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DIGITISED MATHEMATICS:
COMPUTERISATION VS. FORMALISATION

Abstract. In only few decades, computers have changed the way we approach
documents. Throughout history, mathematicians and philosophers had clarified
the relationship between mathematical thoughts and their textual and symbolic
representations. We discuss here the consequences of computer-based formalisa-
tion for mathematical authoring habits and we present an overview of our approach
for computerising mathematical texts.

1. Introduction

The mathematics we are taught from primary school to university level is almost
always written in a distinctive language style. This style, used since the ancient
times differs, from natural language by its extensive use of abstraction and its rigor.
This very same language can designate first order equations, geometric problems or
demonstrations in general topology. Of course the background requested to under-
stand what is expressed depends on the knowledge of the reader but what remains
is a certain uniformity of the language. This linguistic style has been called [18] the
Common Mathematical Language (CML). Its ingredients are natural language and
symbols composed into formulae. Recognisable text constructions, familiar labels
and fonts constitute the visible substance of CML text. However, an important part
of what makes the consistence of a text – such as the connections between pieces of
text, the justification of an obvious deduction or the origin of a variable – is left to
the reader’s understanding.

A number of mathematicians and philosophers have advocated the use of a formal
language (instead of CML) in order to exclude any ambiguity for the reader. The
philosophical discussions over the essence of mathematical deductions and demon-
strations led to the elaboration of logics. The search for a foundation of mathe-
matics where proofs could be expressed in a formal language is ongoing and has
already led to accepted and time-honored foundations (such as Gödel set theory or
Zermelo/Fraenkel set theory). Nevertheless, despite these influential efforts, CML
remained the communication medium for mathematicians. To accommodate the use
of this informal but expressive language it is common to assume the feasibility of
transcribing “formal” CML text into formal expressions.
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By analysis of the mechanism of proofs in suitably chosen mathemati-
cal texts, it has been possible to discern the structure underlying both
vocabulary and syntax. This analysis has led to the conclusion that
a sufficiently explicit mathematical text could be expressed in a con-
ventional language containing only a small number of fixed “words”,
assembled according to a syntax consisting of a small number of un-
breakable rules: such a text is said to be formalized.

N. Bourbaki 1, Elements Of Mathematics [7]

With their computational capabilities, computers offer the possibility to put formal-
isation into practice. Many systems (see a comprehensive comparison in [31, 32])
offer computational tools to automatically check the correctness of formal proofs.
These systematic validations are time-wise impracticable by human. Automath [27,
14, 1] and Mizar [29] are among these precursor computer-based languages and
checking systems. Computers can also in a way “invent” mathematical knowledge.
The field of automatic deduction aims at assisting the mathematician or even replac-
ing the mathematician by searching for a valid proof of a given property. But this
revolutionary approach to mathematics has its skeptics. They are mathematicians
who regards formal logic of philosophical interest but who consider that mathemat-
ics should not be restricted only to formal proofs. These mathematicians have not
found their interest in using formal computer-based systems. This opposition be-
tween computer-based formal mathematics and more intuition-based mathematics
raises the following question: Does all mathematics need to be formalised?

• If the answer to this question is positive then we end up with a more prac-
tical questions. How should we consider branches of mathematics that have
not been formalised? What is the role in the universal body of mathematics
for non-formalised material or material known to contain logical mistakes
(therefore non-fully-formalisable)? How do we treat draft mathematics and
unaccomplished theories that can not yet fed into a formal system?

We are at a period of mathematics where computer-checked proofs are
gaining respect and importance in the wide mathematical community – the
four colour theorem is the first major theorem computer-proved [13] (using
Coq proof assistant [23]). Nevertheless, the dreams of a universal library
for formal mathematics has not come true [4]; it may never come true.

• If the answer is negative then we need to question the usability by math-
ematicians of proof assistant software. For most such software, the only
possible outcome for a document, is to be a logically valid one. This ori-
entation creates early choices for authors. In such framework, the design
of a theory and the elaboration of proofs are oriented towards achieving
full-formalisation. Mathematicians can only think of using a formal system
if they are sure a formalisation will be carried out to its final close.

