-like hierarchy:
• one of the categories is marked as “root category”;
• each other category is related to single “parent category”.

Such organizations allows for efficient browsing of the library content. However,
some additional care is to be taken:
• If a category is “parent” for too many “child” categories, the browsing may become

inconvenient. The number of “child” categories should be uniform across the hierarchy
tree as much as possible.

• If there are too many items assigned to some categories, or if there are many categories
with very few items assigned, then it is not possible to browse efficiently. The total count
of categories (and the size of the category hierarchy) should be taken in relation to the
library content.

• It is usually not possible to satisfy both of the previous two points. Depending on the
specific conditions, these two rules have to be harmonized as much as possible.

A dynamic category hierarchy assumes the possibility of dynamic editing of the
hierarchy tree during the library lifetime. In practice, the library is not loaded uniformly in
different sections and that results in categories of non-uniform sizes. The only practical
solution is to provide tools for dynamic editing of the category hierarchy.

As a library grows, the library category hierarchy grows also. That leads to narrowing
of single categories semantics. As a result, it may be hard to precisely classify an item to a
single category. The solution is to support the classification of a single library item in many
different categories. Thus, if it is not possible to classify an item to only one category, then
such item may be classified to each of the categories to which it is related.

Figure 2. UML Class Diagram – Photograph categories

Saša Malkov 30

A UML model for photograph classification is presented in Figure 2. The presented
model supports the construction of category tree, and multiple classifications of single
photographs. Each category (Category) has a name and may have a parent category.

2.5. Metadata. Each photograph in the library is described by some metadata. Some of the
attributes are common, but some may be specific. Common attributes include image size,
image resolution, time and location, photographing technique, and other. Classes Photo and
PhotoInstance are kept with small number of attributes because of the clarity of the
presentation. However, many more common attributes related to photographing deserve to be
added to these classes, like aperture value, focal length, shutter speed and others.

The library content comes from different sources, which provide different kinds of
metadata. Even in a small photograph collection it is often possible to find completely
different metadata collections. To preserve the completeness of original resources, it is very
important to support any available kind of metadata. The high quality metadata is necessary to
exploit the library content. It is highly recommended that metadata may contain any
information related to library items. In other words, no single metadata should be discarded
because it is not supported by the library model. Otherwise, a lot of significant data would be
disposed.

One solution is to preserve these non-standardized metadata in a form of unstructured
(i.e. non-checked) XML documents. Another is to provide an appropriate native library
design. We would suggest the usage of appropriate library design, because it usually offers
better searching features.

Figure 3. UML Class Diagram – Photograph metadata

A simple metadata model is presented in Figure 3. Each photograph (Photo) may have

many attribute values (PhotoAttrValue). Each attribute value is related to an attribute
(PhotoAttribute), and each attribute has a data type (DataType). The model is relatively
simple, and understandable, but it is not complete and flexible enough.

This model does not explain how different types of metadata are represented. An
attribute of string type is not the same as an attribute of integer type. One solution is to
modify PhotoAttrValue to include values of all supported primitive types. However, the
primitive types are not universal enough, and there always can appear an attribute of non-
primitive data type. The better solution is to rely on type conversions and to represent all data
types using their string representation. Both the application and the database may carry out
the conversions.

Another problem is related to structured or sequential attributes data, which are not
supported by this model. It is common to have some sequential metadata. For example, if a
sequence of image processing operations is to be described as metadata, it is better to natively
support such data then to introduce enumerated attribute names, like “processing1”, attribute
“processing2” and so on. One solution is to provide an additional class for sequential
attributes. Another is to add an optional index attribute to already introduced PhotoAttrValue
class. In this case, we prefer the second solution.

Furthermore, some metadata are related not to photographs, but to photograph
instances. For example, if an instance represents only a selected part of a whole photograph,
then it is necessary to describe the part position. Or, if an instance represents a processed
original image, it is very useful to have the processing description. The solution is to

Saša Malkov 31

introduce a class PhotoInstanceAttrValue, which is very similar to PhotoAttrValue, but is
related to PhotoInstance, instead of Photo. Such modification introduces the full metadata
support for both photographs and photograph instances in a highly unified way.

The Figure 4 presents the improved metadata model.

