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IMAGE AND ITS MATRIX, MATRIX AND ITS IMAGE 
 
Abstract: The need for matrix presentation by image is clear to all who in their work use high dimension 
matrices. Particular problem here make matrices that could not normally be presented by images – those whose 
elements are arbitrary real, or even complex numbers. Here we propose a solution for visualization of arbitrary, 
high dimension matrix. This is illustrated by several examples, with matrices used in two-dimensional discrete 
linear transforms, in image processing. 
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1. Introduction 

 
There is a relation between matrices and digital images. A digital image in a computer is 
presented by pixels matrix. On the other hand, there is a need (especially with high dimensions 
matrices) to present matrix with an image. The motive of this work is to perceive matrix 
elements nature and arrangement: to recognize matrix parts – positive from negative, real from 
complex, bigger from smaller (by magnitude). 

 
1.1. Image and its matrix. A digital grayscale image is presented in the computer by pixels 
matrix. Each pixel of such image is presented by one matrix element – integer from the set 

. The numeric values in pixel presentation are uniformly changed from zero (black 
pixels) to 255 (white pixels).  
{ 255210 ,...,, }

For example, the image  1
or, magnified: 

 

is presented with the matrix 
 0 16 32 48 64 80  96 112 128 144 160 176 192 208 224 240 
 1 17 33 49 65 81  97 113 129 145 161 177 193 209 225 241 
 2 18 34 50 66 82  98 114 130 146 162 178 194 210 226 242 
 3 19 35 51 67 83  99 115 131 147 163 179 195 211 227 243 
 4 20 36 52 68 84 100 116 132 148 164 180 196 212 228 244 
 5 21 37 53 69 85 101 117 133 149 165 181 197 213 229 245 
 6 22 38 54 70 86 102 118 134 150 166 182 198 214 230 246 
 7 23 39 55 71 87 103 119 135 151 167 183 199 215 231 247 
 8 24 40 56 72 88 104 120 136 152 168 184 200 216 232 248 
 9 25 41 57 73 89 105 121 137 153 169 185 201 217 233 249 
10 26 42 58 74 90 106 122 138 154 170 186 202 218 234 250 
11 27 43 59 75 91 107 123 139 155 171 187 203 219 235 251 
12 28 44 60 76 92 108 124 140 156 172 188 204 220 236 252 
13 29 45 61 77 93 109 125 141 157 173 189 205 221 237 253 
14 30 46 62 78 94 110 126 142 158 174 190 206 222 238 254 
15 31 47 63 79 95 111 127 143 159 175 191 207 223 239 255 

 
Color images (with RGB color model) in a computer are presented with three grayscale images 
matrices (one for each – red, green and blue – color components). 
 
1.2. Matrix and its image. Each image processing operation in a computer may be observed as 
an operation on image matrix. Usually, the result of such operation is matrix of original image 
                                                 
1 If it is necessary, images will have borders, which will visually demarcate them from the background. 
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dimension ( ), whose elements need not be from the set , but also they may be 
arbitrary real, or even complex numbers. Matrices we use here, are of very high dimensions 
(several tens, or hundreds of thousands, or even over million of elements). In order to get 
visualization about such matrix overall, the need to present it with an image arises naturally. 

nm × },...,,{ 25510

This idea, certainly, is not new. In programs dedicated for work with matrices, there 
exists a possibility to present matrix by image. However, this presentation is mainly 
inadequate. It does not take into consideration values out of the set .  },...,,,{ 255210

Matlab-like programs do this in the following steps: 
– First, imaginary part is discarded (if matrix is complex) 
– Then, all elements are rounded to the nearest integer 
– Finally, values less than 0 become 0 
– Values greater than 255 become 255 

Clearly, such presentation does not show information about the contents for majority of 
matrices. 

Good matrix presentation needs to represent nature and mutual relation between 
elements values. It has to show whether the matrix elements are positive or negative, real or 
complex numbers, and which is mutual relation between elements magnitudes. 

Here we propose a different solution – hopefully better.  
The following text consists of two parts (sections 2 and 3). In section 2 ("Matrices 

coloring") an algorithm for visualization of arbitrary matrices will be proposed. In section 3 
("Visualization of matrices used in image processing") several interesting examples of 
presenting high dimension matrices (real and complex) ") will be given. All these examples are 
related with linear transforms, which have use in image processing. The proposed algorithm of 
matrices visualization will hopefully be useful for linear transforms understanding. 
 