We explore in this paper an intermediate solution for putting mathematics on
the computer. In Section 2 we discuss N.G. de Bruijn’s views on computerisation of
mathematics. In Section 3 we give a flavour of our approach in encoding mathematics

1N. Bourbaki is the pseudonym chosen by a group of French mathematicians (André Weil,
Jean Dieudonné, Szolem Mandelbrot, Claude Chevalley, Henri Cartan were some of the founding
members) in the 1930’s. They wrote under this name a full treatise of modern mathematics:
Elements of Mathematics [7].
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on computer with the Core Grammatical aspect (CGa) and Text & Symbol aspect
(TSa) of the MathLang framework. In Section 4 we review other research.

2. On the computerisation of Mathematics

The Automath experience over two decades has played two important roles. One
in the history of mathematics, as the first attempt to create a formal language for
mathematics on the computer. And the other in computer sciences, as the first
computer-based language for automatic proof checking. Professor N.G. de Bruijn
published in 1991 an article [12] which is a mixture of a philosophical summary of
the Automath experience and a list of perspectives opened by this experience. In
this article, he presents what he calls justification systems (which he considered to
include Automath). He introduced this notion of justification when putting face to
face automated checking and automated proving. The first one being the computer
task of systematic logical checking of proofs and the other one is the ability of asking
computers to invent a valid proof for a given theorem. He considered justification
to be an automated checking that does not only deal with proofs but with math-
ematics in general. Formalisation has two means: correctness of proofs and better
understanding of mathematics. N.G. de Bruijn proposed to clarify the actions one
is doing when formalising mathematics. One should distinguish a formalism for
mathematics and a computer based language for checking mathematical knowledge.

The work may be subdivided. One can think of a first stage where
a person with some mathematical training inserts a number of inter-
mediate steps whenever he feels that further workers along the belt
might have trouble, and a second stage where the logical inference
rules are supplied and the actual coding is carried out. For the latter
piece of work one might think of a person with just some elemenary
mathematics training, or of a computer provided with some artificial
intelligence. But we should not be too optimistic about that: pro-
gramming such jobs is by no means trivial.

N.G. de Bruijn, [12]

N.G. de Bruijn clearly differentiates two tasks in the work of formalising math-
ematics. The first one is close to traditional mathematical demonstration which
identifies the steps that compose a proof. The second one is a systematic justifi-
cation of every single logical step. This subdivision assumes that the foundation
used in the formalisation and the chosen representation of mathematical objects are
adequate for both steps. In practice, the systematic verification requires to adapt
an early formalism and even sometimes change it profoundly to facilitate a result or
even, in the worst case, to obtain a working proof.

Here lies the difficulty of choosing a suitable logical foundation when formalising
mathematics. N.G. de Bruijn takes the party of the “mathematicians’ approach”
which is keen on protecting liberties and choices even if this would discard a full
formalisation. This approach is opposed to a more “logicians’ approach” for which
mathematics should be sooner or later formalised in a universal logical framework.

The notion of correctness is not formulated in terms of a mathematical
reality, but involves rules about how a statement should be related to
material that has been said before.

N.G. de Bruijn, [12]
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N.G. de Bruijn being a mathematician inclined to make good use of computers aims
to reconcile the working-mathematician with the working-logician by raising the
intrinsic question of the definition of a mathematical vernacular.

I think that in formalizing mathematics, and in particular in preparing
mathematics for justification, it is usually elegant as well as efficient to
do everything in the natural way. That word of course does not mean
“like in nature”; it can at most mean “like normally in our culture”.

[...]
But of course, since the word “natural” means “cultural”, it is

subject to change. [...]
N.G. de Bruijn, [12]

The way mathematicians represent and therefore think of mathematical objects is
highly dependent on their unconscious social and cultural context. No formalisation
is fully suitable – unless your cultural background is logical. A mathematician is
the most likely to be able to computerise his mathematics. According to de Bruijn,
refinements could slowly move this computerised knowledge into a formalised one.

3. MathLang-CGa-TSa: the lower level of MathLang, an overview

MathLang’s philosophy [19, 20] is to bridge the gap between full-formalisation
and common mathematical writings. Our starting point (at the lower level of Math-
Lang) is to give a solution for putting mathematics on the computer. This solution:

• Leaves the author free to edit any mathematical texts, it should not be
restricted to specific branches of mathematics,

• Gives a framework in which CML is the medium for the human reader but
where the reasoning, expressed in CML, is computerised in a comprehensive
manner for computer-based analysis,

• Opens the possibility of semantical and logical refinements and even for
formalisation if achievable or needed.

