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IMAGE AND ITS MATRIX, MATRIX AND ITS IMAGE

Abstract: The need for matrix presentation by image is clear to all who in their work use high dimension
matrices. Particular problem here make matrices that could not normally be presented by images — those whose
elements are arbitrary real, or even complex numbers. Here we propose a solution for visualization of arbitrary,
high dimension matrix. This is illustrated by several examples, with matrices used in two-dimensional discrete
linear transforms, in image processing.

Keywords: digital image, matrix, visualization, discrete cosine transform, discrete Fourier transform, JPEG
compression

1. Introduction

There is a relation between matrices and digital images. A digital image in a computer is
presented by pixels matrix. On the other hand, there is a need (especially with high dimensions
matrices) to present matrix with an image. The motive of this work is to perceive matrix
elements nature and arrangement: to recognize matrix parts — positive from negative, real from
complex, bigger from smaller (by magnitude).

1.1. Image and its matrix. A digital grayscale image is presented in the computer by pixels
matrix. Each pixel of such image is presented by one matrix element — integer from the set
{0,1,2,...255 } The numeric values in pixel presentation are uniformly changed from zero (black
pixels) to 255 (white pixels).

For example, the image [IE] '

or, magnified: is presented with the matrix
16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
17 33 49 65 81 97 113 129 145 161 177 193 209 225 241
18 34 50 66 82 98 114 130 146 162 178 194 210 226 242
19 35 51 67 83 99 115 131 147 163 179 195 211 227 243
20 36 52 68 84 100 116 132 148 164 180 196 212 228 244
117 133 149 165 181 197 213 229 245
22 38 54 70 86 102 118 134 150 166 182 198 214 230 246
23 39 55 71 87 103 119 135 151 167 183 199 215 231 247
24 40 56 72 88 104 120 136 152 168 184 200 216 232 248
25 41 57 73 89 105 121 137 153 169 185 201 217 233 249
10 26 42 58 74 90 106 122 138 154 170 186 202 218 234 250
11 27 43 59 75 91 107 123 139 155 171 187 203 219 235 251
12 28 44 60 76 92 108 124 140 156 172 188 204 220 236 252
13 29 45 61 77 93 109 125 141 157 173 189 205 221 237 253
14 30 46 62 78 94 110 126 142 158 174 190 206 222 238 254
15 31 47 63 79 95 111 127 143 159 175 191 207 223 239 255
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Color images (with RGB color model) in a computer are presented with three grayscale images
matrices (one for each — red, green and blue — color components).

1.2. Matrix and its image. Each image processing operation in a computer may be observed as
an operation on image matrix. Usually, the result of such operation is matrix of original image

"If it is necessary, images will have borders, which will visually demarcate them from the background.
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dimension (m x n), whose elements need not be from the set {0,1,...,255}, but also they may be

arbitrary real, or even complex numbers. Matrices we use here, are of very high dimensions
(several tens, or hundreds of thousands, or even over million of elements). In order to get
visualization about such matrix overall, the need to present it with an image arises naturally.

This idea, certainly, is not new. In programs dedicated for work with matrices, there
exists a possibility to present matrix by image. However, this presentation is mainly
inadequate. It does not take into consideration values out of the set {0,1,2,...,255}.

Matlab-like programs do this in the following steps:
— First, imaginary part is discarded (if matrix is complex)
— Then, all elements are rounded to the nearest integer
— Finally, values less than 0 become 0
— Values greater than 255 become 255
Clearly, such presentation does not show information about the contents for majority of
matrices.

Good matrix presentation needs to represent nature and mutual relation between
elements values. It has to show whether the matrix elements are positive or negative, real or
complex numbers, and which is mutual relation between elements magnitudes.

Here we propose a different solution — hopefully better.

The following text consists of two parts (sections 2 and 3). In section 2 ("Matrices
coloring") an algorithm for visualization of arbitrary matrices will be proposed. In section 3
("Visualization of matrices used in image processing") several interesting examples of
presenting high dimension matrices (real and complex) ") will be given. All these examples are
related with linear transforms, which have use in image processing. The proposed algorithm of
matrices visualization will hopefully be useful for linear transforms understanding.

2. Matrices coloring

2.1. Presentation of real matrices. In a matrix, in which all elements are positive or equal to
zero, we may present value 0 with black, and maximum positive value with white color; in this
way, all positive matrix values will be presented as grayscale nuances (from black for zero, to
white for maximum positive value).