2. Matrices coloring 
 
2.1. Presentation of real matrices. In a matrix, in which all elements are positive or equal to 
zero, we may present value 0 with black, and maximum positive value with white color; in this 
way, all positive matrix values will be presented as grayscale nuances (from black for zero, to 
white for maximum positive value). 

Example 2.1: A matrix and its image: 
 

   0   50  100  150  200  250  300  350 
  50  100  150  200  250  300  350  400 
 100  150  200  250  300  350  400  450 
 150  200  250  300  350  400  450  500 
 200  250  300  350  400  450  500  550 
 250  300  350  400  450  500  550  600 
 300  350  400  450  500  550  600  650 
 350  400  450  500  550  600  650  700 

 
 
In this solution, matrix element values are scaled in order to be squeezed into interval [0, 255] 
– all matrix values are multiplied by factor (255/max. value) (in our example, this is 255/700). 
A matrix with all elements non-positive may be presented similarly, in nuances from black to 
yellow. 
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Example 2.2: The matrix 
 

    0  -50 -100 -150 -200 -250 -300 -350 
  -50 -100 -150 -200 -250 -300 -350 -400 
 -100 -150 -200 -250 -300 -350 -400 -450 
 -150 -200 -250 -300 -350 -400 -450 -500 
 -200 -250 -300 -350 -400 -450 -500 -550 
 -250 -300 -350 -400 -450 -500 -550 -600 
 -300 -350 -400 -450 -500 -550 -600 -650 
 -350 -400 -450 -500 -550 -600 -650 -700 

 
 
A matrix with positive and negative values will be presented with an image, in which positive 
values will be given in nuances from black to white, and negative – from black to yellow. 
Scaling may be done according to the biggest matrix elements magnitude.  

Example 2.3: The matrix 
 

  -1   1   0  -1   1   0  -1   1 
   1   0  -1   1   0  -1   1   0 
   0  -1   1   0  -1   1   0  -1 
  -1   1   0  -1   1   0  -1   1 
   1   0  -1   1   0  -1   1   0 
   0  -1   1   0  -1   1   0  -1 
  -1   1   0  -1   1   0  -1   1 
   1   0  -1   1   0  -1   1   0 

 
 

Example 2.4: In the next figure, two white Gaussian noise matrices2 may be seen. 
Matrix on the left is of considerably lower dimension comparing with that on the right, and its 
elements are presented "zoomed". 

 

 
2.2. Complex matrix presentation. Pure imaginary matrices may be presented similarly. 
Negative imaginary values we present with nuances from black to green, and positive – from 
black to red color. 

Example 2.5: In the next three images real and imaginary matrix, and their sum – 
complex matrix are presented. 
                                                 
2 Matrices whose elements have values from normal distribution with zero mean 
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-4  -3  -2  -1  0  1  2  3  4 
-4  -3  -2  -1  0  1  2  3  4 
-4  -3  -2  -1  0  1  2  3  4 
-4  -3  -2  -1  0  1  2  3  4 
-4  -3  -2  -1  0  1  2  3  4 
-4  -3  -2  -1  0  1  2  3  4 
-4  -3  -2  -1  0  1  2  3  4 
-4  -3  -2  -1  0  1  2  3  4 
-4  -3  -2  -1  0  1  2  3  4 

 
 

+4i +4i +4i +4i +4i +4i +4i +4i  +4i 
+3i +3i +3i +3i +3i +3i +3i +3i  +3i 
+2i +2i +2i +2i +2i +2i +2i +2i  +2i 
+1i +1i +1i +1i +1i +1i +1i +1i  +1i 
 0   0   0   0   0   0   0   0    0 
-1i -1i -1i -1i -1i -1i -1i -1i  -1i 
-2i -2i -2i -2i -2i -2i -2i -2i  -2i 
-3i -3i -3i -3i -3i -3i -3i -3i  -3i 
-4i -4i -4i -4i -4i -4i -4i -4i  -4i 

 

-4+4i -3+4i -2+4i -1+4i +4i 1+4i 2+4i 3+4i 4+4i 
-4+3i -3+3i -2+3i -1+3i +3i 1+3i 2+3i 3+3i 4+3i 
-4+2i -3+2i -2+2i -1+2i +2i 1+2i 2+2i 3+2i 4+2i 
-4+1i -3+1i -2+1i -1+1i +1i 1+1i 2+1i 3+1i 4+1i 
-4    -3    -2    -1     0  1    2    3    4 
-4-1i -3-1i -2-1i -1-1i -1i 1-1i 2-1i 3-1i 4-1i 
-4-2i -3-2i -2-2i -1-2i -2i 1-2i 2-2i 3-2i 4-2i 
-4-3i -3-3i -2-3i -1-3i -3i 1-3i 2-3i 3-3i 4-3i 
-4-4i -3-4i -2-4i -1-4i -4i 1-4i 2-4i 3-4i 4-4i 

 
 

 
Of course, the proposed colors combination is not the only possible. However, it is not also 
completely arbitrary. In colors choice it is very important that every two distant points in the 
complex plane would be presented with different colors. 