Figure 4. UML Class Diagram – Improved photograph metadata model

2.6. Authors. The Groman Library is specific because all photographs are authored by a
single person – I. V. Groman. However, the most of the libraries contain images of different
authors. Even more, it is usually not enough to identify the photographers only, but some
other kinds of authors and coauthors also: the scene author, costume author, the model and
others. Even if we do not need the author data in the Groman Library, here we present an
appropriate model, to make the presented model complete.

Figure 5. UML Class Diagram – Authors model

The Figure 5 presents the UML model for authoring data. It is quite flexible. An

author (class Author) represents a single participant in the photograph creation. It is related to
a photo (class Photo), to an author role (class AuthorRole) and a person (class Person). Many
persons may have the same role for the same photograph, in a given sorted order. The same
person may have many roles for a same photograph.

Because of the model clarity, a person is represented by the first name and last name
only. Other personal data may be added to Person.

If significant image processing is handled on photograph instances, it may be
reasonable to consider the instance authoring data, too.

2.7. Different Client Interfaces. Contemporary libraries very often need many faces, some
for the experts and some for the public. Different purposes require different usage privileges

Saša Malkov 32

and client interfaces. It is usual that completely different applications are used for internal and
public purposes. Library databases are rarely specifically customized to specific applications.
Such customizations are usually limited to the support for different digital content types and
resolutions, which is already discussed in subsections 2.1 and 2.2.

3. Model

Each of the model elements is presented in the preceding sections. The Figure 6

contains the complete UML class diagram for the library.

Figure 6. UML Class Diagram – Photograph library

4. Database Schema

The class diagram presented in Figure 6 translates to relational database schema

presented in Figure 7. Each of the classes is represented by a table. An additional table
PhotoCategory is introduced to represent multiple bidirectional association between
photographs (Photo) and categories (Category). The schema is designed for relational
database management system DB2 [3]. It is highly compatible to SQL standards [4].

5. Conclusions

The presented model is implemented in the Groman Library. It was proved in practice

that it is fully applicable and that provides for both the simplicity and the flexibility.
Each library consists of a library database and one or many applications, which

provide different user interfaces to the library. The selection of appropriate software tools
depends on the library kind and projected user types. The Groman Library was developed as a
prototype for a publicly available photograph library. Thus, the library interface is developed
as a Web application. We used functional programming language Wafl [5], which is designed
specifically for Web development. For data storage and manipulation we used IBM DB2.

Saša Malkov 33

DB2 is one of widely used relational database systems, with advanced binary data and XML
features.

create table PhotoLib.Photo (
 Id int not null,
 Title varchar(200) not null,
 Description long varchar,

 primary key(Id)
);

create table PhotoLib.DigitalFormat (
 Id int not null,
 Name varchar(100) not null,
 ShortName varchar(20) not null,
 MimeType varchar(100) not null,

 primary key(Id)
);

create table PhotoLib.PhotoInstance (
 PhotoId int not null,
 InstanceId int not null,
 Title varchar(200) not null,
 Description long varchar,
 Width int not null,
 Height int not null,
 Colours int not null,
 FormatId int not null,
 Content blob(500m) not null,

 primary key(PhotoId, InstanceId),

 foreign key fk_Photo(PhotoId)
 references PhotoLib.Photo
 on delete cascade,
 foreign key fk_DigitalFormat(FormatId)
 references PhotoLib.DigitalFormat
 on delete restrict
);

create table PhotoLib.Category (
 Id int not null,
 Name varchar(200) not null,
 ParentId int,

 primary key(Id),

 foreign key fk_Parent(ParentId)
 references PhotoLib.Category
 on delete restrict
);

create table PhotoLib.PhotoCategory (
 PhotoId int not null,
 CategoryId int not null,

 primary key(PhotoId, CategoryId),

 foreign key fk_Photo(PhotoId)
 references PhotoLib.Photo
 on delete cascade,
 foreign key fk_Category(CategoryId)
 references PhotoLib.Category
 on delete restrict
);