Example 2.1: A matrix and its image:

0O 50 100 150 200 250 300 350

100 150 200 250 300 350 400 450
150 200 250 300 350 400 450 500
200 250 300 350 400 450 500 550
250 300 350 400 450 500 550 600
300 350 400 450 500 550 600 650
350 400 450 500 550 600 650 700

In this solution, matrix element values are scaled in order to be squeezed into interval [0, 255]
— all matrix values are multiplied by factor (255/max. value) (in our example, this is 255/700).
A matrix with all elements non-positive may be presented similarly, in nuances from black to
yellow.
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Example 2.2: The matrix

0 -50 -100 -150 -200 -250 -300 -350
-50 -100 -150 -200 -250 -300 -350 -400
-100 -150 -200 -250 -300 -350 -400 -450
-150 -200 -250 -300 -350 -400 -450 -500
-200 -250 -300 -350 -400 -450 -500 -550
-250 -300 -350 -400 -450 -500 -550 -600
-300 -350 -400 -450 -500 -550 -600 -650
-350 -400 -450 -500 -550 -600 -650 -700

A matrix with positive and negative values will be presented with an image, in which positive
values will be given in nuances from black to white, and negative — from black to yellow.
Scaling may be done according to the biggest matrix elements magnitude.

Example 2.3: The matrix

-1 1 0 -1 1 0 -1 1
1 0 -1 1 0 -1 1 0
0 -1 1 0 -1 1 0 -1

-1 1 0 -1 1 0 -1 1
1 0 -1 1 0 -1 1 0
0 -1 1 0 -1 1 0 -1

-1 1 0o -1 1 0 -1 1
1 0 -1 1 0 -1 1 0

Example 2.4: In the next figure, two white Gaussian noise matrices” may be seen.
Matrix on the left is of considerably lower dimension comparing with that on the right, and its
elements are presented "zoomed".

2.2. Complex matrix presentation. Pure imaginary matrices may be presented similarly.
Negative imaginary values we present with nuances from black to green, and positive — from
black to red color.

Example 2.5: In the next three images real and imaginary matrix, and their sum —
complex matrix are presented.

2 Matrices whose elements have values from normal distribution with zero mean
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-4 -3 -2 -1 0 1 2 3 4
-4 -3 -2 -1 0 1 2 3 4
-4 -3 -2 -1 01 2 3 4
-4 -3 -2 -1 0 1 2 3 4
-4 -3 -2 -1 0 1 2 3 4
-4 -3 -2 -1 0 1 2 3 4
-4 -3 -2 -1 0 1 2 3 4
-4 -3 -2 -1 01 2 3 4
-4 -3 -2 -1 0 1 2 3 4

+4i +41 +41 +4i1 +4i +41 +41 +4i +4i0
+31 +31 +3i +3i1 +3i +3i +3i +3i +3i
+21 +20 20 4201 +20 +20 +21 +2i  +2i
+1i +1i1 +11 +1i +1i +1§ +11 +1i  +1i

-1i -1i -1i -1i -1i -1i -1i -1i -1i
—2i -2i -2i -2i -2i -2i -2i -2i -2i
-3i -3i -3i -3i -3i -3i -3i -3i -3i
—4i -41 -4i -4i -4i -4 -4i -4i -4i

-4+41 -3+41 -2+41 -1+4i +4i1 1+4i 2+41 3+4i 4+4i0
-4+3i1 -3+3i1 -2+3i -1+3i +3i 1+3i 2+3i 3+3i 4+3i
—4+21 -3+21 -2+4201 -1+21 +2i 1+2i 2+21 3+2i 4+2i
-4+1i -3+1i -2+1i -1+1i +1i 1+1i 2+11 3+1i 4+1i
-4 -3 -2 -1 0 1 2 3 4

-4-1i -3-1i -2-1i -1-1i -1i 1-1i 2-1i 3-1i 4-1i
-4-2i1 -3-21 -2-2i -1-2i -2i 1-2i 2-2i 3-2i 4-2i
-4-3i1 -3-3i -2-3i -1-3i -3i 1-3i 2-3i1 3-3i 4-3i
-4-4i1 -3-4i1 -2-4i -1-4i -4i 1-4i 2-4i 3-4i 4-4i

Of course, the proposed colors combination is not the only possible. However, it is not also
completely arbitrary. In colors choice it is very important that every two distant points in the
complex plane would be presented with different colors.