Let us explain the notion of "distant points". This demand means that between any two 
points in the complex plane presented with the same color must not be any point of different 
color. (Clearly, two close points, due to infinite number of complex plane points, and finite 
number of different colors, may be colored by the same color). 

The suggested color combination (yellow–white& green–red) is correct in this sense. 
Used colors intensity increases with moving away of origin, and therefore, in none of the four 
complex plane quadrants two distant points colored with the same color exist. 

In addition, in quadrants, colors appearance in complex numbers presentation 
is : ),( 0≥yx

I quadrant: rybgrx ⋅+++ )(  mostly red, and some amount of blue color 
II quadrant:   mostly red, and without blue color rygrx ⋅++ )(
III quadrant:   mostly green, and without blue color gygrx ⋅++ )(
IV quadrant: gybgrx ⋅+++ )(  mostly green, and some amount of blue color 

Therefore two points in different quadrants presented with the same color, do not exist. 
If, instead of green, we use blue color, it will be (combination yellow–white& blue–red):  
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III quadrant: bxybgrxbygrx )()()( −+++=⋅++   
IV quadrant: bybgrx ⋅+++ 1)(   

Hence, in the third and in the fourth quadrant, two points presented with the same color 
(combination of white and blue) exist. Therefore, the combination yellow–white& blue–red is 
not a good one. 

In the next two figures are presented these two colors combinations. In the left figure is 
the  "good" combination (yellow–white& green–red). In the right one is the "bed" combination 
(yellow–white& blue–red). Here, there are marked several pairs of distant points, presented by 
the same color. 
 

  
 

3. Visualization of matrices used in image processing 
 
In this section several interesting examples will be mentioned, in which, owing to very high 
dimensions, it is necessary to present matrix with an image,. Examples are chosen with the goal 
of making easier understanding of (in image processing often used) linear transforms of 
matrices. Subsection 3.1 is dedicated to discrete cosine transform (DCT) of image of arbitrary 
dimensions.  Subsection 3.2 presents blocked DCT, used in JPEG compression. Subsection 3.3 
illustrates one way for image dimensions (including aspect ratio) changing. Subsection 3.4 
presents Fourier transform (FT), which, in contrast to other transforms, uses complex matrices. 
 
3.1. Discrete cosine transform of image. We get discrete cosine transform (DCT) of matrix 

 of dimension , using formula , where  is an image matrix in 
spatial domain (original image matrix), 
S nm × nm MSMD ⋅⋅= −1 S

D  is image matrix in transform domain; both matrices 
(  and S D ) have dimensions .  and  are square matrices of dimensions nm× mM nM mm×  
and  respectively, and may be calculated with the code (here written for matrix of 
dimension , labeled with 

nn×
mm× M ): 

 
c=ones(m)*sqrt(2/m); c(1)=sqrt(1/m); 
for i=1:m 
    for j=1:m 
        M(i,j)=c(j)*cos((2*i-1)*(j-1)*pi/(2*m)); 
    end 
end 
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These matrices are constant – they do not depend on image  content, but only on its 
dimension. 

S

In the several next figures are images for matrices , , ,  and , for 
discrete cosine transform. 

2M 3M 4M 8M 128M

 
2M
 

0.707     0.707  
0.707    -0.707 

 

3M
 

0.577     0.707     0.408  
0.577     0.000    -0.816  
0.577    -0.707     0.408 
 
 
 
  

4M
 

0.500  0.653  0.500  0.271  
0.500  0.271 -0.500 -0.653  
0.500 -0.271 -0.500  0.653  
0.500 -0.653  0.500 -0.271 
 

 

8M
 

0.35  0.49  0.46  0.42  0.35  0.28  0.19  0.10  
0.35  0.42  0.19 -0.10 -0.35 -0.49 -0.46 -0.28  
0.35  0.28 -0.19 -0.49 -0.35  0.10  0.46  0.42  
0.35  0.10 -0.46 -0.28  0.35  0.42 -0.19 -0.49  
0.35 -0.10 -0.46  0.28  0.35 -0.42 -0.19  0.49  
0.35 -0.28 -0.19  0.49 -0.35 -0.10  0.46 -0.42  
0.35 -0.42  0.19  0.10 -0.35  0.49 -0.46  0.28  
0.35 -0.49  0.46 -0.42  0.35 -0.28  0.19 -0.10 
 

 

128M  

 
 
We may observe matrices  and S D  as presentations of the same image in two different bases. 
 