The easiest way to get the intuition of how MathLang puts mathematics on the
computer and manipulates it at this lower level, is through examples. Let us see
how common mathematical constructions are identified in the lower level MathLang-
CGa-TSa. See [16, 15, 17, 24] on MathLang-CGa-TSa for a broader explanation.

When considering only the aspect of a mathematical text concerning justifica-
tions, a mathematical text is typically a succession of deductions derived from facts.
These deductions are brought forward by rational arguments which are composed
by assumed facts or standing results from earlier parts of the text. The material of
such deductions are notions and mathematical objects, concrete or abstract, that
could often be defined within the mathematical text. This understanding of the
composition of mathematical discourse is shared by N.G. de Bruijn’s Mathematical
Vernacular [11], Weak Type Theory [18] and MathLang-CGa.

Examples. Let us consider the following expressions.

(1) “A ⊂ B”
(2) “For every natural number n, n + 1 is also a natural number”

Which information is hosted in these sentences? Let us investigate both sentences.

(1) In the sentence “A ⊂ B”, A and B are two identifiers. They have surely
been introduced before the sentence was stated. If we assume that A and B
are sets, the sentence introduces a new fact: one set is subset of the other.



F. KAMAREDDINE, M. MAAREK, K. RETEL AND J. B. WELLS 5

Terms Sets Nouns Adjectives Statements

Declarations Definitions Contexts Steps

Figure 1. Grey scale coding of MathLang-CGa’s grammatical categories

Here ⊂ is a relation between sets. In MathLang-CGa-TSa, we annotate
these three sub-expressions (A, B and A ⊂ B) with their grammatical role
(respectively term, term and statement). Here is a view of this sentence
with one coloured box per annotation. Figure 1 gives our colour coding.

A⊂B

Each annotation comes with an attribute input by the user. This at-
tribute provides the identifier used to construct the expression contained in
the annotation box. Here is a version of this sentence with these annota-
tions’ attributes printed in between angle brackets < >. An interpretation
that only concerns these attributes would give the symbolic expression:
subset(A,B).

<subset> <A>
A⊂

<B>
B

These two views are automatically obtained from the same TEXmacs
document (see Section 4 for information about TEXmacs). This document
contains MathLang-CGa materials input using the MathLang-CGa-TSa
plugin we developed for TEXmacs. In addition to offering customisable
views, our plugin can also communicate the content of a document to our
MathLang-CGa checker. This checker analyses the well-grammatical for-
mation of the text. In the case of our example, the checker makes sure
that the three identifiers A, B and subset have been properly introduced
and are used in accordance to their definition. See [17, 24] for a complete
description of MathLang-CGa’s type system.

(2) The sentence “For every natural number n, n+1 is also a natural number” is
an expression which states that the result of adding one to a natural number
is a natural number. The implicit meaning of “For every” is the universal
quantification. It introduces the variable n. This variable represents any
natural number. The operator + applied to n and 1 creates a new object
n + 1 which is said to belong to the same type of objects as n . The
abstract object a natural number refers to one or two notions natural and
number presumably defined earlier or simply assumed to be known by the
reader. If we understand number as a type of object (we call them nouns in
MathLang-CGa), then natural could be seen as a refiner for this type (that
we call adjectives). It is important to notice the two slightly different uses
of “being a natural number”. In the first part of the sentence it is stating
that n belongs to the type “natural number” but also participates into the
declaration of n. As in the second part of the sentence, n + 1 is an object
stated to be of the same type “natural number” but there is no declaration
of identifier here. A symbolic version of this sentence would be like:

∀n : natural number , n + 1 : natural number

Here is the annotated MathLang-CGa-TSa version of this sentence.