Saša Malkov 34

create table PhotoLib.DataType (
 Id int not null,
 Name varchar(200) not null,

 primary key(Id)
);

create table PhotoLib.PhotoAttribute (
 Id int not null,
 TypeId int not null,
 Sort int not null with default,

 primary key(Id),

 foreign key fk_DataType(TypeId)
 references PhotoLib.DataType
 on delete restrict
);

create table PhotoLib.PhotoAttrValue (
 PhotoId int not null,
 AttrId int not null,
 Index int not null,
 Value varchar(200) not null,

 primary key(PhotoId, AttrId, Index),

 foreign key fk_Photo(PhotoId)
 references PhotoLib.Photo
 on delete cascade,
 foreign key fk_Attribute(AttrId)
 references PhotoLib.PhotoAttribute
 on delete restrict
);

create table PhotoLib.PhotoInstAttrValue (
 PhotoId int not null,
 InstanceId int not null,
 AttrId int not null,
 Index int not null,
 Value varchar(200) not null,

 primary key(PhotoId, InstanceId, AttrId, Index),

 foreign key fk_PhotoInstance(PhotoId, InstanceId)
 references PhotoLib.PhotoInstance
 on delete cascade,
 foreign key fk_Attribute(AttrId)
 references PhotoLib.PhotoAttribute
 on delete restrict
);

create table PhotoLib.AuthorRole (
 Id int not null,
 Name varchar(200) not null,
 Sort int not null with default,

 primary key(Id)
);

Saša Malkov 35

create table PhotoLib.Person (
 Id int not null,
 FirstName varchar(100) not null,
 LastName varchar(100) not null,

 primary key(Id)
);

create table PhotoLib.Author (
 PhotoId int not null,
 PersonId int not null,
 RoleId int not null,
 Sort int not null with default,

 primary key(PhotoId, PersonId, RoleId),

 foreign key fk_Photo(PhotoId)
 references PhotoLib.Photo
 on delete cascade,

 foreign key fk_Person(PersonId)
 references PhotoLib.Person
 on delete restrict,
 foreign key fk_Role(RoleId)
 references PhotoLib.AuthorRole
 on delete restrict
);

Figure 7. DDL – Photograph library relational database

The most of the characteristics of both the problem and the proposed solution are

shared with other library types. Almost everything that is discussed here, is applicable not
only to photographs but to other kinds of library items, also. The proposed solution is ready to
be used solution for images, texts, audio recordings, video recordings, museum artifacts and
many others.

References

[1] Ž. Mijajlović, Z. Ognjanović, A Survey of Certain Digitization Projects in Serbia, NCD Review 4 (2004),

52–61.
[2] J. Rumbaugh, I. Jacobson, G. Booch, The Unified Modeling Language Reference Manual, 2nd ed.,

Addison-Wesley, 2004.
[3] IBM DB2 Web Site, IBM Corporation, http://www.ibm.com/db2
[4] ISO/IEC 9075: 2008 Information Technology – Database Languages – SQL, ISO/IEC, 2008.
[5] S. Malkov, WAFL – Functional Programming Language for Development of Web Applications, Master

Thesis, Faculty of Mathematics, University of Belgrade, 2002.

http://www.ibm.com/db2

Saša Malkov 36

Саша Малков
(Математички факултет, Београд)

О ПРОЈЕКТОВАЊУ ФОТОТЕКЕ – ГРОМАНОВA ЗБИРКА

При прављењу дигиталних фототека аутори се суочавају с више техничких проблема. Да би решење било
корисно, потребно је да буде ефикасно и једноставно. Са друге стране, да би фототека могла да испуни
свој основни циљ прикупљања информација, она мора да почива на довољно општим принципима и да
подржава чување најопштијих могућих података и метаподатака. У раду се представља основни модел
дигиталне фототеке. Дискутују се неки од проблема са којима се аутори суoчавају и предлажу се при-
хватљива решења. При разматрању проблема се ослања на искуства стечена током израде Громанове
дигиталне колекције фотографија.

mailto:smalkov@matf.bg.ac.yu

mailto:smalkov@matf.bg.ac.yu

	1. Introduction
	2. Problems and Solutions
	2.1. Variety of Digital Formats. A photograph may be stored
	2.2. Image Size Range. It is not easy to select a preferabl
	2.3. Multiple Instances. A feature that is often necessary,
	2.4. Multiple Photograph Classification. One of the main li
	2.5. Metadata. Each photograph in the library is described
	2.6. Authors. The Groman Library is specific because all ph
	2.7. Different Client Interfaces. Contemporary libraries ve

	3. Model
	4. Database Schema
	5. Conclusions
	References