Example 3.1: If the image is in the spatial domain presented with matrix , then 

(since 

⎥
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⎥
⎦

⎤
⎢
⎣

⎡
−

−
=⋅⋅= −

25125
75175

2
1

2 MSMD . 

In the spatial domain, the image is presented in the standard basis  },,,{ 22211211
sssss bbbbB =
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In the transform domain, the same image is presented with matrix D  in the basis 

},,,{ 22211211
ddddd bbbbB =  
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22211211 2512575175 dddd bbbbS ⋅+⋅−⋅−⋅=  
 
In the next figure we may see base images  (left) and  (right) for matrices of dimension 

. 
sB dB

22×
 

  
 
In the next two figures are presented base images  for matrices of dimension  and 

. 
dB 44×

88×
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Example 3.2: Several first steps in presentation of crest image of Faculty of Mathematics, 
Belgrade: 
 

Original image
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Original image has dimension , and it is presented in base  with linear combination 
of 896 base images (each of them is multiplied by corresponding element in matrix 

2832× dB
D ). Here 

first 18 steps in deriving original image from base images, are showed. Each step is presented 
by pair (base image, result image). Steps are arranged in compliance with decreasing order of 
coefficients magnitudes in matrix D .  
 
3.2. Blocked DCT and JPEG compression. JPEG compression of grayscale image  is 
based on blocked DCT: 

cS

– Image  is divided in image blocks of dimensions cS 88×  pixels 
– DCT is applied on each image block. Result is matrix , produced with joining all cD 88×  
blocks in the transform domain. 
– Each element of each  block is subjected to quantization – is divided by a number, 
determined in advance, and the quotient is rounded to the nearest integer. The divisor for each 
block element is determined by quantization table

88×

3, i.e. by position of the element in the block. 
This is a "lossy" step in compression – it enables that the image data may be recorded in a less 
memory space, with respect to the original image data. 

Example 3.3: In the next figure we may see images for matrices  (dimension S 88× ), 
 and 8M D . 

 
 

Block D – result of discrete cosine transform (also of dimension 88× ), in contrast with block 
in spatial domain, has prominent differences between values in different block parts. Its 
elements near top-left corner (so-called DC element) are with far bigger magnitudes values 
comparing with block remaining part. These values decline with going to bottom-right corner. 

The same result we obtain with matrix multiplication of  (here, "Cameraman", 
dimension of ) and  (presented in the middle) – result is again matrix  (right) 

cS
128128× cM 8 cD

cccc MSMD 8
1

8 ⋅⋅= − . 

 

                                                 
3 Quantization table is in advanced determined matrix of dimension 88× , which contains divisors for all block 
elements. 
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Matrix  is almost diagonal. On its diagonal, it has matrices , and beyond it, all 
elements have values zero. 

cM 8 8M

In each  matrix  block, the block elements near the DC element have bigger 
magnitudes comparing with the rest of the block; on the other hand, they have smaller 
quantization coefficients in relation to remote elements. Thus, quantization is more intensive 
(more data will be lost) in block elements remote from DC element. 

88× cD

Therefore, in JPEG compression, data in bottom-right corner of each DCT block are lost much 
more, than in top-left corner. 

Three next examples show data nullifying impact4 in bottom–right image block parts on 
matrix  (Nullifying effect for the small part of each cD 88×  block; a half of each image block; 
the most part of each image block in transform domain).  
Each of the showed three examples is presented with three images:  

– designation of block part that will be nullified; 
– matrix   arisen by nullifying of coefficients part in all matrix blocks; 'cD
– matrix  arisen from  by applying inverse DCT.  'cS 'cD

Inverse DCT (multiplication by inverse of matrix ) returns us into the spatial domain with 
some extent distorted image. If we have not gone too far, these changes need not be visible to 
human eyes. 

cM 8

 

 
 
 
3.3. One way for image dimension changing. Image dimension changing may also be done 
by applying transform (for example discrete cosine) on the whole image: 

                                                 
4 In these examples, in order to illustrate, more complicate (and not much different) quantization we replace with 
data nullifying in bottom-right corner of each block. 
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– We perform DCT overall on the whole image  (here presented, as example, image 
"Cameraman", of dimension  – top left). Result of this operation (matrix

S
128128× D ) we may 

see on the right (showed on top–right image). Matrix D  is the same dimension ( ).  128128×
– We add 30 columns to the right side of matrix D  (elements values in these appended 
columns are 0). Then, we crop 30 rows in the bottom of it. The result matrix D ', of dimension 

 we may see on the bottom–left image15898× 5. 
On matrix 'D  we apply inverse DCT. Result is image  of dimension 'S 15898×  

showed bottom right. 
After inverse DCT, we have original image with aspect ratio changed. 
 