For every natural number n , n + 1 is also a natural number
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And its annotation version with printed annotation attributes.
<forall>For every <n> <#refinement> <natural>natural <number>number <n>

n ,
<is> <+><n>

n + <1>1 is also a

<#refinement> <natural>natural <number>number

The symbolic interpretation (derived from the MathLang-CGa-TSa an-
notations) of this sentence would therefore be as follow.

forall(n : natural number, in( +(n,1), natural number))

These two sentences cause no difficulty of being understood by any human reader
with basic mathematical knowledge. Even taken out of their context, their meaning
is easily inferred. It is exactly this inference (e.g. the mind action to extract the
implicit meaning from such sentences) that we would like to conduct in MathLang-
CGa-TSa. Such sentences left as they were earlier presented are meaningless for
a computer software. The extra information we added in our explanation about
variables’ scoping, belonging of objects to a kind or a set, arity of symbols, and
actions – new fact or object introduction – performed by a piece of text, are relevant
for a comprehensible encoding of mathematical text.

We shall make it clear here that this extra information is not meant to be pur-
poseful in the sense that they do not make explicit a calculation or a deduction,
they simply express some knowledge already contained in the CML version of the
text. The difference lies in the fact that they are expressed in a computerised way
and therefore in an explicit manner. This extra information is simply grammatical
and does not have for now a purpose for a specific computation or proof validation.
What we are interested in here is the tangible grammatical information we could
clarify when encoding mathematics.

4. Overview of systems for digitised mathematics

Research in computerised mathematics has gained interest in recent years as
shown by the quality and scope of the Mathematical Knowledge Management con-
ferences. Its community focuses on the handling of mathematics on the computer.
This computerised management of mathematics requires a wide range of expertise.

Digitisation. At first, one could think of making use of existing CML documents.
This is effectively the larger body of mathematical documents. Digitisation of math-
ematical documents requires some automatic recognition of natural language texts
and mathematical formulae [21, 28].

Representation. Digitisation and authoring raise the question of documents’ for-
mat. The output format depends mainly on the users’ choices and requirements.
LATEX (http://www.latex-project.org/), used to typeset this paper, is a type-
setting system which, focusing on the structural aspect of the document, provides
an elegant visual representation. Some alternatives have been proposed to rectify
some of LATEX’ representation inadequacies. TEXmacs (http://www.texmacs.org/)
is being developed to offer a more intuitive WYSIWYG2 authoring system. MathML
(http://www.w3.org/TR/REC-MathML/) developed by the W3C3 is intended to be
a universal representation for mathematical symbols and formulae. OpenMath [10]
and OMDoc [22] are two open markup formats which focuses on capturing the doc-
ument’s semantic meaning. OpenMath concentrates on the formula level, OMDoc
on the theory and document level. This list of LATEX alternatives is not meant to

2What You See Is What You Get.
3World Wide Web Consortium.
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be exhaustive. MathLang-TSa focuses on providing an uncropped representation.
It differs from MathML/OpenMath/OMDoc which disregard most of the portion of
text written in natural language in their computerisation.

Automation. Following the development of theorem provers, a number of re-
searchers have investigated the possibility of assisting the working mathematician
in his formalisation experience. These researchers have led to more comprehensive
access to formal libraries (see for example the HEΛM project [2]) and more suitable
authoring software. We have already mentioned Mizar [29] whose syntax mimics
CML. Similarly, Isar [30] is an alternative proof language interface for Isabelle.
There exists several interfaces for formal system, let us mention three here: Theo-
rema [9], a computer algebra system which is interfaced with Mathematica, Proof
General [3] which is a generic IDE4 for theorem provers and the Ωmega project [5]
which aims at offering mathematicians with support for formalisation.

5. Conclusion

We believe that mathematicians and therefore mathematics would gain from
a broader use of computers. The gap between mathematics expressed in natural
language form and formal mathematics repulses the mathematicians not interested
in full-formalisation. Bridging this gap will open the access to formalisation software.

In an attempt to bridge this gap we propose to computerise mathematical text
prior to any formalisation. MathLang aims to support non-fully-formalised mathe-
matics and to support automated processing of mathematical knowledge. Annotat-
ing books of mathematics written in English, as we are doing, can also be performed
for books written in any other natural language.
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[7] N. Bourbaki. Theory of Sets, volume I of Elements of Mathematics. Addison-Wesley Publishing
Company, 1968. Chapters I and II are translations of [6].
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