Let us explain the notion of "distant points". This demand means that between any two
points in the complex plane presented with the same color must not be any point of different
color. (Clearly, two close points, due to infinite number of complex plane points, and finite
number of different colors, may be colored by the same color).

The suggested color combination (yellow—white& green—red) is correct in this sense.
Used colors intensity increases with moving away of origin, and therefore, in none of the four
complex plane quadrants two distant points colored with the same color exist.

In addition, in quadrants, colors appearance in complex numbers presentation
is(X,y=0):

I quadrant: X(r+g+b)+vy-r mostly red, and some amount of blue color

IT quadrant: X(r+g)+y-r mostly red, and without blue color

III quadrant: X(r+g)+y-g mostly green, and without blue color

IV quadrant: X(r+g+b)+y-g mostly green, and some amount of blue color

Therefore two points in different quadrants presented with the same color, do not exist.
If, instead of green, we use blue color, it will be (combination yellow—white& blue—red):
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III quadrant: X(r+g)+y-b=x(r+g+b)+(y-x)b

IV quadrant: x(r+g+b)+y,-b
Hence, in the third and in the fourth quadrant, two points presented with the same color
(combination of white and blue) exist. Therefore, the combination yellow—white& blue-red is
not a good one.

In the next two figures are presented these two colors combinations. In the left figure is
the "good" combination (yellow—white& green—red). In the right one is the "bed" combination
(yellow—white& blue—red). Here, there are marked several pairs of distant points, presented by
the same color.

3. Visualization of matrices used in image processing

In this section several interesting examples will be mentioned, in which, owing to very high
dimensions, it is necessary to present matrix with an image,. Examples are chosen with the goal
of making easier understanding of (in image processing often used) linear transforms of
matrices. Subsection 3.1 is dedicated to discrete cosine transform (DCT) of image of arbitrary
dimensions. Subsection 3.2 presents blocked DCT, used in JPEG compression. Subsection 3.3
illustrates one way for image dimensions (including aspect ratio) changing. Subsection 3.4
presents Fourier transform (FT), which, in contrast to other transforms, uses complex matrices.

3.1. Discrete cosine transform of image. We get discrete cosine transform (DCT) of matrix

S of dimension mxn, using formula D = Mm_1 -S-M_, whereS is an image matrix in

no
spatial domain (original image matrix), D is image matrix in transform domain; both matrices
(S and D) have dimensions mxn. M and M, are square matrices of dimensions mxm

and nxn respectively, and may be calculated with the code (here written for matrix of
dimension mxm, labeled with M ):

c=ones(m)*sqrt(2/m); c(1l)=sqrt(1/m);
for i=1:m
for j=1:m
M(i,3)=c@)*cos((Z*i-1)*U-1)*pi/(2*m));
end
end
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These matrices are constant — they do not depend on image S content, but only on its
dimension.
In the several next figures are images for matrices M,, M;, M,, M, and M, for

discrete cosine transform.

M,

0.707 0.707

0.707 -0.707

|V|3

0.577 0.707 0.408
0.577 0.000 -0.816
0.577 -0.707 0.408
M,

0.500 0.653 0.500 0.271
0.500 0.271 -0.500 -0.653
0.500 -0.271 -0.500 0.653
0.500 -0.653 0.500 -0.271

0.35 O. - - - - -

0.35 0.42 0.19 -0.10 -0.35 -0.49 -0.46 -0.28
0.35 0.28 -0.19 -0.49 -0.35 0.10 0.46 0.42
0.35 O. B B B B B -
0.35 -0.10 -0.46 0.28 0.35 -0.42 -0.19 0.49
0.35 -0.28 -0.19 0.49 -0.35 -0.10 0.46 -0.42
0.35 -0.42 0.19 0.10 -0.35 0.49 -0.46 0.28
0.35 -0.49 0.46 -0.42 0.35 -0.28 0.19 -0.10

M 128

We may observe matrices S and D as presentations of the same image in two different bases.