 

 
 
 
3.4. Fourier transform. Fourier transform (FT) of matrix  of dimension  we get with 
formula 

S nm ×

nm MSMF ⋅⋅= −1  
Matrix  is an original image matrix, matrix S F  is FT for this image; both of them have 
dimension . Square matrices  and  have dimensions , and nm × mM nM mm× nn× , 
respectively, and they may be calculated by Matlab code (here, this matrix is labeled with , 
and of dimension ): 

M
mm ×

 
for i1=1:m 
    for j1=1:m 
        M(i1,j1)=exp(-2*pi*i/m)*(i1-1)*(j1-1); 
    end 
end 

                                                 
5 When DCT is applied on the whole image, elements magnitudes near DC element in resultant matrix are much 
bigger, comparing with the rest of the matrix. So, matrix D (and 'D ) would be presented with totally  black 
rectangle, with little white point in top–left corner. In order to have better matrix presentation, top–right ( D ) and 
bottom–left ( 'D ) images are presented with logarithmed magnitudes. 
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F  and  (and ) are complex matrices. Here it will be presented several  matrices 
for Fourier transform: 

mM nM mM

 
2M  

1    1   
1   -1  

 
3M  

1.00     1.00           1.00  
1.00    -0.50-0.87i    -0.50+0.87i 
1.00    -0.50+0.87i    -0.50-0.87i 

 
 

4M  
1    1    1    1 
1   -i   -1    i 
1   -1    1   -1  
1    i   -1   -i 

 
128M  

 

 
 
 
Graphical presentations of base images for Fourier transform: 
 

Base images of 
dimension  22×

 
Base images of 
dimension  32×
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Base images of 
dimension  33×

 

Base images of 
dimension  44×

 

Base images of 
dimension  88×

 
 
For matrices  and S F  applies 

∑∑∑∑
= == =

⋅=⋅=
m

i

n

j

ij
fij

m

i

n

j

ij
sij bfbsS

1 11 1

, where [ ]
nmijsS

×
= , [ ]

nmijfF
×

= , and 

ij
sb  is base image in spatial domain that correspond with matrix  coefficient ,  S ijs

ij
fb  is base image in transform domain that corresponds with matrix F  coefficient . ijf
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Example 3.5: Image presentation in new basis. In the next figure, we may see several first 
steps in presentation of image  by FT base images. S
 

Original image 
of dimension 88×  pixels 

 
 
In this example matrix  is of dimension S 88× , and it is presented in base with linear 
combination of 64 base images of dimension 

dB
88×  (each of them is multiplied by 

corresponding element of matrix F ). Here, first 18 steps in deriving original image from 
matrix F and base images are showed. Each step is presented by pair (base image, result 
image). Steps are arranged in compliance with decreasing order of coefficients magnitudes in 
matrix F . 

 
 

4. Conclusion 
 
Here the proposed solution enables visualization of arbitrary matrices. The presented examples 
are mainly related with linear transforms – DCT and Fourier, and blocked DCT (which is used 
in JPEG compression). This examples choice is made for the reader to understand better high 
dimension matrices, used in image processing. This solution may be helpful, not only to people 
that are engaged in image processing, but also to all engaged in (real or complex) high 
dimension matrices. 
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СЛИКА И ЊЕНА МАТРИЦА. МАТРИЦА И ЊЕНА СЛИКА 
 
Сажетак: Предлажмо решење за визуелизацију матрица – како реалних, тако и комплексних. Потреба за 
приказом матрице у облику слике јасна је свима који се баве матрицама великих димензија. Посебан 
проблем ту стварају матрице које не могу бити нормално приказане сликом – оне чији су елементи 
произвољни реални, па чак и комплексни бројеви. Дато решење илустровано је са неколико примера, 
матрицама коришћеним у дводимензионим дискретним линеарним трансформацијама, у обради слика. 
 

Кључне речи: дигитална слика, матрица, визуелизација, дискретна косинусна трансформација, дискретна 
Фуријеова трансформација, ЈПЕГ компресија  
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