0 50
Example 3.1: If the image is in the spatial domain presented with matrix S = : , then

00 200
: 4 1 |11
since M, =M, = ,

2 -
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. 175 —175
D=M,"-S-M, = .
~125 25

In the spatial domain, the image is presented in the standard basis B, = {b,'"',b,"*,b,*',b.*}

1 0 0 1 0 0 0 0
where b, = b, = b = b =
0 0 0 0 1 0 0 1

S=0-b' +50-b,* +100-b.* +200-b,”
In the transform domain, the same image is presented with matrix D in the basis
Bd — {bdll,deZ,bdZI’bdZZ}

11 I -1 1 1 I -1
Where bdllzl ’ bdlzzl ’ bd21:l ’ bdzzzl ,and
211 1 2|11 -1 21-1 -1 21-1 1

S=175-b,'' =75-b,* —=125-b,* +25.b,”

In the next figure we may see base images B, (left) and B, (right) for matrices of dimension

2x2.

In the next two figures are presented base images B, for matrices of dimension 4x4 and

8x8.

o
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Original image has dimension 32x 28, and it is presented in base B, with linear combination
of 896 base images (each of them is multiplied by corresponding element in matrix D). Here
first 18 steps in deriving original image from base images, are showed. Each step is presented
by pair (base image, result image). Steps are arranged in compliance with decreasing order of
coefficients magnitudes in matrix D.

3.2. Blocked DCT and JPEG compression. JPEG compression of grayscale image S, is

based on blocked DCT:
—Image S, is divided in image blocks of dimensions 8 x8 pixels

c

— DCT i1s applied on each image block. Result is matrix D, produced with joining all 8x8

blocks in the transform domain.
— Each element of each 8x8 block is subjected to quantization — is divided by a number,
determined in advance, and the quotient is rounded to the nearest integer. The divisor for each
block element is determined by quantization table®, i.e. by position of the element in the block.
This is a "lossy" step in compression — it enables that the image data may be recorded in a less
memory space, with respect to the original image data.

Example 3.3: In the next figure we may see images for matrices S (dimension 8x8),
M, and D.

1

R

Block D - result of discrete cosine transform (also of dimension 8x8), in contrast with block
in spatial domain, has prominent differences between values in different block parts. Its
elements near top-left corner (so-called DC element) are with far bigger magnitudes values
comparing with block remaining part. These values decline with going to bottom-right corner.
The same result we obtain with matrix multiplication of S, (here, "Cameraman",

dimension of 128x128) and M,_ (presented in the middle) — result is again matrix D, (right)
Dc = MSc_l ’ Sc ) MSC .

3 Quantization table is in advanced determined matrix of dimension 8 X 8, which contains divisors for all block
elements.
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Matrix Mg, is almost diagonal. On its diagonal, it has matrices M, and beyond it, all

elements have values zero.
In each 8x8 matrix D, block, the block elements near the DC element have bigger

magnitudes comparing with the rest of the block; on the other hand, they have smaller
quantization coefficients in relation to remote elements. Thus, quantization is more intensive
(more data will be lost) in block elements remote from DC element.

Therefore, in JPEG compression, data in bottom-right corner of each DCT block are lost much
more, than in top-left corner.

Three next examples show data nullifying impact® in bottom-right image block parts on
matrix D, (Nullifying effect for the small part of each 8x8 block; a half of each image block;
the most part of each image block in transform domain).

Each of the showed three examples is presented with three images:
— designation of block part that will be nullified;
—matrix D_' arisen by nullifying of coefficients part in all matrix blocks;

—matrix S_' arisen from D_' by applying inverse DCT.

Inverse DCT (multiplication by inverse of matrix M, ) returns us into the spatial domain with

some extent distorted image. If we have not gone too far, these changes need not be visible to
human eyes.

3.3. One way for image dimension changing. Image dimension changing may also be done
by applying transform (for example discrete cosine) on the whole image:

* In these examples, in order to illustrate, more complicate (and not much different) quantization we replace with
data nullifying in bottom-right corner of each block.
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— We perform DCT overall on the whole image S (here presented, as example, image
"Cameraman", of dimension 128 x128 — top left). Result of this operation (matrix D ) we may
see on the right (showed on top—right image). Matrix D is the same dimension (128 x128).
— We add 30 columns to the right side of matrix D (elements values in these appended
columns are 0). Then, we crop 30 rows in the bottom of it. The result matrix D', of dimension
98x158 we may see on the bottom—left image’.

On matrix D' we apply inverse DCT. Result is image S' of dimension 98x158
showed bottom right.

After inverse DCT, we have original image with aspect ratio changed.

3.4. Fourier transform. Fourier transform (FT) of matrix S of dimension mxn we get with
formula

F=M_"'-S-M,
Matrix S is an original image matrix, matrix F is FT for this image; both of them have
dimension mxn. Square matrices M and M, have dimensions mxm, and nxn,

respectively, and they may be calculated by Matlab code (here, this matrix is labeled with M,
and of dimension mxm ):

for il=1:m
for jl=1:m
M(il, JD)=exp(-2*pi*i/m)*(il-1)*(1-1);
end
end

> When DCT is applied on the whole image, elements magnitudes near DC element in resultant matrix are much
bigger, comparing with the rest of the matrix. So, matrix D (and D') would be presented with totally black
rectangle, with little white point in top—left corner. In order to have better matrix presentation, top—right ( D ) and
bottom-left ( D') images are presented with logarithmed magnitudes.
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F and M, (and M, ) are complex matrices. Here it will be presented several M matrices

for Fourier transform:

1 1

M, 1 -1

M 1.00 1.00 1.00

3 1.00 -0.50-0.871 -0.50+0.871

1.00 -0.50+0.87i -0.50-0.87i
1 1 1 1

M4 1 -i -1 i
1 -1 1 -1
1 i -1 -1

M128

Graphical presentations of base images for Fourier transform:

Base images of
dimension 2x2

Base images of
dimension 23
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Base images of
dimension 3%3

Base images of
dimension 4 x4
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For matrices S and F applies
S =ZZ S -bsij = ZZ f; -bfij , where S = [sij men, F= [fij men, and
i=1 j=1 i=l j=I
b.” is base image in spatial domain that correspond with matrix S coefficient s;;,

S

b, U is base image in transform domain that corresponds with matrix F coefficient f;.
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Example 3.5: Image presentation in new basis. In the next figure, we may see several first
steps in presentation of image S by FT base images.

Original image
of dimension 8 x8 pixels

In this example matrix S is of dimension §x8, and it is presented in base B, with linear

combination of 64 base images of dimension 8x8 (each of them is multiplied by
corresponding element of matrix F). Here, first 18 steps in deriving original image from
matrix F and base images are showed. Each step is presented by pair (base image, result
image). Steps are arranged in compliance with decreasing order of coefficients magnitudes in
matrix F .

= ==l

L]
11
=
—

=
|
-
1l

bl b B ds B
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I
F

b die di Be BB

4. Conclusion

Here the proposed solution enables visualization of arbitrary matrices. The presented examples
are mainly related with linear transforms — DCT and Fourier, and blocked DCT (which is used
in JPEG compression). This examples choice is made for the reader to understand better high
dimension matrices, used in image processing. This solution may be helpful, not only to people
that are engaged in image processing, but also to all engaged in (real or complex) high
dimension matrices.
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Becna Byukosuh
(Matematuuku ¢axynret, beorpan)

C/IMKA 1 bEHA MATPUIIA. MATPULIA U lIbEHA CJIMKA

Caserak: [IpeqaxMo peiene 3a BU3yenu3alnjy MaTpina — Kako PeanHuX, TaKo i KoMIuleKcHuX. [Torpeba 3a
MPUKa30M MaTpulle Y O0JIMKY CIIMKE jacHa je CBMMa KOju ce 0aBe MaTpuilaMa BeJIMKUX aumensuja. [loceban

npoOJieM Ty CTBapajy MaTpulle Koje He MOTr'y OMTH HOPMAaJIHO ITPHUKa3aHe CIMKOM — OHE YHjH Cy eJIEMEHTH
NPOU3BOJHHU PEAITHH, 1a YaK M KOMIUIEKCHHU OpojeBH. [laTo peliemhe HIyCTPOBAHO je ca HEKOJIMKO IpUMepa,
MaTpuIilamMa KOpuImheHnM y ABOAMMEH3NOHUM ITUCKPETHUM JIMHEApHUM TpaHc(opMaIjama, y o0Opaan CIrKa.

KibydHe peun: TuruTaiHa cinKa, MaTpHIa, BU3yeIn3alldja, TMCKPETHA KOCHHYCHA TpaHc(opMaIiyja, IMCKpeTHa
Dypujeosa tpanchopmanuja, JIIEI komnpecuja

vesnav(@matf.bg.ac.yu



http://akbar.marlboro.edu/~mahoney/courses/Fall01/computation/compression/jpeg/jpeg.html
http://www.ph.tn.tudelft.nl/Courses/FIP/noframes/fip.html
mailto:vesnav@matf.bg.ac.yu

